
Generalised Recursive Descent Parsing and
Follow-Determinism

Adrian Johnstone and Elizabeth Scott*

Royal Holloway, University of London

Abs t rac t . This paper presents a construct for mapping arbitrary non-
left recursive context-free grammars into recursive descent parsers that:
handle ambiguous granunars correctly; perform with LL(1) efficiency on
LL (1) grammars; allow straightforward implementation of both inherit ed
and synthesized attributes; and allow semantic actions to be added at
any point in the grammar. We describe both the basic algorithm and a
tool, GRDP, which generates parsers which use this technique. Modifi-
cations of the basic algorithm to improve efficiency lead to a discussion
of/ollow-deterrainisra, a fundamental property that gives insights into
the behavioux of both LL and LR parsers.

1 Introduction

Practical parsers for computer languages need to display near-linear parse times
because we routinely expect compilers and interpreters to process inputs that
are many thousands of language tokens long. Presently available practical (near-
linear) parsing methods impose restrictions on their input grammars which have
led to a ' tuning' of high level language syntax to the available efficient pars-
ing algorithms, particularly LR bot tom-up parsing and, for the Pascal family
languages, to LL(1) parsers. The key observation was that, although left to
themselves humans would use notations that were very difficult to parse, there
exist notations that could be parsed in time proportional to the length of the
string being parsed whilst still being easily comprehended by programmers.

It is our view that this process has gone a little too far, and the feedback from
theory into engineering practice has become a constraint on language design, and
particularly on the design of prototype and production language parsers.

When building a new language, the natural design process starts with the
language itself, not with the grammar, and even expert users of existing linear-
time parsers are unlikely to produce conflict free LL(1) or LR grammars at their
first a t tempt . In fact grammar debugging is hard. Even when the designer has
produced a grammar that is acceptable with no (or few) conflicts, it is usually
the case that , as a result of logical errors in the design of the grammar, the
generated parser either parses some strings that are not in the language or fails
to parse some that are. The analogy with program design is strong. In order
to effectively design languages we need debuggers for parsers which allow the

Email: A. Johnst ons@rhbnc, ac. uk or E. Scott @rhbnc. ac. uk

17

user to think in terms of the parser specification (the grammar), Although many
languages are developed from existing ones, and so perhaps should be viewed
as stepwise refinements of working systems, neophyte (and even experienced)
language implementers find it hard to be sure that the language generated by
their grammar is precisely the language they have informally sketched. The sit-
uation is particularly difficult in the case of bottom up parsers since, even when
a grammar has been accepted by the parser generator and successfully tested
it may break when semantic actions are added. In addition, bottom up parsers
report errors in terms of multiple table entries, and users often find it difficult
to relate table entries to entities in the original grammar. This is not to decry
the parsing power of the bottom-up approach which, unlike standard top-down
techniques, allows left recursion in grammars to be handled in a natural fashion.

2 Overview

In this paper we present a parsing technique called Generalised Recursive De-
scent (GRD) which can handle all non-left recursive grammars, even ambiguous
ones, but which is based on recursive descent, retaining the attractions of this
approach. As there is a well-known algorithm [ASU8fi, pp. 176-178] which al-
lows left recursion to be removed from any grammar (after some preprocessing
to remove certain types of grammar rule), in principle our technique can be used
for any context-free language. We also present techniques to allow more effi-
cient implementation of GRD. In particular, we analyse a variant of the GRD
algorithm which can be used if the input grammars have a property called follow-
determinism. In the rest of this paper we shall

- present a construct for mapping arbitrary non-left recursive context-free
grammars into recursive descent parsers that

1. handle ambiguous grammars correctly,
2. perform with LL(1) efficiency on LL(1) grammars,
3. handle non-left recursive LR(1) grammars with reasonable efficiency,
4. allow implementation of both inherited and synthesized attributes,
5. allow semantic actions to be added at any point in the grammar without

affecting either the correctness or the efficiency of the parser.
- discuss .follow-determinism, a fundamental property that gives insights into

the behaviour of both LL and LK parsers,
- describe a tool, GRDP, which generates parsers which use this technique.

