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Abs t rac t .  This paper presents a construct for mapping arbitrary non- 
left recursive context-free grammars into recursive descent parsers that: 
handle ambiguous granunars correctly; perform with LL(1 ) efficiency on 
LL (1) grammars; allow straightforward implementation of both inherit ed 
and synthesized attributes; and allow semantic actions to be added at 
any point in the grammar. We describe both the basic algorithm and a 
tool, GRDP, which generates parsers which use this technique. Modifi- 
cations of the basic algorithm to improve efficiency lead to a discussion 
of/ollow-deterrainisra, a fundamental property that gives insights into 
the behavioux of both LL and LR parsers. 

1 Introduction 

Practical parsers for computer languages need to display near-linear parse times 
because we routinely expect compilers and interpreters to process inputs that  
are many thousands of language tokens long. Presently available practical (near- 
linear) parsing methods impose restrictions on their input grammars which have 
led to a ' tuning'  of high level language syntax to the available efficient pars- 
ing algorithms, particularly LR bot tom-up parsing and, for the Pascal family 
languages, to LL(1) parsers. The key observation was that,  although left to 
themselves humans would use notations that  were very difficult to parse, there 
exist notations that  could be parsed in time proportional to the length of the 
string being parsed whilst still being easily comprehended by programmers. 

It is our view that  this process has gone a little too far, and the feedback from 
theory into engineering practice has become a constraint on language design, and 
particularly on the design of prototype and production language parsers. 

When building a new language, the natural  design process starts with the 
language itself, not with the grammar, and even expert users of existing linear- 
time parsers are unlikely to produce conflict free LL(1) or LR grammars at their 
first a t tempt .  In fact grammar debugging is hard. Even when the designer has 
produced a grammar that is acceptable with no (or few) conflicts, it is usually 
the case that ,  as a result of logical errors in the design of the grammar, the 
generated parser either parses some strings that  are not in the language or fails 
to parse some that  are. The analogy with program design is strong. In order 
to effectively design languages we need debuggers for parsers which allow the 
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user to think in terms of the parser specification (the grammar), Although many 
languages are developed from existing ones, and so perhaps should be viewed 
as stepwise refinements of working systems, neophyte (and even experienced) 
language implementers find it hard to be sure that the language generated by 
their grammar is precisely the language they have informally sketched. The sit- 
uation is particularly difficult in the case of bottom up parsers since, even when 
a grammar has been accepted by the parser generator and successfully tested 
it may break when semantic actions are added. In addition, bottom up parsers 
report errors in terms of multiple table entries, and users often find it difficult 
to relate table entries to entities in the original grammar. This is not to decry 
the parsing power of the bottom-up approach which, unlike standard top-down 
techniques, allows left recursion in grammars to be handled in a natural fashion. 

2 Overview 

In this paper we present a parsing technique called Generalised Recursive De- 
scent (GRD) which can handle all non-left recursive grammars, even ambiguous 
ones, but which is based on recursive descent, retaining the attractions of this 
approach. As there is a well-known algorithm [ASU8fi, pp. 176-178] which al- 
lows left recursion to be removed from any grammar (after some preprocessing 
to remove certain types of grammar rule), in principle our technique can be used 
for any context-free language. We also present techniques to allow more effi- 
cient implementation of GRD. In particular, we analyse a variant of the GRD 
algorithm which can be used if the input grammars have a property called follow- 
determinism. In the rest of this paper we shall 

- present a construct for mapping arbitrary non-left recursive context-free 
grammars into recursive descent parsers that 

1. handle ambiguous grammars correctly, 
2. perform with LL(1) efficiency on LL(1) grammars, 
3. handle non-left recursive LR(1) grammars with reasonable efficiency, 
4. allow implementation of both inherited and synthesized attributes, 
5. allow semantic actions to be added at any point in the grammar without 

affecting either the correctness or the efficiency of the parser. 
- discuss .follow-determinism, a fundamental property that gives insights into 

the behaviour of both LL and LK parsers, 
- describe a tool, GRDP, which generates parsers which use this technique. 

