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Abstrac t  Efficient use of multiple functional units in superscalar pro- 
cessors requires instruction level parallelism to be detected and exploited. 
Thus special hardware in the form of dispatch units is used to uncover 
scheduling opportunities within an instruction window at run-time. 
Using the superscalar PowerPC 604 as an example we show that such 
processors still benefit from more broadly scoped scheduling at compile 
time. In our approach we reuse an existing retargetable VLIW compiler 
environment by instantiating it for a VLIW processor whose resources 
and instruction timings resemble those of the PowerPC. 
This paper presents the transformation of the resulting horizontal VLIW 
code into vertical superscalar code and gives measurements showing the 
improvements gained from compile time scheduling. 

1 I n t r o d u c t i o n  

In modern superscatar processors, like PowerPC 604, a dispatcher unit distrib- 
utes a stream of instructions to parallel functional units. Since that  kind of 
instruction scheduling at run-time is based on very limited information, compile 
t ime scheduling can further improve utilization of the functional units. In this 
paper we show that  VLIWtechniques can be used for that  purpose: We instan- 
t iate a retargetable VLIWcompiler backend as if the PowerPC was a VLIW 
machine. The scheduled broad instructions are then linearized to be fed into the 
superscalar processor. There the dispatcher is expected to reproduce a schedule 
close to the one planned by the compiler. 

Our development environment for VLIWcompiter backends consists of sev- 
eral machine independent code scheduling modules. All machine specific inform- 
ation needed, is encoded in a single separate module, the machine specifica- 
tion module. This module itself is generated from a higher level declarative 
machine specification language called ~lasl 1, which allows to describe all relev- 
ant resources of the processor and information relevant for scheduling. Thus our 
VLIWenvironment is easily retargetable. Using the environment to generate a 
compiler for the PowerPC 604 microprocessor requires two steps: First its relev- 
ant features have to be specified in the machine specification module. From this 
specification results a compiler, which generates parallelized code for the 604's 

1 Ma___chine specification l_anguage 
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Fig. 1. Structure of the VLIW-Compiler 

functional units, but arranged in a sequence of horizontal VLIW-instructions. 
Thus our second task is to transform the horizontal code adequately for the 
superscalar dispatching. 

Figure 1 gives a concise overview of the scheduling environment. It was ori- 
ginally designed for comparative evaluation of different scheduling heuristics for 
VLIWprocessors. Because of its modular design it is easy to add or modify 
scheduling algorithms in the generated compiler backend. For our experiment 
the retargetability was the key aspect. 

Code generation starts from an intermediate language representation (Til 2) 
which is produced among others by an ANSI C frontend based on 1¢c[3]. During 
the code selection phase the intermediate representation is transformed into the 
operation dependency graph (ODG), which is the central data structure for 
functionM unit assignment, register bank assignment, and scheduling. In this 
structure the nodes represent the machine operations and edges are used to 
model the data and control flow dependencies between the operations. 

During the functional unit assignment phase operations from the ODG are 
mapped to specific functional units of the target processor. The chosen mapping 
remains fixed for the whole process. After scheduling the register assignment 
phase maps the symbolic registers referenced from the ODG to the physical 
register banks of the target processor. The last phase of our compiler backend 
outputs code in VLIWform. 

The rest of the paper is organized as follows: In Sect. 2 we present the abstract 
machine model and discuss which aspects of the PowerPC 60~4 are selected for 

2 The intermediate language 
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a model dedicated for instruction scheduling. Sect. 3 shows how the horizontal 
VLIW is linearized such that the dispatcher is guaranteed not to violate con- 
straints when parallelizing the code again. Finally, in Sect. 4 we present the 
effects of scheduling. 

2 M o d e l l i n g  t h e  P o w e r P C  6 0 4  

The instruction scheduling phase of our compilation environment is retarget- 
able. It is instantiated for a particular processor by a description of processor 
resources, operations, and their resource usage patterns. Such a description is 
a model of the processor dedicated for instruction scheduling. Although that 
model is derived from the architecture description, it usually deviates signific- 
antly from it. Such deviations result from a process of decisions on which aspects 
of the processor are relevant for code optimization and scheduling, and thus for 
the quality of the generated code. Aspects that are not relevant can be neglected 
without loss of code quality. We first give a rough overview of the PowerPC 604 
architecture, and then point out some typical decisions made in modelling it for 
instruction scheduling. 