There are other parser generators which use a generalised form of recur-
sive descent [BB95, PQ96]. Such parsers usually explore all possibilities at each
step in the parse but then select only one to proceed wi th -a fundamental con-
straint that causes the parsers to fail even on some non-ambiguous grammars.
A common selection procedure is to choose the so-called 'longest-match', i.e. the
possibility which matches the longest section of the input string. This process is
not guaranteed to produce correct parsers for all grammars. Our parsers return
the set of all possible matches at each step and continue with each of them. This

18

allows us to produce correct parsers for all non-left recursive grammars , and all
possible derivations in the case where a g rammar is ambiguous. The language
designer will thus get a correct parser for their g rammar which they can then
use to test whether their g r ammar really does generate the language they were
hoping for. Once a correct g r ammar for the language has been developed effi-
ciency issues can be addressed. Our parser generator produces efficient parsers
if the designer can refine their g r ammar so that it has suitable properties. Ex-
perimental results for a rstricted form of backtracking recursive descent parsers
may be found in [BB95].

We begin by giving a basic definition of formal grammars , to allow us to
introduce the terminology and notation that we need.

3 Formal Grammars

We use a slightly unconventional definition of a g rammar in which a g rammar
rule is a mapping f rom the set of non-terminals to sets of strings of terminals and
non-terminals. In the examples in this paper the sets will be finite, so g r ammar
rules can be thought of in the usual EBNF way,

A: :={aBb, aCC, e} is equivalent to A : := aBb] aCC [e.

However, much of what we say applies to grammars where the right hand sides of
g r ammar rules can be infinite sets, and in a future paper we shall be discussing
such grammars . Thus we use the set based notation here so that this work will
not need to be reformulated later.

A context free grammar P = (U, T, S, P) is a set U of symbols, a set T C U of
terminals, a s tar t symbol S 6 U\T, and a set P of rules A: :=VA, where ~'A _C U*
(the set of strings on U), A 6 U\T, and there is only one g rammar rule for each
A. The elements in vA are called alternates of the rule A : : =rA.

A derivation step is of the form aAfl ~ aTfl where a, ;9 6 U*, A E U\T, and
"7 C "rA. A derivation is a sequence

a = a 0 ~ a 1 ~ a 2 ~ . . . a h =

where a i - 1 ~ a i is a derivation step, 1 < i < k. In this case we write a~ f l .
A symbol X is reachable f f fo r some a , fl 6 U*, S ~ a X f l .
We define L(F) , the language generated by P, to be the strings of terminals

which can be derived from S. So

L(r) = {u ~ T* [S~u}.

At a suitable level of abstraction, a parser P is a map from the set of strings
in a language to the set {success, failure}. The idea is that a string is input
to P and after a finite amount of t ime P should terminate and return either
success or failure. Formally, a g rammar P admits a parser P ff

- for an u in L (r) , P (u) = s u c c e s s ,

19

- for all u not in L(F), P(u) - fai lure.

A parser is conservative if inputting u E T* results in success if u E L(/ '). A
conservative parser may result in failure on some strings u C L(/~).

The goal of a parser is, given an input string, to construct a derivation of
that string. Recursive descent parsers use a top-down left-most approach; that
is, they start with the start symbol and attempt to construct a derivation step-
by-step from the left. At each step in the constructed derivation the left-most
non-terminal in the string is replaced.

4 G e n e r a l i s e d R e c u r s i v e D e s c e n t Parsing

In this section we describe a generalised version of the well-known recursive
descent parsing technique. The generalised version does not require the source
grammar to be left factored, and, in the ease of ambiguous grammars, returns
all valid parse trees for the given input string. Our generafised recursive descent
(GRD) parsers overcome the need for left factoring by using arbitrary amounts
of backtracking, and they handle both local and global ambiguity by returning
sets of sentential forms at each stage rather than selecting a single sentential
form for further processing.