There are other parser generators which use a generalised form of recur- 
sive descent [BB95, PQ96]. Such parsers usually explore all possibilities at each 
step in the parse but then select only one to proceed wi th -a  fundamental con- 
straint that causes the parsers to fail even on some non-ambiguous grammars. 
A common selection procedure is to choose the so-called 'longest-match', i.e. the 
possibility which matches the longest section of the input string. This process is 
not guaranteed to produce correct parsers for all grammars. Our parsers return 
the set of all possible matches at each step and continue with each of them. This 
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allows us to produce correct parsers for all non-left recursive grammars ,  and all 
possible derivations in the case where a g rammar  is ambiguous. The  language 
designer will thus get a correct parser for their g rammar  which they can then 
use to test whether their g r ammar  really does generate the language they were 
hoping for. Once a correct g r ammar  for the language has been developed effi- 
ciency issues can be addressed. Our parser generator produces efficient parsers 
if the designer can refine their g r ammar  so that  it has suitable properties. Ex- 
perimental  results for a rstricted form of backtracking recursive descent parsers 
may be found in [BB95]. 

We begin by giving a basic definition of formal grammars ,  to allow us to 
introduce the terminology and notation that  we need. 

3 Formal Grammars  

We use a slightly unconventional definition of a g rammar  in which a g rammar  
rule is a mapping  f rom the set of  non-terminals to sets of  strings of terminals and 
non-terminals. In the examples in this paper  the sets will be finite, so g r ammar  
rules can be thought  of in the usual EBNF way, 

A: :={aBb, aCC, e} is equivalent to A : := aBb ] aCC [ e. 

However, much of what  we say applies to grammars  where the right hand sides of  
g r ammar  rules can be infinite sets, and in a future paper  we shall be discussing 
such grammars .  Thus we use the set based notation here so that  this work will 
not need to be reformulated later. 

A context free grammar P = (U, T, S, P) is a set U of symbols, a set T C U of 
terminals, a s tar t  symbol S 6 U\T,  and a set P of rules A:  :=VA, where ~'A _C U* 
( the set of  strings on U), A 6 U\T,  and there is only one g rammar  rule for each 
A. The elements in vA are called alternates of the rule A : : =rA. 

A derivation step is of the form aAfl  ~ aTfl where a, ;9 6 U*, A E U\T,  and 
"7 C "rA. A derivation is a sequence 

a = a  0 ~ a  1 ~ a 2  ~ . . . a h  = 

where a i - 1  ~ a i  is a derivation step, 1 < i < k. In this case we write a~ f l .  
A symbol X is reachable f f fo r  some a ,  fl 6 U*, S ~ a X f l .  
We define L(F) ,  the language generated by P, to be the strings of terminals 

which can be derived from S. So 

L(r)  = {u ~ T* [ S~u}. 

At a suitable level of abstraction, a parser P is a map  from the set of strings 
in a language to the set {success, failure}. The idea is that  a string is input 
to P and after a finite amount  of  t ime P should terminate and return either 
success or failure. Formally, a g rammar  P admits a parser P ff 

- for  an  u in  L ( r ) ,  P ( u )  = s u c c e s s ,  
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- for all u not in L(F), P(u)  - fai lure.  

A parser is conservative if inputting u E T* results in success if u E L(/ ').  A 
conservative parser may result in failure on some strings u C L(/~). 

The goal of a parser is, given an input string, to construct a derivation of 
that string. Recursive descent parsers use a top-down left-most approach; that 
is, they start with the start symbol and attempt to construct a derivation step- 
by-step from the left. At each step in the constructed derivation the left-most 
non-terminal in the string is replaced. 