2.1 P roces so r  Arch i t e c tu r e  

The PowerPC 604 [7,8] is a superscalar processor consisting of six execution 
units that operate in parallel. It is capable of issuing up to four instructions 
simultaneously and as many as six instructions can finish execution per cycle 
subject to certain restrictions. Fig. 2 gives an architectural overview. 

There are three integer units: two single-cycle integer units and one multiple- 
cycle integer unit. Additionally there is a floating-point unit, a load/store unit, 
and a branch processing unit. These functional units access the register files to 
fetch their operands and write back their results. The integer units are connec- 
ted with the general-purpose register file, the floating-point unit accesses the 
floating-point register file, and the load/store unit has access to all registers. 
There are separate registers for the branch unit, including the eight independent 
condition register fields. 

Specific components ensure proper flow of instructions and operands and 
guarantee correct updating of the architectural machine state: The fetch unit 
supplies instructions to the eight-word instruction buffer; the decode/dispatch 
unit decodes instructions and dispatches them to the appropriate execution 
units; and the branch processing unit provides the fetch unit with branch target 
addresses, when a branch is predicted. Furthermore there is the completion unit, 
which finalizes instruction execution, i.e. writes back the results from the rename 
buffers to the corresponding register bank. This special unit is needed, because 
instructions are allowed to pass the execution stage out-of-order. To assure cor- 
rect updating of the architectural machine state, an instruction isn't completed 
until all instructions ahead of it, corresponding to original program order, have 
been completed [7]. 
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Fig. 2. Block diagram of the PowerPC 604 [7] 

The general instruction flow follows the common pipeline shown in Fig. 3. 
Each instruction passes through six stages. They are common to all instructions 
except for the execution stage, which depends on the class of the instruction. In 
this special stage some of the individual execution units are even pipelined ~ 
themselves. The floating-point unit, for example, consists of three stages through 
which each floating-point instruction has to pass. 

With the information given so far we can see, that  the PowerPC 604 with its 
multiple functional units and the pipelined instruction flow very much resembles 
a VLIW architecture, so that  it is suitable for our experiment. 

2.2 Instruction Scheduling Model 

The key aspect in modelling a processor for instruction scheduling is to de- 
cide, which components of the processor are needed for a correct model and 
which can be neglected, because they have no influence on code optimization 
and scheduling. It is important to keep in mind, that the modelled processor is 
only a specific view of the real processor, kept as simple as possible, while still 
displaying realistic behavior with respect to the point of interest. 

Our first simplification of the PowerPC 604 concerns its instruction pipeline 
(shown in Fig. 3). The first three stages, fetching, decoding and dispatching, are 
common to all instructions. They are done in one step each and form a common 
prefix for the execution of each operation. Of course fetching of operations de- 
pends on the actual state of the instruction cache, but this is information which 
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in our approach is not available at scheduling time and therefore is neglected. 
There are no special constraints for decoding and dispatching. One only has to 
consider, that  dispatching is restricted to a maximum of four operations per 
cycle. This is enforced indirectly by the number of available register ports which 
are needed for operand fetch. For these reasons we do not model the first three 
stages of the master pipeline. Assuming that the write-back capacity of the 604 
processor is adequate, we even do not model the last two stages, because they 
too have no influence on instruction scheduling. 

I FETCH (IF) I 

[ DECODE (ID)~ 

tDISPATCH (DS) t 

[ Complete (C) ] 
completed 

Fig. 3. Common pipeline of the PowerPC 604 

From a scheduling perspective the execution stage of the master pipeline is 
the most interesting one, as it differs with the class an operation belongs to 
and thus the functional unit on which it is executed. As mentioned above some 
execution units themselves have internal pipelines which must be modelled in 
particular. 

Our first decision concerning these pipelines is not to model the reservation 
stations, that  belong to each execution unit. This is admissible, because they do 
not affect the execution of properly scheduled code. In the 604 they are needed 
to empty the instruction queue even if the execution units or operands are not 
yet available, so that  instruction fetch can proceed without let. The compiler 
calculates an arrangement of the operations which does not rely on reservation 
stations. They can be seen as hidden reserves, on which one can fall back at 
execution time, if the schedule isn't obeyed to. 

Conversely for the load/store unit the associated load/store queues are mod- 
elled. They are used for temporary storage of instructions for which the effective 
addresses have been translated and which are waiting to be completed. For 
every cache miss of an operation in these queues a cache block reload begins, 
and the next operation tries to access the cache. Thus the actual execution time 
for toad/store instructions varies depending on the actual cache state. Only the 
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Fig. 4. The modelled processor 

t ime for address calculation is predictable, so that  we decided to model this stage 
and the load/store queues separately. 