One of our reasons for preferring top down parsing is that, as Terence Parr
noted in a recent SIGPLAN notices article, 'parsing is not translation'[PQ96].
The significanee of this comment is that bottom up parsers are fragile with
respect to semantic action placement. In a shift-reduce parser, pending matches
are kept on a stack. By definition, shift operations are associated with input
strings whose grammar production has not yet been completely identified and so
semantic actions cannot be associated with shift operations. Once a production
has been completely matched, a reduction operation occurs at which point a
semantic action may be executed.

To the parser generator user, the effect of this constraint is that in order to
execute a semantic action mid-way through a production that production must
be split into a prefix production and a suffix production, with the action being
placed at the end of the prefix. Unfortunately there is no guarantee that the re-
suiting grammar will still be accepted by the parser generator. In the worst ease,
an LALR grammar with a semantic action to be executed after each terminal
will be reduced to the same parsing strength as an LL(1) grammar [Par03].

GRD parsers display all of the attractive features of traditional LL(1) recur-
sire descent parsers in that semantic actions may be placed anywhere within
the grammar without perturbing the behaviour of the parser or the acceptabil-
ity of the grammar to GRD parser generator; both synthesized and inherited
attributes may be implemented simply via the implementation language's pro-
cedure parameter mechanism and, most importantly of all, there is a very close
relationship between the parser code and the equivalent BNF grammar. This
means that a grammar specifying a GRD parser may be debugged by single
stepping through the GRD parser using the traditional code debuggers.

20

Our parsing algorithm and its associated parser generator offer two modes:
prototvping in which ambiguous grammars are fully supported, even to the ex-
tent of returning multiple derivations where no disambiguation predicates are
provided, and production in which a single derivation is selected on the basis
of a property we call follow-determinism. The purpose of the prototyping mode
is to allow the designer (and perhaps the theoretician) to explore the proper-
ties of ambiguous grammars without restriction. In many cases, the prototyping
mode will in practice be fast enough, significantly easing the job of language
implementation.

The two parser modes allow a smooth transition from very general parsers
to parsers which, whilst still being more general than top-down parsers are com-
petitive in terms of parsing speed. With tongue slightly in cheek, we call our
parsers recursivel v decent parsers 2.

Concre te G R D parsers GRD parsers take their input from a read-only buffer
with a current character index called current . During back-tracking, the index
may be moved backwards in the string. We expect, therefore, the whole input
to be in memory. This is not a significant constraint in modern systems where
memory is plentiful.

GRD parsers contain one parsing function for each grammar rule. On entry
to a parser function, the present value of the input index cur ren t is stored
in the local variable en t ry current . Each parser function constructs a set of
indices into the text buffer, corresponding to the position in the text buffer of
the cur ren t index immediately after a sub-string has been reeognised. This set
is called r e tu rn_se t .

The function mismatch is used to test the substring at the cur ren t index
against a language token. If the test succeeds, the cur ren t index is updated to
the position in the buffer immediately after the token and FALSE is returned,
otherwise the cur ren t index is left unmodified and TRUE is returned. If a se-
quence is successfully matched, the position of the current index is added to the
r e tu rn_se t .

The loops are executed in some arbitrary sequence. (Usually the loops are laid
out in the same order as the productions in the grammar to ease the debugging
process).

Within each production, each terminal symbol is mapped to a mismatch
function which compares the portion of the input string starting at the cur ren t
index to the terminal string. A failed match causes the parser to break from the
current loop.

Each reference to a non-terminal is mapped to a f o r loop preceded by a call
to the corresponding parser function which returns a set of index positions, one
for each string matched by that function. These sets can be large, but in an
LL(1) grammar, the eardinality of the set is guaranteed to be one or zero. The
loop iterates over each element in the set, and the body of the loop comprises
the remaining tail of the alternate production.