4 G e n e r a l i s e d  R e c u r s i v e  D e s c e n t  Parsing 

In this section we describe a generalised version of the well-known recursive 
descent parsing technique. The generalised version does not require the source 
grammar to be left factored, and, in the ease of ambiguous grammars, returns 
all valid parse trees for the given input string. Our generafised recursive descent 
(GRD) parsers overcome the need for left factoring by using arbitrary amounts 
of backtracking, and they handle both local and global ambiguity by returning 
sets of sentential forms at each stage rather than selecting a single sentential 
form for further processing. 

One of our reasons for preferring top down parsing is that, as Terence Parr 
noted in a recent SIGPLAN notices article, 'parsing is not translation'[PQ96]. 
The significanee of this comment is that bottom up parsers are fragile with 
respect to semantic action placement. In a shift-reduce parser, pending matches 
are kept on a stack. By definition, shift operations are associated with input 
strings whose grammar production has not yet been completely identified and so 
semantic actions cannot be associated with shift operations. Once a production 
has been completely matched, a reduction operation occurs at which point a 
semantic action may be executed. 

To the parser generator user, the effect of this constraint is that in order to 
execute a semantic action mid-way through a production that production must 
be split into a prefix production and a suffix production, with the action being 
placed at the end of the prefix. Unfortunately there is no guarantee that the re- 
suiting grammar will still be accepted by the parser generator. In the worst ease, 
an LALR grammar with a semantic action to be executed after each terminal 
will be reduced to the same parsing strength as an LL(1) grammar [Par03]. 

GRD parsers display all of the attractive features of traditional LL(1) recur- 
sire descent parsers in that semantic actions may be placed anywhere within 
the grammar without perturbing the behaviour of the parser or the acceptabil- 
ity of the grammar to GRD parser generator; both synthesized and inherited 
attributes may be implemented simply via the implementation language's pro- 
cedure parameter mechanism and, most importantly of all, there is a very close 
relationship between the parser code and the equivalent BNF grammar. This 
means that a grammar specifying a GRD parser may be debugged by single 
stepping through the GRD parser using the traditional code debuggers. 
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Our parsing algorithm and its associated parser generator offer two modes: 
prototvping in which ambiguous grammars are fully supported, even to the ex- 
tent of returning multiple derivations where no disambiguation predicates are 
provided, and production in which a single derivation is selected on the basis 
of a property we call follow-determinism. The purpose of the prototyping mode 
is to allow the designer (and perhaps the theoretician) to explore the proper- 
ties of ambiguous grammars without restriction. In many cases, the prototyping 
mode will in practice be fast enough, significantly easing the job of language 
implementation. 

The two parser modes allow a smooth transition from very general parsers 
to parsers which, whilst still being more general than top-down parsers are com- 
petitive in terms of parsing speed. With tongue slightly in cheek, we call our 
parsers recursivel v decent parsers 2. 

Concre te  G R D  parsers  GRD parsers take their input from a read-only buffer 
with a current character index called current .  During back-tracking, the index 
may be moved backwards in the string. We expect, therefore, the whole input 
to be in memory. This is not a significant constraint in modern systems where 
memory is plentiful. 

GRD parsers contain one parsing function for each grammar rule. On entry 
to a parser function, the present value of the input index cur ren t  is stored 
in the local variable en t ry  current .  Each parser function constructs a set of 
indices into the text buffer, corresponding to the position in the text buffer of 
the cur ren t  index immediately after a sub-string has been reeognised. This set 
is called r e tu rn_se t .  

The function mismatch is used to test the substring at the cur ren t  index 
against a language token. If the test succeeds, the cur ren t  index is updated to 
the position in the buffer immediately after the token and FALSE is returned, 
otherwise the cur ren t  index is left unmodified and TRUE is returned. If a se- 
quence is successfully matched, the position of the current index is added to the 
r e tu rn_se t .  

The loops are executed in some arbitrary sequence. (Usually the loops are laid 
out in the same order as the productions in the grammar to ease the debugging 
process). 

Within each production, each terminal symbol is mapped to a mismatch 
function which compares the portion of the input string starting at the cur ren t  
index to the terminal string. A failed match causes the parser to break from the 
current loop. 

