
VLIW Compilation Techniques for
Superscalar Architectures

Esther Stfimpet, Michael Thies, and Uwe Kastens

Universit£t-GH Paderborn, Fachbereich 17, D-33102 Paderborn, Germany
{elfriede, mthies, uwe}@uni-paderborn.de

Abstrac t Efficient use of multiple functional units in superscalar pro-
cessors requires instruction level parallelism to be detected and exploited.
Thus special hardware in the form of dispatch units is used to uncover
scheduling opportunities within an instruction window at run-time.
Using the superscalar PowerPC 604 as an example we show that such
processors still benefit from more broadly scoped scheduling at compile
time. In our approach we reuse an existing retargetable VLIW compiler
environment by instantiating it for a VLIW processor whose resources
and instruction timings resemble those of the PowerPC.
This paper presents the transformation of the resulting horizontal VLIW
code into vertical superscalar code and gives measurements showing the
improvements gained from compile time scheduling.

1 I n t r o d u c t i o n

In modern superscatar processors, like PowerPC 604, a dispatcher unit distrib-
utes a stream of instructions to parallel functional units. Since that kind of
instruction scheduling at run-time is based on very limited information, compile
t ime scheduling can further improve utilization of the functional units. In this
paper we show that VLIWtechniques can be used for that purpose: We instan-
t iate a retargetable VLIWcompiler backend as if the PowerPC was a VLIW
machine. The scheduled broad instructions are then linearized to be fed into the
superscalar processor. There the dispatcher is expected to reproduce a schedule
close to the one planned by the compiler.

Our development environment for VLIWcompiter backends consists of sev-
eral machine independent code scheduling modules. All machine specific inform-
ation needed, is encoded in a single separate module, the machine specifica-
tion module. This module itself is generated from a higher level declarative
machine specification language called ~lasl 1, which allows to describe all relev-
ant resources of the processor and information relevant for scheduling. Thus our
VLIWenvironment is easily retargetable. Using the environment to generate a
compiler for the PowerPC 604 microprocessor requires two steps: First its relev-
ant features have to be specified in the machine specification module. From this
specification results a compiler, which generates parallelized code for the 604's

1 Ma___chine specification l_anguage

235

Program

Analysis

Intermediate Language

Til

Code Selection

Operation Dependency C-raph
ODG

. ~ - ~_ FU - Assignment

. * Register Assignment

VLIW - Code

Fig. 1. Structure of the VLIW-Compiler

functional units, but arranged in a sequence of horizontal VLIW-instructions.
Thus our second task is to transform the horizontal code adequately for the
superscalar dispatching.

Figure 1 gives a concise overview of the scheduling environment. It was ori-
ginally designed for comparative evaluation of different scheduling heuristics for
VLIWprocessors. Because of its modular design it is easy to add or modify
scheduling algorithms in the generated compiler backend. For our experiment
the retargetability was the key aspect.

Code generation starts from an intermediate language representation (Til 2)
which is produced among others by an ANSI C frontend based on 1¢c[3]. During
the code selection phase the intermediate representation is transformed into the
operation dependency graph (ODG), which is the central data structure for
functionM unit assignment, register bank assignment, and scheduling. In this
structure the nodes represent the machine operations and edges are used to
model the data and control flow dependencies between the operations.

During the functional unit assignment phase operations from the ODG are
mapped to specific functional units of the target processor. The chosen mapping
remains fixed for the whole process. After scheduling the register assignment
phase maps the symbolic registers referenced from the ODG to the physical
register banks of the target processor. The last phase of our compiler backend
outputs code in VLIWform.

The rest of the paper is organized as follows: In Sect. 2 we present the abstract
machine model and discuss which aspects of the PowerPC 60~4 are selected for

2 The intermediate language

236

a model dedicated for instruction scheduling. Sect. 3 shows how the horizontal
VLIW is linearized such that the dispatcher is guaranteed not to violate con-
straints when parallelizing the code again. Finally, in Sect. 4 we present the
effects of scheduling.