Fig. 4 shows the abstract model of the 604 resulting from the above decisions. 
One can see the internal pipelines for the execution stage and both register banks 
as well as the special purpose registers and the interconnecting buses. 

Besides those hardware components other aspects have to be modelled, i.e. 
special relations between operations and special constraints for the execution of 
some operations. An example for such a special relation is the so called dispatch 
serialization. 

This serialization constraint occurs when a mtspr  3 instruction that  accesses 
either the count or link register (CTR, LR) or an m t c r f  4 instruction that  accesses 
multiple condition register fields, which are all part of the branch unit, is dis- 
patched to the responsible multiple-cycle integer unit. In these cases an interlock 
must be set, such that  no further of these instructions or depending branch unit 
instructions may be dispatched until the original instruction executes and clears 
the interlock. 

In order to model this serialization constraint we introduce a virtual resource 
d i s p _ ~ e r i a l  which is available only once. This resource is required for every 
execution cycle in all instructions subject to dispatch serialization and each 
branch unit instruction. In this way at any time only one of these operations is 
allowed to execute. 

Similar constraints can even be modelled without such a virtual component: 
Some floating-point instructions for example aren't  allowed to execute until any 
preceding instruction has left the three stage floating-point pipeline. Then this 
instruction starts execution and any subsequent floating-point instruction has to 

3 move to special p_m'pose r_egister 
4 m.._ove to condition register _fields 
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wait until it has completed. This special rule is modelled by requiring all three 
stages of the internal execution pipeline simultaneously in each execution cycle 
of such an instruction. 

These two examples in particular show that with rather simple techniques 
and little expense one can model the features relevant for scheduling instructions 
on the PowerPC 604 processor. 

3 Linearization of Horizontal  Code  

In this section we show how the horizontal code produced by the compiler 
backend is linearized to be processed by the dispatching unit of the PowerPC. 
The compiler schedules instructions as if the target was a VLIW processor. Each 
instruction consists of several operations to be executed in parallel by functional 
units of the processor. However, the PowerPC processes linear code and parallel- 
izes the operations dynamically in the dispatching unit. The situation is shown 
in Fig. 5. There are two general requirements for linearization of the horizontal 
code: Dependencies between operations must be preserved, and the paralleliza- 
tion decided by the dispatcher should come close to the schedule planned by the 
compiler. 

+4 
+3 
+2 
+I 
t 

1 I I 
I FU 11 FU2 I FU3 I FU4 I FU5 I FU6 I 

1 I 1 ! t I 

/ 

~ Linear Code 

I ' 

Fig. 5. Transforming horizontal VLIW code into vertical superscalar code 

The key aspect in sequentiatization is to preserve program semantics: Fig. 6 
shows how careless sequentialization can change the semantics of a program. 
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Operation u and v both read operands in their first cycle of execution and 
write back their respective result in the last cycle of execution. The dependency 
between u and v stems from the fact that  operation v overwrites an operand of 
operation u. In our example both operations are executed in the same VLIW 
instruction. This is possible because in VLIWarchitectures all reads happen 
synchronously before writes of the same instruction. Because of the dependency 
between u and v, v shouldn't be executed too early, i.e. no more than six cycles 
before u reads its source operand. 

u v FU1 FU2 FU3 FU4 FU5 FU6 

a horizontal code ~ verticel code 

+6 

Fig. 6. Example for a naive sequentialization changing semantics 

If our sequentialization strategy would simply decompose the VLIW instruc- 
tion from left to right, it would be impossible for the dispatcher to infer the 
correct dependency. On the contrary it would decide that  u should never be 
executed earlier than v. 

Thus it is of vital importance to arrange the operations of a single VLIW 
instruction in such a way that  all dependencies among them are reflected cor- 
rectly. This can be done by sorting them according to their dependency relations, 
using the structure of the data  dependency graph ODG, which was built during 
the code selection phase. The nodes of the ODG represent operations of the 
program. Two nodes are connected by a directed edge from a to b, if there is a 
direct dependency from a to b (see Fig. 7). Thus a is on a higher level 5 of the 
directed acyclic ODG than b. 

Taking this into account one can easily conclude that  operations on the same 
level are independent from each other. They can be executed in arbitrary order. 
But operations which are dependent on each other are connected by a directed 
path in the ODG. Therefore they are on different levels. It follows: 

b is dependent on a if and only if there is a directed path from a to b in 
the ODG, with level(a) > level(b). 