2 Thanks to Dan Simpson of Brighton University for this pun.

21

Pseudo-C code for the GRD parser function corresponding to the production

S: : ={ac, aBc} is shown in Fig. I.

Set S(void)
{

char * e n t r y _ c u r r e n t ffi c u r r e n t ;
S e t r e t u r n _ s e t ffi EPIPTY_SET;

i f (mismatch("a")) goto b ranch l_snd ;
£:~ (m s m a t c h (" c ")) goto b ranch l_end ;

r e t u r n _ s e t = rs turn_se tUNION c u r r e n t ;

b ranch l_end :

c u r r e n t ffi s n t r y _ c u x r e n t ;

i f (n~smatch("a")) 8oto branch2_end;

{
Set S t r i n g _ s e t = BO ;

f o r (each element i n S t r i n g _ s e t)
{

c u r r e n t = c u r r e n t _ e l e m e n t _ o f S t r l n g _ s e t ;
i f (mismatch("c")) c o n t i n u e ;
r e t u r n _ s e t = r s turn_se tUNION c u r r e n t ;

}
)
branch2_ end:

r e t u r n r e t u r n _ s e t ;

Fig. 1. A concrete GRD function for the production S: : ={ac, aBc}

An example grammar In the rest of this paper we shall use the grammar:
A : : = { B A , C, d} B: :={abb, ab} C : : = { c , cd}

GRDP parser trace trees We use a generalisation of the standard derivation
tree to display the results of a GRD parse. Our parser trace Crees are derivation
trees augmented with nodes that show the start of each alternate production
and the start of each ta~ test after a non-terminal has been called. Failed nodes
are labeled in parentheses. Fig. 2 shows the tree corresponding to the grammar
above and the input string abbc. The nodes that would be found in a normal

22

derivation tree are shown as rectangles, and our augmented nodes as ellipses. The
'continuat ion ' nodes tha t occur after each non-terminal in a sequence are labeled
with . . . u where u is the remainder of the sequence to be parsed. In the case of
a parse that returned a single derivation, displaying only the rectangular nodes
along branches with successful continuations produces a s tandard derivation tree.

Fig. 2. GRD parser trace tree: example grammar (prototype mode) on string abbc

5 P r u n i n g t h e S e a r c h S p a c e

We now consider two ways of improving the efficiency of GRD parsers. The first
is to only explore alternates with appropriate 'f irst ' sets: this does not impose
any additional restrictions on the source grammar . The second uses lookahead
to decide whether to terminate a function call, and to be guaranteed correct
it requires the source g r ammar to possess a property called follow-determinism
which we describe below.

FIRST set checking The version of GRD described so far handles ambiguous
grammars by exhaustive searching of the grammar rules. The only concession to

23

efficiency is that the search of an alternate is aborted as soon as a terminal mis-
match is discovered. However, there is no point exploring the result of replacing
a non-terminal by a particular alternate if that alternate cannot generate either
a string beginning with the current input symbol or e, the empty string.

Consider the example grammar in the previous section. A prototype mode
GRD parser for this grammar win produce the trace shown in Fig. 2 on input
string abbc.

We can improve the efficiency of the prototyping parser, without imposing
any further restriction on the source grammar, by prefacing each alternate and
non-terminal call with a test to ensure that c u r r e n t is pointing to a substring
that is in the FIRST set for that alternate or non-terminal.

Formally FIRST sets are defined as follows:

.[a e T I a:~av} U .[e}, if a:~e
FIRST(Or) : "[a e T I a=~av}, otherwise.

With the FIRST set test, a GRD parser for the above grammar will produce
the trace shown in Fig. 3 on input abbc

Fig. 8. Pruning the search tree with F I R S T sets

The effect of adding such tests is to lop off entire branches of the parser trace
tree, which significantly aids efficiency. More particularly, if the user is able
to left factor their grammar, then at most one branch will be entered within
each production. A future version of the parser generator will generate profile

24

information from running parsers on a large and representative set of sample
strings and calculating the probability of each branch being entered on typical
input strings. By ordering the branches in descending order of probability, further
speednps will be obtained in the production version of GRD.