2 M o d e l l i n g t h e P o w e r P C 6 0 4

The instruction scheduling phase of our compilation environment is retarget-
able. It is instantiated for a particular processor by a description of processor
resources, operations, and their resource usage patterns. Such a description is
a model of the processor dedicated for instruction scheduling. Although that
model is derived from the architecture description, it usually deviates signific-
antly from it. Such deviations result from a process of decisions on which aspects
of the processor are relevant for code optimization and scheduling, and thus for
the quality of the generated code. Aspects that are not relevant can be neglected
without loss of code quality. We first give a rough overview of the PowerPC 604
architecture, and then point out some typical decisions made in modelling it for
instruction scheduling.

2.1 P roces so r Arch i t e c tu r e

The PowerPC 604 [7,8] is a superscalar processor consisting of six execution
units that operate in parallel. It is capable of issuing up to four instructions
simultaneously and as many as six instructions can finish execution per cycle
subject to certain restrictions. Fig. 2 gives an architectural overview.

There are three integer units: two single-cycle integer units and one multiple-
cycle integer unit. Additionally there is a floating-point unit, a load/store unit,
and a branch processing unit. These functional units access the register files to
fetch their operands and write back their results. The integer units are connec-
ted with the general-purpose register file, the floating-point unit accesses the
floating-point register file, and the load/store unit has access to all registers.
There are separate registers for the branch unit, including the eight independent
condition register fields.

Specific components ensure proper flow of instructions and operands and
guarantee correct updating of the architectural machine state: The fetch unit
supplies instructions to the eight-word instruction buffer; the decode/dispatch
unit decodes instructions and dispatches them to the appropriate execution
units; and the branch processing unit provides the fetch unit with branch target
addresses, when a branch is predicted. Furthermore there is the completion unit,
which finalizes instruction execution, i.e. writes back the results from the rename
buffers to the corresponding register bank. This special unit is needed, because
instructions are allowed to pass the execution stage out-of-order. To assure cor-
rect updating of the architectural machine state, an instruction isn't completed
until all instructions ahead of it, corresponding to original program order, have
been completed [7].

237

Fig. 2. Block diagram of the PowerPC 604 [7]

The general instruction flow follows the common pipeline shown in Fig. 3.
Each instruction passes through six stages. They are common to all instructions
except for the execution stage, which depends on the class of the instruction. In
this special stage some of the individual execution units are even pipelined ~
themselves. The floating-point unit, for example, consists of three stages through
which each floating-point instruction has to pass.

With the information given so far we can see, that the PowerPC 604 with its
multiple functional units and the pipelined instruction flow very much resembles
a VLIW architecture, so that it is suitable for our experiment.

2.2 Instruction Scheduling Model

The key aspect in modelling a processor for instruction scheduling is to de-
cide, which components of the processor are needed for a correct model and
which can be neglected, because they have no influence on code optimization
and scheduling. It is important to keep in mind, that the modelled processor is
only a specific view of the real processor, kept as simple as possible, while still
displaying realistic behavior with respect to the point of interest.

Our first simplification of the PowerPC 604 concerns its instruction pipeline
(shown in Fig. 3). The first three stages, fetching, decoding and dispatching, are
common to all instructions. They are done in one step each and form a common
prefix for the execution of each operation. Of course fetching of operations de-
pends on the actual state of the instruction cache, but this is information which

238

in our approach is not available at scheduling time and therefore is neglected.
There are no special constraints for decoding and dispatching. One only has to
consider, that dispatching is restricted to a maximum of four operations per
cycle. This is enforced indirectly by the number of available register ports which
are needed for operand fetch. For these reasons we do not model the first three
stages of the master pipeline. Assuming that the write-back capacity of the 604
processor is adequate, we even do not model the last two stages, because they
too have no influence on instruction scheduling.

I FETCH (IF) I

[DECODE (ID)~

tDISPATCH (DS) t

[Complete (C)]
completed

Fig. 3. Common pipeline of the PowerPC 604

From a scheduling perspective the execution stage of the master pipeline is
the most interesting one, as it differs with the class an operation belongs to
and thus the functional unit on which it is executed. As mentioned above some
execution units themselves have internal pipelines which must be modelled in
particular.

Our first decision concerning these pipelines is not to model the reservation
stations, that belong to each execution unit. This is admissible, because they do
not affect the execution of properly scheduled code. In the 604 they are needed
to empty the instruction queue even if the execution units or operands are not
yet available, so that instruction fetch can proceed without let. The compiler
calculates an arrangement of the operations which does not rely on reservation
stations. They can be seen as hidden reserves, on which one can fall back at
execution time, if the schedule isn't obeyed to.