Each reference to a non-terminal is mapped to a f o r  loop preceded by a call 
to the corresponding parser function which returns a set of index positions, one 
for each string matched by that function. These sets can be large, but in an 
LL(1) grammar, the eardinality of the set is guaranteed to be one or zero. The 
loop iterates over each element in the set, and the body of the loop comprises 
the remaining tail of the alternate production. 

2 Thanks to Dan Simpson of Brighton University for this pun. 



21 

Pseudo-C code for the GRD parser function corresponding to the production 

S: : ={ac, aBc} is shown in Fig. I. 

Set S(void) 
{ 

char  * e n t r y _ c u r r e n t  ffi c u r r e n t ;  
S e t  r e t u r n _ s e t  ffi EPIPTY_SET; 

i f  (mismatch("a"))  goto b ranch l_snd ;  
£:~ ( m s m a t c h ( " c " ) )  goto b ranch l_end ;  

r e t u r n _ s e t  = rs turn_se tUNION c u r r e n t ;  

b ranch l_end :  

c u r r e n t  ffi s n t r y _ c u x r e n t ;  

i f  (n~smatch("a"))  8oto branch2_end;  

{ 
Set S t r i n g _ s e t  = BO ; 

f o r  (each element  i n  S t r i n g _ s e t )  
{ 

c u r r e n t  = c u r r e n t _ e l e m e n t _ o f S t r l n g _ s e t ;  
i f  (mismatch("c"))  c o n t i n u e ;  
r e t u r n _ s e t  = r s turn_se tUNION c u r r e n t ;  

} 
) 
branch2_ end: 

r e t u r n  r e t u r n _ s e t  ; 

Fig.  1. A concrete GRD function for the production S:  : ={ac, aBc} 

An example grammar In the rest of this paper we shall use the grammar: 
A : : = { B A ,  C, d} B: :={abb, ab} C : : = { c ,  cd} 

GRDP parser trace trees We use a generalisation of the standard derivation 
tree to display the results of a GRD parse. Our parser trace Crees are derivation 
trees augmented with nodes that show the start of each alternate production 
and the start of each ta~ test after a non-terminal has been called. Failed nodes 
are labeled in parentheses. Fig. 2 shows the tree corresponding to the grammar 
above and the input string abbc. The nodes that would be found in a normal 
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derivation tree are shown as rectangles, and our augmented nodes as ellipses. The 
'continuat ion '  nodes tha t  occur after each non-terminal in a sequence are labeled 
with . . .  u where u is the remainder of the sequence to be parsed. In the case of  
a parse that  returned a single derivation, displaying only the rectangular nodes 
along branches with successful continuations produces a s tandard derivation tree. 

Fig. 2. GRD parser trace tree: example grammar (prototype mode) on string abbc 

5 P r u n i n g  t h e  S e a r c h  S p a c e  

We now consider two ways of  improving the efficiency of GRD parsers. The first 
is to only explore alternates with appropriate  'f irst '  sets: this does not impose 
any additional restrictions on the source grammar .  The second uses lookahead 
to decide whether to terminate a function call, and to be guaranteed correct 
it requires the source g r ammar  to possess a property called follow-determinism 
which we describe below. 

FIRST set checking The version of GRD described so far handles ambiguous 
grammars by exhaustive searching of the grammar rules. The only concession to 
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efficiency is that  the search of an alternate is aborted as soon as a terminal mis- 
match is discovered. However, there is no point exploring the result of replacing 
a non-terminal by a particular alternate if that  alternate cannot generate either 
a string beginning with the current input symbol or e, the empty string. 

Consider the example grammar in the previous section. A prototype mode 
GRD parser for this grammar win produce the trace shown in Fig. 2 on input 
string abbc. 

We can improve the efficiency of the prototyping parser, without imposing 
any further restriction on the source grammar, by prefacing each alternate and 
non-terminal call with a test to ensure that  c u r r e n t  is pointing to a substring 
that  is in the FIRST set for that  alternate or non-terminal. 