FOLLOW set checking In practice, we expect users to switch from the prototype
mode to production mode at some stage in the development of their language. In
production mode each parser function returns at most one string. We select the
string on the basis of the next input symbol, relying on a property called follow-
determinism. This modification provides similar parsing power to the traditional
longest-match approach, and is guaranteed to produce a correct parser for a
follow-determined grammar. In addition, follow-determinism is generally more
efficient than longest-match because we can abort an alternate as soon as we
find a follow-determined match, whereas longest match requires all strings to be
checked and compared for length. Follow-determinism is discussed in detail in
[JS97b]. Here we just give an overview of the basic ideas.

Suppose that a GRD parser for the grammar

A::={BA, C,d} B::={abb, ab} C::={c, cd}

has been given input abbc and that so far it has constructed the step:

A ~ B A

On exploring the replacement of B for the next step in the derivation a parser
will be able to match both alternates of the rule.

A parser generated by the prototyping version of GRD will simply return
both matches and continue to develop both corresponding derivations.

A longest-match based parser will find all matches but will select the longest
and only pursue that corresponding derivation.

When a production GRD parser finds a match it checks to see whether the
current input symbol is in the FOLLOW set (see below) of the current non-
terminal. If so it just selects that match and doesn't explore any further al-
ternates. So in the above example, as c is in the FOLLOW of B, the next step
constructed would be

A=C, BA=~abbA

and the alternate ab would not even be explored. Eventually the trace tree shown
in Fig. 4 would be produced.

Fo l low-de te rmined g r a m m a r s In the case where there is a choice of matches
which can be used in the next step of a derivation, selecting one to proceed with
may cause a problem. It may turn out to be impossible to complete the derivation
with that choice, while a different choice would have resulted in success. This is
a general problem for techniques which select one of a choice of matches. There
are grammars for which choosing the longest match results in failure, whereas

25

0

0

Fig. 4. Pruning the search tree with FOLLOW sets

choosing a shorter match would have allowed the successful completion of the
derivation. However, it is possible to define the property required of a grammar
to ensure that selecting the follow-determined match will always result in a
complete derivation, if one exists.

The FOLLOW set of A is the set of terminals which can appear immediately
after A in a string derived from the start symbol, together with a special end of
He symbol $ if A can appear at the end of a such a string. So

f {~ I for some o,,~, S=~c~Aa~} U {$}, if S=~c~A
FOLLOW(A)

{a I for some a,/3, S~aAa~}, otherwise,

where S is the start symbol of the grammar.
D e f i n i t i o n A grammar F is follow-determined if for every A E U, if A ~ u E

T* and A~uctw, for some a E T, w E T*, then a ~ FOLLOW(A).
I f the source grammar is not left recursive then a production version GRD

parser for it will be conservative. If the source grammar is also follow-determined
it will admit a production version GRD parser. Note: a follow-determined gram-
mar will also admit a longest-match based parser, but as noted above, longest
match will be less efficient in general.

A n o n - L R (1) , n o n - f o l l o w - d e t e r m l n e d g r a m m a r wh ich does a d m i t a
p r o d u c t i o n - m o d e GILD p a r s e r We now look at an (ambiguous) non-follow-
determined grammar which, none-the-less, admits a production version GRD
parser, without the need for special ambiguity breaking measures.

26

S: :={BAc} A: :={a , aA} B::={b, ba}

We have B=~b, B:~ba, and S=~Bac so the grammar is not follow-determined.
The corresponding language is {ba'~c I n > 1}. When parsing ba'~c, n > 2, the
non-terminal B may generate b or ba, but in either case, the non-terminal A will
generate then remaining string of a's and the parse will succeed.

It is worth noting that a longest-match parser will fail on the string bac.