The correct preservation of all da ta  dependencies between operations of 
a single VLIW instruction is guaranteed by sorting these operations in non- 
increasing order of their levels in the ODG. The correct dependencies between 
operations from different VLIW words are maintained by not changing their 

5 The level ist the set of nodes with equal distance from the root of the ODG. 
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Fig. 7, Operations in the ODG structure 

relative positions during sequentialization. Sequentialization is done during code 
output,  which means it is a local and independent task for each single VLIW 
word. Because each VLIWword contains a constant number of operations, it 
is clear that  sorting adds only small constant time to the processing of each 
instruction word. 

If cache access allows, the dispatcher reconstructs the schedule from the se- 
quential instruction stream. In case of deviation from the schedule there is no 
risk of making things worse, because we have preserved all da ta  dependencies. 
Independent calculations have been interleaved by scheduling, so that the dis- 
patchers lack of overview 6 is compensated, which has a positive effect even if 
there is deviation from the schedule plan. 

Ad-hoc factors like cache misses or interrupts cannot be regarded at schedul- 
ing time. Their occurrence causes a temporary deviation of the dynamic schedule 
produced by the dispatcher from the static schedule planned by the compiler. 
This is the point where static planning and dynamic dispatching complement 
each other. 

4 S c h e d u l i n g  R e s u l t s  

Instruction scheduling techniques for VLIWprocessors have been proven to be 
effective in decreasing execution t ime for that  class of processors. Those tech- 
niques are made applicable for a superscalar processor by modelling it as if it 
was a VLIW-processor and subsequently serializing the scheduled horizontal 
code. We now present runtime measurements that  show how VLIWscheduling 
performs on the PowerPC 504. In particular the results of different scheduling 
techniques are compared and the effects of static assumptions ibr load/store 
latencies are analyzed. 

Measurements of generated code are performed on a AIX system with a 
single PowerPC 604 processor, running at a clock rate of 110 MHz. The programs 
selected for testing are taken from the Stanford benchmarkT: including three well 

6 In case of the 604 processor the dispatch unit has a local window of four operations 
on the code. But because of the reservation stations its decisions are based on a 
broader view of the code stream taking some additional operations into account. 

7 Programs have been made conformant to the ANSI C Standard. 
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known sorting algorithms, namely bubblesort, quicksort and treesort (bubble, 
qui ck and t r e e  s). Furthermore two matrix multiplication programs, one of them 
with integer coefficients (intmt) and the other with floating point coefficients 
(m 0. Another benchmark from the mathematical domain is a program for fast 
fourier transformation (~ft).  and a program solving the eight queens problem 
(queens). All programs are embedded into external loops and repeated as often 
as needed to achieve significant timing results. All measurements are conducted 
under low load in multiuser mode. In order to filter random effects we take 
only runs without page faults and a CPU utilization greater or equal to 99 %. 
Then we calculate the mean value of five execution times, measured under these 
conditions. 

Our goal is to measure the benefits of scheduling on its own. Unfortunately 
most standard compilers allow scheduling only to be activated in conjunction 
with an elaborate set of complementing optimizations. This makes it difficult 
to contribute the resulting savings in execution time correctly. Furthermore the 
aim of our work is not the absolute quality of the applied scheduling techniques 
but the feasibility of adapting them to superscalar processors--while preserving 
their positive effects. Thus a comparision of our results with those of a standard 
compiler would not contribute meaningful information in this respect. 

4.1 Compar i son  of  Schedul ing Techniques 

Examination of the run time behavior of code scheduled with different techniques 
shows, that the overall behavior is similar to that known from VLIWarchitec- 
tures: list scheduling techniques, which are known to be effective for VLIW 
show similar results on the superscalar 604 processor and loop restructuring 
techniques, namely software pipelining, show promising results in cases where 
they are expected to be successful. This is an important result, because it makes 
the transfer of VLIWoptimizations to superscalar architectures worth while. 

However, there exist some deviations from the VLIW-like behavior due to 
some characteristics of the PowerPC 604 processor, respectively due to some 
particularities of our VLIW development environment. Especially the loop re- 
structuring techniques which are present in our environment, are often disabled 
by the fact that they rely on special VLIW features, namely register queues, 
which usually do not exist in superscalar processors. But there are many tech- 
niques to solve this problem [2,4,6]. Another effect which turned out to be a 
handicap for loop restructuring is the fact, that the enormous code compact- 
ness of the restructured code overcharged the 604 's write-back capacities. This 
causes an extraordinary occurrence of write-back stalls, destroying any positive 
loop scheduling effect. 