Formally FIRST sets are defined as follows: 

.[a e T I a:~av} U .[e}, if a:~e 
FIRST(Or) : "[a e T I a=~av}, otherwise. 

With the FIRST set test, a GRD parser for the above grammar will produce 
the trace shown in Fig. 3 on input abbc 

Fig. 8. Pruning the search tree with F I R S T  sets 

The effect of adding such tests is to lop off entire branches of the parser trace 
tree, which significantly aids efficiency. More particularly, if  the user is able 
to left factor their grammar,  then at most one branch will be entered within 
each production. A future version of the parser generator will generate profile 
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information from running parsers on a large and representative set of sample 
strings and calculating the probability of each branch being entered on typical 
input strings. By ordering the branches in descending order of probability, further 
speednps will be obtained in the production version of GRD. 

FOLLOW set checking In practice, we expect users to switch from the prototype 
mode to production mode at some stage in the development of their language. In 
production mode each parser function returns at most one string. We select the 
string on the basis of the next input symbol, relying on a property called follow- 
determinism. This modification provides similar parsing power to the traditional 
longest-match approach, and is guaranteed to produce a correct parser for a 
follow-determined grammar. In addition, follow-determinism is generally more 
efficient than longest-match because we can abort an alternate as soon as we 
find a follow-determined match, whereas longest match requires all strings to be 
checked and compared for length. Follow-determinism is discussed in detail in 
[JS97b]. Here we just give an overview of the basic ideas. 

Suppose that a GRD parser for the grammar 

A::={BA, C,d} B::={abb, ab} C::={c, cd} 

has been given input abbc and that so far it has constructed the step: 

A ~ B A  

On exploring the replacement of B for the next step in the derivation a parser 
will be able to match both alternates of the rule. 

A parser generated by the prototyping version of GRD will simply return 
both matches and continue to develop both corresponding derivations. 

A longest-match based parser will find all matches but will select the longest 
and only pursue that corresponding derivation. 

When a production GRD parser finds a match it checks to see whether the 
current input symbol is in the FOLLOW set (see below) of the current non- 
terminal. If so it just selects that match and doesn't explore any further al- 
ternates. So in the above example, as c is in the FOLLOW of B, the next step 
constructed would be 

A=C, BA=~abbA 

and the alternate ab would not even be explored. Eventually the trace tree shown 
in Fig. 4 would be produced. 

Fo l low-de te rmined  g r a m m a r s  In the case where there is a choice of matches 
which can be used in the next step of a derivation, selecting one to proceed with 
may cause a problem. It may turn out to be impossible to complete the derivation 
with that choice, while a different choice would have resulted in success. This is 
a general problem for techniques which select one of a choice of matches. There 
are grammars for which choosing the longest match results in failure, whereas 
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0 

0 

Fig. 4. Pruning the search tree with FOLLOW sets 

choosing a shorter match would have allowed the successful completion of the 
derivation. However, it is possible to define the property required of a grammar 
to ensure that selecting the follow-determined match will always result in a 
complete derivation, if one exists. 

The FOLLOW set of A is the set of terminals which can appear immediately 
after A in a string derived from the start symbol, together with a special end of 
He symbol $ if A can appear at the end of a such a string. So 

f {~ I for some o,,~, S=~c~Aa~} U {$}, if S=~c~A 
FOLLOW(A) 

{a I for some a,/3, S~aAa~}, otherwise, 

where S is the start  symbol of the grammar. 
D e f i n i t i o n  A grammar F is follow-determined if for every A E U, if A ~ u  E 

T* and A~uctw, for some a E T, w E T*, then a ~ FOLLOW(A). 
I f  the source grammar is not left recursive then a production version GRD 

parser for it will be conservative. If  the source grammar is also follow-determined 
it will admit  a production version GRD parser. Note: a follow-determined gram- 
mar will also admit a longest-match based parser, but  as noted above, longest 
match will be less efficient in general. 