6 Some Properties of Follow-Determined Grammars

As we have already discussed, there are two classes of GRD parser: the pro-
totyping versions which are admitted by any non-left recursive grammar, and
the more efficient production versions which are only guaranteed to be admitted
by non-left recursive follow-determined grammars. We shall now describe some
theoretical aspects of follow-determined grammars and the languages which can
be specified with them. Because of space constraints the proofs of almost all the
results quoted have been omitted, but complete proofs can be found in [JS97b].

6.1 LL(1) Grammars

We begin by looking at the relationship between LL(1) grammars and follow-
determinism. First we note that currently used recursive descent based parsers
require the grammar to be free of left recursion, as left recursion can cause the
parser to go in to an infinite loop.

A grammar/~ is left recursive if for some A E U and a E U*, A~Aa , where
the derivation has at least one step.

A grammar/~ is left factored if for every non-terminal A E U and for every
pair a , f l e r~t with a ~ jb, we have FIRST(a) N FIRST(B) = 0. Left factoring
avoids the need to explore more than one alternate at each derivation step.

The other property required of an LL(1) grammar is that the parser should
know 'when to stop' matching a rule. This may seem a little strange, but essen-
tially we mean that if the parser has matched a portion of the input to the right
hand side of a rule, it must be clear whether it should continue to try to get a
longer match, or stop and begin matching the next rule. The grammar

S : :={Aa} A: :={aA, e}

has the disjoint FIRST property above but is not LL(1). The problem illustrated
by this grammar is the basis of the follow-determinism constraint.

Follow-determinism is not the condition usually used in the definition of
LL(1) grammars, but it turns out that the weaker condition usually stated is
equivalent to follow-determinism in the presence of left factoring.

F is simply follow-determined ff for all A such that A~e, if fl E rA then
FIRST(J3) n FOLLOW(A) = 0.

A grammar F is said to be LL(1) if L(F) # ~, 1 ~ is left factored and F is
simply follow-determined. Theorem 1 (below) shows that all LL(1) grammars
are follow-determined. The following lemma is used in the proof of Theorem 1.

2?

Lemmal . Let 1" be an LL(1) grammar. If S~OtlCta2 E U* and if for some
u E T*, a E T and'g E U* we have a=:~u, a=t~ua'g then there exists a
non-terminal A such that a = a'Aw, where ~v~e and a ~ FOLLOW(A).

T h e o r e m 1 1. If 1" is follow-determined then 1` is simply follow-determined.
2. I]1` is left factored and simply follow-determined then 1` is follow-determined.

Proof. (1) Suppose tha t 1" is not simply follow-determined. Then there exists
A E U and f~ E r.4 such tha t

A~e , A~t3~at3

for some a E FOLLOW (A). But then taking u = e we have A=:>u, A ~ u a f l ,
so 1" is not follow-determined.

(2) Suppose that for some reachable A and some u E T*, a E T, 7 e U*

we have A ~ u and A ~ u a % Then by Lemma 1 we have a ¢ FOLLOW(A), as
required.

C o r o l l a r y 1 LL(1) grammars are left factored and follow-determined.

6.2 Foilow-Determlnism and Left Factoring

Recursive descent based parsers are more efficient on grammars which are left
factored. However, we shall now show that there exist follow-determined gram-
mars for which there axe no equivalent left factored grammars , thus the capabil-
ity of production version GRD parsers to deal with non-left factored grammars
increases the number of languages which can be handled.

Let 1` = (U, T, S, ~) be a context free grammar . For a E T and a E U* define
L~(a) to be the set of strings of terminals beginning with a which are derivable
from ~. So

La(a) = {av [for some v E T*, a ~ a v } .

The idea is to show tha t ff there is a non-terminal B in 1` such tha t

La(B) = {aba, a2b 2, aabaa, a4b4, . . .} = L, say

then F cannot be left factored. We then demonstrate tha t this language L can
be generated by a follow-determined context free grammar , and since it must
be La(S) for the s tar t symbol of any g rammar which generates it, L cannot be
generated by a left factored grammar .

The main par t of the proof relies on the following lemma.