This is a surprising effect, which shows that the write-back phase is not well 
balanced with the capacity of functional units. To consider this fact in future 
approaches a virtual resource, representing this bottleneck, has to be introduced 
in our modelling of the 604 processor. 
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Fig. 8. Execution times in seconds for different VLIW scheduling techniques 

In Fig. 8 the execution times in seconds for each of the scheduling algorithms 
are shown. We use the following abbreviations: 

l i s t  a s a p  : List Scheduling with As Soon As Possible Strategy; 
l i s t  a l a p  : List Scheduling with As Late As Possible Strategy; 
soft  l a i n  : Software Pipelining according to Monica S. Lam; 
soft  r s s p  : Resource Sensitive Software Pipelining. 

The first scheduling techniques are well known and can be found in literature 
[1,5]. The last one was developed in our research group and presented in [9]. The 
speciM feature of software pipelining lies in the fact, that  different iterations of 
one loop can be interlaced and thus processed in parallel, to allow for better util- 
ization of the parallel functional units inside a VLIW or superscalar processor. 
Operations outside any loops are scheduled with a standard technique, in our 
case with list scheduling. 

Because it is not always possible to schedule loops successfully with software 
pipelining, in some cases the execution time of the scheduled code with software 
pipelining equals that  of the scheduled code with list scheduling. These cases 
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are emphasized in the diagrams by using grey fill patterns for the time indicator 
instead of black. 

Discussion of  Resu l t s  Concentrating first on the result of the simple list 
scheduling techniques, we find out that usually both have produced significant 
improvements in execution time. The maximum improvement rate is 23 % ( f f t )  
and the minimum rate is 3 % ( i n t ~ ) .  

To discuss the results of the code scheduled with software pipelining tech- 
niques further information is needed. The execution time of a loop scheduled 
with software pipelining is dependent on two relevant factors. The first factor 
is the so called Initiation Interval (II), which is the length of the folded loop 
body. Its worst case equals the length of the original loop body. The second 
relevant factor is the number of times the loop is iterated. Software pipelining 
adds a fixed overhead to the new loop body that must be amortizised. Thus 
the number of iterations must be large enough to reach gMns in execution time 
despite of the existing overhead. 

It would go too much into detail here to present these values and discuss 
them exhaustively. Instead of this we give a short summary of the essential 
facts. There are two opposite effects: 

1. In cases where the initiation interval is long, which means near or equal to 
the length of the unscheduled loop body, it appears that the run through 
values are small, so that there is an overall negative effect on execution time 
compared to pure use of list scheduling; 

2. In other cases, where the initiation interval is short, which means about half 
the original length of the loop body, another problem arises: the lifetime 
of some register values inside the pipelined loop extends beyond the length 
of the initiation interval. So the pipelined loops would require special hard- 
ware support (register queues) not present in the PowerPC to be executed 
correctly. 

For this reason we cannot take full advantage of the software pipelining tech- 
niques implemented in our development environment. But this is no real problem 
because there exist several solutions to the lifetime problem, although up to now 
none of them is implemented inside our environment. 

To avoid the impression that software pipelining doesn't show any positive 
effects we refer to the programs f f t ,  ±ntaua and ram: For the f f t  program the 
initiation intervals found were relatively large too, but the pipelined loop was 
iterated so many times that the seemingly minor effect cumulated to a consid- 
erable gain in execution time. 

Nevertheless this gain in execution time is smaller than that accomplished 
with any of the list scheduling strategies. But this goes along with another effect 
which is most prominent in loops allowing for a strong pipelining. Looking at 
the pipelined loop body of the central loop in the f f t  program, one could see 
that it consists mostly of operations which write back their results to integer 
registers. Because of this enormous compactness present in the loop body, there 
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is high pressure on the integer write back capacities of the PowerPC 604, which 
seem to be a possible bottleneck of the processor design. Indeed the processor is 
not able to process the compact loop body in the expected way, which leads to 
a diminished gain in execution time. 

The programs intmm and ma are completely identical except for the fact that 
the first one requires integer arithmetic and the second one floating point arith- 
metic for the actual matrix multiplication. Indeed they show a similar behavior 
concerning the execution times, but not exactly the same: whereas for ram soft- 
ware pipeiining reaches the largest gain in execution time, for tntma the list 
scheduling technique is more successful. This is astonishing, because the 604 
has three integer units but only one floating point unit. So, one could expect, 
that there is a higher amount of parallelism in the integer version of matrix 
multiplication, than in the floating point version, and therefore a higher gain in 
execution time due to more compact loop bodies. But as for the f f t  program, 
greater compactness in code overcharges the write-back capacity of the 604. 