A n o n - L R ( 1 ) ,  n o n - f o l l o w - d e t e r m l n e d  g r a m m a r  wh ich  does  a d m i t  a 
p r o d u c t i o n - m o d e  GILD p a r s e r  We now look at  an (ambiguous) non-follow- 
determined grammar which, none-the-less, admits a production version GRD 
parser, without the need for special ambiguity breaking measures. 
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S: :={BAc} A: :={a ,  aA} B::={b,  ba} 

We have B=~b, B:~ba, and S=~Bac so the grammar is not follow-determined. 
The corresponding language is {ba'~c I n > 1}. When parsing ba'~c, n > 2, the 
non-terminal B may generate b or ba, but in either case, the non-terminal A will 
generate then remaining string of a's and the parse will succeed. 

It is worth noting that  a longest-match parser will fail on the string bac. 

6 Some Properties of Follow-Determined Grammars 

As we have already discussed, there are two classes of GRD parser: the pro- 
totyping versions which are admitted by any non-left recursive grammar, and 
the more efficient production versions which are only guaranteed to be admitted 
by non-left recursive follow-determined grammars. We shall now describe some 
theoretical aspects of follow-determined grammars and the languages which can 
be specified with them. Because of space constraints the proofs of almost all the 
results quoted have been omitted, but complete proofs can be found in [JS97b]. 

6.1 LL(1) Grammars 

We begin by looking at the relationship between LL(1) grammars and follow- 
determinism. First we note that  currently used recursive descent based parsers 
require the grammar to be free of left recursion, as left recursion can cause the 
parser to go in to an infinite loop. 

A grammar/~ is left recursive if for some A E U and a E U*, A~Aa ,  where 
the derivation has at least one step. 

A grammar/~  is left factored if for every non-terminal A E U and for every 
pair a ,  f l e  r~t with a ~ jb, we have FIRST(a) N FIRST(B ) = 0. Left factoring 
avoids the need to explore more than one alternate at each derivation step. 

The other property required of an LL(1) grammar is that  the parser should 
know 'when to stop' matching a rule. This may seem a little strange, but essen- 
tially we mean that  if the parser has matched a portion of the input to the right 
hand side of a rule, it must be clear whether it should continue to try to get a 
longer match, or stop and begin matching the next rule. The grammar 

S : :={Aa} A: :={aA,  e} 

has the disjoint FIRST property above but is not LL(1). The problem illustrated 
by this grammar is the basis of the follow-determinism constraint. 

Follow-determinism is not the condition usually used in the definition of 
LL(1) grammars, but it turns out that  the weaker condition usually stated is 
equivalent to follow-determinism in the presence of left factoring. 

F is simply follow-determined ff for all A such that  A~e,  if fl E rA then 
FIRST(J3) n FOLLOW(A) = 0. 

A grammar F is said to be LL(1) if L(F) # ~, 1 ~ is left factored and F is 
simply follow-determined. Theorem 1 (below) shows that  all LL(1) grammars 
are follow-determined. The following lemma is used in the proof of Theorem 1. 
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Lemmal .  Let 1" be an LL(1) grammar. If  S~OtlCta2 E U* and if for some 
u E T*, a E T and'g E U* we have a=:~u, a=t~ua'g then there exists a 
non-terminal A such that a = a'Aw, where ~v~e and a ~ FOLLOW(A). 

T h e o r e m  1 1. If 1" is follow-determined then 1` is simply follow-determined. 
2. I]1` is left factored and simply follow-determined then 1` is follow-determined. 

Proof. (1) Suppose tha t  1" is not simply follow-determined. Then there exists 
A E U and f~ E r.4 such tha t  

A~e ,  A~t3~at3 

for some a E FOLLOW (A). But  then taking u = e we have A=:>u, A ~ u a f l ,  
so 1" is not follow-determined. 

(2) Suppose that  for some reachable A and some u E T*, a E T, 7 e U* 

we have A ~ u  and A ~ u a %  Then by Lemma 1 we have a ¢ FOLLOW(A), as 
required. 