L e m m a 2. Suppose that 1" = (U, T, S, 7 ~) is a left factored contezt-free grammar.

I. I f there ezists B E U\T , a, b E T, and 3 > 0 such that

La(B) = {abJ+la, a2b J+2, aSbJ+Sa, a4bJ+4,...} = X j , say,

then there ezists C E U such that

L~(C) Iab J+2 a2bJ+Sa a3b J+4 a4bJ+Sa, = t , , , ." .} = YJ+I, say.

28

2. I f there exists B E U\T, a, b E T, and J >__ 0 such that

L , (B) = {ab J+l, a2bJ+2a, aSb J+8, a4bJ+4a,...} = Yj , say,

then there ezists C E U such that

L , (C) = {abJ+2a, a2b J+z, aZbJ+4a, a4bJ+5,...} = X j+l, say.

Theorem 9. There exists a non-left recursive, follow-determined grammar for
which there is no corresponding left factored eontezt free grammar.

Proof. Let L = {a2n-lb2'~-la, a2~b 9"~ I n > 1}.

S::={aAba, aBb} A::={aBb, e} B::={aAb}

is a follow-determined grammar for L which is not left recursive.
Suppose that F = (U, T, S, 7 ~) is a left factored context free grammar which

generates L. Then clearly,

La(S) = {aba, a2b 2, a3bZa, a4b4,...} = Xo.

So, by Lemma 2(1), there exists a non-terminal C1 such that

zo(c) = {ab 2, a"bSa, a%L.. .} =

Suppose that there are non-terminals C1, . . . , C2n-1 such that

{Yj, f f i = 2 j - 1
L , (C ,) = Xj, f f i = 2 j .

Then, by Lemma 2(2) there exists a non-terminal C2n such that La(C2,~) = X,~.
Then, by Lemma 2(1) there exists a non-terminal C2,~+1 such that La(C2,~+I) =
Yn+l.

Since the X~ and Y~ are all different we must have C, ¢ C, if r ¢ s and
thus F has infinitely many distinct non-terminals. So F cannot be a context free
grammar.

6.3 Follow-Determinism and LR(1) G r a m m a r s

The ability of LR parsers (see [ASU86]) to accept left recursive grammars means
that they can be used with some grammars which do not admit gener~llsed recur-
sire descent techniques unless they have been preprocessed by the left recursion
removal algorithm. One of our reasons for preferring GRD parsers is that they
provide helpful error diagnostics. (LR parser generators usually detect grammar
problems by finding multiple entries in a parse table, but the user wants to know
what the problem is in terms of the grammar rules, not in terms of the parse
table, so that the grammar can be modified to remove the problem.) However,
it is also the case that there are GRD parsers for some grammars whose lan-
guages cannot admit an LR parser. This is clear in the case of the prototyping
version of GRD, because it can handle ambiguous grammars. The fact that the
production version of GRD can be used on some non-LR languages is shown by
the following theorem.

29

T h e o r e m 3 There is a language L which has a follow-determined contezt-free
grammar but which is not LR. In particular there is no LR(1} grammar for L.

Proof. Let
L = {anb '~ In > 1} tO {a"b 2'~ I n > 1}.

It is known, see [AUg2] that L cannot be generated by an LR grammar.
Clearly the grammar

S: :={aAb, aBb 2} A::={aAb, e} B::={aBb2,e}

generates L. If F is not follow-determined then we must have

A=~au, A:~aubv or B:------~au, B:~aubv

for some a E U* and u, v E T*. But

A~a'~Ab n or A ~ a b n

so we cannot have

Similarly, we cannot have

A---->au, A :=>aubv.

B=~au, B:~aubv.

Thus F is follow-determined.