In order to verify this effect we have made minor modifications to the pro- 
cessor model which simulate a better approximation to the actual write-back 
behavior. For the f f t  benchmark these changes improve the performance of 
software pipelining significantly~--even beyond the list scheduling techniques. 
However, some other test programs showed only marginal changes in execution 
times. This might be caused by the remaining small differences between the 
model and the real write-back stage or by additional effects not yet uncovered. 

4.2 Latencies  Model led  Imprecise  

The code for a VLIWprocessor has to be scheduled exactly with respect to 
operation timings, and it is executed exactly according to that schedule. In 
our approach however, the scheduled code for the superscalar processor can be 
understood as a suggestion that may or may not be rearranged by the dispatcher. 
Hence, schedules are executed correctly even if they are too densely packed or 
unnecessarily scattered due to imprecise assumptions on operation latency. The 
effect should be observable by longer run-times in either case. 

We changed the tatencies for all load/store instructions, as a typical and 
important class of instructions. Changing load/store instructions was chosen 
because they allow for increase and decrease in modelled latency and there are 
no exact predictions of actual tatencies available. The latencies were varied in 
both directions, at which decreasing stopped by a minimum value of one cycle 
latency for each instruction. 

We examined the effects on execution time for the programs bubble and f f t .  
The latter was selected, because of its complexity. Besides a sufficient number of 
load and store instructions it contains a manifold mixture of other instructions. 
This is important because, without any instructions executing on different func- 
tional units it would be impossible to observe any effect in changing load/store 
latencies. They would only result in multiple empty VLIW instructions, which 
would be deleted during sequentialization. 
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Fig. 9. Variation of latencies for load/store instructions 

For this evaluation we only used the list scheduling techniques, because of 
their straight behavior. The results can be seen in Fig. 9. To illustrate the tend- 
ency of changes in execution time we have connected the discrete measure points 
by lines, although no intermediate values exist. 

Two things can be seen: first the effect of changing latencies on execution 
time of the generated code is small. For bubble it is below 1% and for the more 
complex f f ¢ a  greater maximum of 3.5 %, which could be expected because it 
offers more opportunities for code rearrangements performed by the scheduling 
algorithm. The second aspect we see is that there exists a minimum for the 
originally chosen latencies. 

It becomes clear by this example that the superscalar 604 processor with its 
dispatcher unit is quite tolerant against local or inexact scheduling assumptions. 
As mentioned above the code isn't guaranteed to be executed exactly as planned. 
The dispatcher unit decides the ultimate order of execution within a local scope, 
dependent on actual processor state. In this case it leads to the advantage, 
that code which was generated for a certain processor could run with good 
performance on a similar processor, even if there are differences in their models. 

5 Conclusions  

Our development environment for VLIW compiler backends has proven to be 
really retargetable, even when the target architecture was switched from ab- 
stract research-oriented VLIW processors to a real-world superscalar processor. 
Without retargetability it would not have been feasible to transfer our existing 
VLIWcompiler techniques to the superscalar PowerPC 604 with surprisingly 
little effort. Processor modelling and implementing code linearization have been 
the essential tasks with the linearization step adding only slightly to the run 
time of the generated compiler backend. 

Measurements have shown that dynamic scheduling at run time is improved 
by static scheduling at compile time. Groups of operations beyond the dispatch- 
er's instruction window can only be interlaced by statically rearranging the whole 
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code in (an approximation of) a perfect schedule. The static schedule becomes 
tolerant against disturbing dynamic effects occurring at run time (like unpre- 
dictable memory latencies) by means of the dynamic scheduling performed by 
the dispatcher. This guarantees correct execution and allows for temporary devi- 
ations from the planned static schedule. Tightly parallelized static loop schedules 
uncovered an unexpected problem: A bottleneck in the write-back capacity of 
the PowerPC 60~ causes the dispatcher to break an otherwise feasible schedule. 

To summarize, we have shown that scheduling benefits for VLIW can be 
carried over to superscalar processors. In practice this can be done with minimal 
effort, if the VLIWtechniques are implemented retargetable for different VLIW 
architectures. Static and dynamic scheduling complement each other, providing 
desirable robustness of static planning against dynamic effects. 
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