C o r o l l a r y  1 LL(1) grammars are left factored and follow-determined. 

6.2 Foilow-Determlnism and Left Factoring 

Recursive descent based parsers are more efficient on grammars  which are left 
factored. However, we shall now show that  there exist follow-determined gram- 
mars  for which there axe no equivalent left factored grammars ,  thus the capabil- 
ity of production version GRD parsers to deal with non-left factored grammars  
increases the number of languages which can be handled. 

Let 1` = (U, T, S, ~ )  be a context free grammar .  For a E T and a E U* define 
L~(a)  to be the set of strings of terminals beginning with a which are derivable 
from ~. So 

La(a) = {av [for  some v E T*, a ~ a v } .  

The idea is to show tha t  ff there is a non-terminal B in 1` such tha t  

La(B) = {aba, a2b 2, aabaa, a4b4, . . .}  = L, say 

then F cannot be left factored. We then demonstrate  tha t  this language L can 
be generated by a follow-determined context free grammar ,  and since it must  
be La(S) for the s tar t  symbol of any g rammar  which generates it, L cannot be 
generated by a left factored grammar .  

The  main par t  of the proof  relies on the following lemma. 

L e m m a  2. Suppose that 1" = (U, T, S, 7 ~) is a left factored contezt-free grammar. 

I. I f  there ezists B E U\T ,  a, b E T, and 3 > 0 such that 

La(B) = {abJ+la, a2b J+2, aSbJ+Sa, a4bJ+4,...} = X j ,  say, 

then there ezists C E U such that 

L~(C) Iab J+2 a2bJ+Sa a3b J+4 a4bJ+Sa, = t , , , ." .} = YJ+I, say. 
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2. I f  there exists B E U\T,  a, b E T, and J >__ 0 such that 

L , (B)  = {ab J+l, a2bJ+2a, aSb J+8, a4bJ+4a,...} = Yj ,  say, 

then there ezists C E U such that 

L , (C)  = {abJ+2a, a2b J+z, aZbJ+4a, a4bJ+5,...} = X j+l, say. 

Theorem 9. There exists a non-left recursive, follow-determined grammar for 
which there is no corresponding left factored eontezt free grammar. 

Proof. Let L = {a2n-lb2'~-la, a2~b 9"~ I n > 1}. 

S::={aAba, aBb} A::={aBb, e} B::={aAb} 

is a follow-determined grammar for L which is not left recursive. 
Suppose that F = (U, T, S, 7 ~) is a left factored context free grammar which 

generates L. Then clearly, 

La(S) = {aba, a2b 2, a3bZa, a4b4,...} = Xo. 

So, by Lemma 2(1), there exists a non-terminal C1 such that 

zo(c ) = {ab 2, a"bSa, a%L.. .}  = 

Suppose that there are non-terminals C1, . . . ,  C2n-1 such that 

{Yj, f f i = 2 j - 1  
L , ( C , ) =  Xj, f f i = 2 j .  

Then, by Lemma 2(2) there exists a non-terminal C2n such that La(C2,~) = X,~. 
Then, by Lemma 2(1) there exists a non-terminal C2,~+1 such that La(C2,~+I) = 
Yn+l. 

Since the X~ and Y~ are all different we must have C, ¢ C, if r ¢ s and 
thus F has infinitely many distinct non-terminals. So F cannot be a context free 
grammar. 

6.3 Follow-Determinism and LR(1) G r a m m a r s  

The ability of LR parsers (see [ASU86]) to accept left recursive grammars means 
that they can be used with some grammars which do not admit gener~llsed recur- 
sire descent techniques unless they have been preprocessed by the left recursion 
removal algorithm. One of our reasons for preferring GRD parsers is that they 
provide helpful error diagnostics. (LR parser generators usually detect grammar 
problems by finding multiple entries in a parse table, but the user wants to know 
what the problem is in terms of the grammar rules, not in terms of the parse 
table, so that the grammar can be modified to remove the problem.) However, 
it is also the case that there are GRD parsers for some grammars whose lan- 
guages cannot admit an LR parser. This is clear in the case of the prototyping 
version of GRD, because it can handle ambiguous grammars. The fact that the 
production version of GRD can be used on some non-LR languages is shown by 
the following theorem. 