7 The GRDP Parser Generator

GRDP is a tool which reads a BNF language specification and outputs an ANSI-
C program which implements a generalised recursive descent based parser for
that language. The GRDP source syntax is based on, and backwards compatible
with our existing RDP LL(1) parser generator[Joh95]. As well as the BNF rules,
the source file may contain declarations to control scanner behaviour and to
switch GRDP into production mode. By default GRDP generated parsers use
the prototyping mode of the GRD algorithm in which sets of strings are returned
by parser functions. These parsers correctly handle even ambiguous grammars,
returning multiple derivations. In production mode, parser functions return at
most one string, being the first follow-determined match discovered in the rule.

GRDP is written using RDP and makes use of RDP's integrated symbol
table handling, set manipulation and graph drawing libraries. An option within
GRDP enables the construction of parser trace trees such as those shown in this
paper. These trees are output in a form suitable for display with the VCG graph
visualisation tool[San95] and form an extremely useful debugging aid.

The present version of GRDP is limited to traditional BNF only. Our ap-
proach to extended BNF structures, such as Kleene closure relies on our per-
mutat ion iterator construct which subsumes the optional phrase, Kleene clo-
sure and positive closure operators found in some EBNF variants. We shall
present a fuller version of GRDP in a future paper, in association with the the-
ory of permutation iterators. GRDP, like its predecessor RDP, is fully public
domain. Further information may be obtained from the GRDP Web page at
h t t p ://www. des . rhbnc , ac . u k / r e s e a r c h / l a n g u a g e s / g r d p , shmtl

30

8 Conclusions and Further Work

We have presented a construct for mapping arbitrary non-left recursive context
free grammars into generalised recursive descent (GRD) parsers that handle
ambiguity correctly whilst operating with LL(1) efficiency on LL(1) grammars.
We believe that this technique will allow language designers the freedom to write
grammars in an unconstrained style that is natural to them whilst developing the
syntax and semantics of their target language, and then smoothly address issues
of efficiency as part of a refinement process. A wider discussion of GRD and the
impact of parser generators on the design of languages may be found in [JS97a].
Our production mode parser relies on the grammar being follow-determined. A
theoretical study of follow-determinism including proofs and additional results
may be found in [JS97b].

We have implemented a parser generator called GRDP based on these ideas
and are using it to investigate the performance of GRD style parsers. We propose
to repeat the experiments reported in [BB95] and extend the results to cover
GRDP in both modes and also look at ANSI C and ISO-Pascal grammars. We
shall extend GRDP to accept EBNF notation and a new 'permutation' operator
that allows the specification of free-order constructs as well as subsuming the
commonly used EBNF regular expressions.

References

[ASU86]

[AU72]

[BB95]

[Johg~]

[JS97a]

[JS97b]

[Pa~93]

[PQ96]

[San95]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles
techniques and tools. Addison-Wesley, 1986.
Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation
and Compiling, volume 1 (Parsing). Prentice-Hall Inc., 1972.
Peter T. Breuer and Jonathan P. Bowen. A PREttier Compiler-Compiler:
Generating hlgher-order parsers in C. Software Practice and Experience,
25(11):1263-1297, November 1995.
Adrian Johnstone. RDP- a recursive descent compiler compiler. Technical
Report TR-95-10, Royal Holloway, University of London, Computer Science
Department, March 1995.
Adrian Johnstone and Elizabeth Scott. Generalised reeursive descent. Part 1:
language design and parsing. Technical Report TR-97-18, Royal HoUoway,
University of London, Computer Science Department, October 1997.
Adrian Johnstone and Elizabeth Scott. Generalised recursive descent. Part 2:
some underlying theory. Technical Report TR-97-19, Royal Holloway, Univer-
sity of London, Computer Science Department, October 1997.
Terence John Parr. Obtaining Practical Variants o] LL(k} and LR(k)]or
k > 1 By Splitting the Atomic k-Tuple. PhD thesis, Purdue University, August
1993.
Terence J. Parr and Russell W. Quong. LL and LR translators need k > 1
lookahead. ACM Sigplan Notices, 31(2):27-34, February 1996.
Georg Sander. VCG Visualisation of Compiler Graphs. Universit~t des Saar-
landes, 66041 Saarbriicken, Germany, February 1995.