29 

T h e o r e m  3 There is a language L which has a follow-determined contezt-free 
grammar but which is not LR. In particular there is no LR(1} grammar for L. 

Proof. Let 
L = {anb '~ In > 1} tO {a"b 2'~ I n > 1}. 

It  is known, see [AUg2] that  L cannot be generated by an LR grammar. 
Clearly the grammar 

S: :={aAb, aBb 2} A::={aAb, e} B::={aBb2,e} 

generates L. If  F is not follow-determined then we must have 

A=~au, A:~aubv or B:------~au, B:~aubv 

for some a E U* and u, v E T*. But 

A~a'~Ab n or A ~ a  b n 

so we cannot have 

Similarly, we cannot have 

A---->au, A :=>aubv. 

B=~au, B:~aubv. 

Thus F is follow-determined. 

7 The GRDP Parser Generator 

GRDP is a tool which reads a BNF language specification and outputs an ANSI- 
C program which implements a generalised recursive descent based parser for 
that language. The GRDP source syntax is based on, and backwards compatible 
with our existing RDP LL(1) parser generator[Joh95]. As well as the BNF rules, 
the source file may contain declarations to control scanner behaviour and to 
switch GRDP into production mode. By default GRDP generated parsers use 
the prototyping mode of the GRD algorithm in which sets of strings are returned 
by parser functions. These parsers correctly handle even ambiguous grammars, 
returning multiple derivations. In production mode, parser functions return at 
most one string, being the first follow-determined match discovered in the rule. 

GRDP is written using RDP and makes use of RDP's integrated symbol 
table handling, set manipulation and graph drawing libraries. An option within 
GRDP enables the construction of parser trace trees such as those shown in this 
paper. These trees are output  in a form suitable for display with the VCG graph 
visualisation tool[San95] and form an extremely useful debugging aid. 

The present version of GRDP is limited to traditional BNF only. Our ap- 
proach to extended BNF structures, such as Kleene closure relies on our per- 
mutat ion iterator construct which subsumes the optional phrase, Kleene clo- 
sure and positive closure operators found in some EBNF variants. We shall 
present a fuller version of GRDP in a future paper, in association with the the- 
ory of permutation iterators. GRDP, like its predecessor RDP, is fully public 
domain. Further information may be obtained from the GRDP Web page at 
h t t p  ://www. des .  rhbnc ,  ac .  u k / r e s e a r c h / l a n g u a g e  s / g r d p ,  shmtl  



30 

8 Conclusions  and Further Work 

We have presented a construct for mapping arbitrary non-left recursive context 
free grammars into generalised recursive descent (GRD) parsers that handle 
ambiguity correctly whilst operating with LL(1) efficiency on LL(1) grammars. 
We believe that this technique will allow language designers the freedom to write 
grammars in an unconstrained style that is natural to them whilst developing the 
syntax and semantics of their target language, and then smoothly address issues 
of efficiency as part of a refinement process. A wider discussion of GRD and the 
impact of parser generators on the design of languages may be found in [JS97a]. 
Our production mode parser relies on the grammar being follow-determined. A 
theoretical study of follow-determinism including proofs and additional results 
may be found in [JS97b]. 

We have implemented a parser generator called GRDP based on these ideas 
and are using it to investigate the performance of GRD style parsers. We propose 
to repeat the experiments reported in [BB95] and extend the results to cover 
GRDP in both modes and also look at ANSI C and ISO-Pascal grammars. We 
shall extend GRDP to accept EBNF notation and a new 'permutation' operator 
that allows the specification of free-order constructs as well as subsuming the 
commonly used EBNF regular expressions. 
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