Conversely for the load/store unit the associated load/store queues are mod-
elled. They are used for temporary storage of instructions for which the effective
addresses have been translated and which are waiting to be completed. For
every cache miss of an operation in these queues a cache block reload begins,
and the next operation tries to access the cache. Thus the actual execution time
for toad/store instructions varies depending on the actual cache state. Only the

239

r .
BPU SCIUI SCIU2 MC1U FPU LSU

T

(
Besl

3 read ports
2 write p~t~

>

8 re.,~ po~s
2 write p~ts

t
~ B ~ 2

Ol 3 read ports
• 2 write ports

I GPR $~P|

! 32
.

Fig. 4. The modelled processor

t ime for address calculation is predictable, so that we decided to model this stage
and the load/store queues separately.

Fig. 4 shows the abstract model of the 604 resulting from the above decisions.
One can see the internal pipelines for the execution stage and both register banks
as well as the special purpose registers and the interconnecting buses.

Besides those hardware components other aspects have to be modelled, i.e.
special relations between operations and special constraints for the execution of
some operations. An example for such a special relation is the so called dispatch
serialization.

This serialization constraint occurs when a mtspr 3 instruction that accesses
either the count or link register (CTR, LR) or an m t c r f 4 instruction that accesses
multiple condition register fields, which are all part of the branch unit, is dis-
patched to the responsible multiple-cycle integer unit. In these cases an interlock
must be set, such that no further of these instructions or depending branch unit
instructions may be dispatched until the original instruction executes and clears
the interlock.

In order to model this serialization constraint we introduce a virtual resource
d i s p _ ~ e r i a l which is available only once. This resource is required for every
execution cycle in all instructions subject to dispatch serialization and each
branch unit instruction. In this way at any time only one of these operations is
allowed to execute.

Similar constraints can even be modelled without such a virtual component:
Some floating-point instructions for example aren't allowed to execute until any
preceding instruction has left the three stage floating-point pipeline. Then this
instruction starts execution and any subsequent floating-point instruction has to

3 move to special p_m'pose r_egister
4 m.._ove to condition register _fields

240

wait until it has completed. This special rule is modelled by requiring all three
stages of the internal execution pipeline simultaneously in each execution cycle
of such an instruction.

These two examples in particular show that with rather simple techniques
and little expense one can model the features relevant for scheduling instructions
on the PowerPC 604 processor.

3 Linearization of Horizontal Code

In this section we show how the horizontal code produced by the compiler
backend is linearized to be processed by the dispatching unit of the PowerPC.
The compiler schedules instructions as if the target was a VLIW processor. Each
instruction consists of several operations to be executed in parallel by functional
units of the processor. However, the PowerPC processes linear code and parallel-
izes the operations dynamically in the dispatching unit. The situation is shown
in Fig. 5. There are two general requirements for linearization of the horizontal
code: Dependencies between operations must be preserved, and the paralleliza-
tion decided by the dispatcher should come close to the schedule planned by the
compiler.

+4
+3
+2
+I
t

1 I I
I FU 11 FU2 I FU3 I FU4 I FU5 I FU6 I

1 I 1 ! t I

/

~ Linear Code

I '

Fig. 5. Transforming horizontal VLIW code into vertical superscalar code

The key aspect in sequentiatization is to preserve program semantics: Fig. 6
shows how careless sequentialization can change the semantics of a program.

241

Operation u and v both read operands in their first cycle of execution and
write back their respective result in the last cycle of execution. The dependency
between u and v stems from the fact that operation v overwrites an operand of
operation u. In our example both operations are executed in the same VLIW
instruction. This is possible because in VLIWarchitectures all reads happen
synchronously before writes of the same instruction. Because of the dependency
between u and v, v shouldn't be executed too early, i.e. no more than six cycles
before u reads its source operand.

u v FU1 FU2 FU3 FU4 FU5 FU6

a horizontal code ~ verticel code

+6

Fig. 6. Example for a naive sequentialization changing semantics

If our sequentialization strategy would simply decompose the VLIW instruc-
tion from left to right, it would be impossible for the dispatcher to infer the
correct dependency. On the contrary it would decide that u should never be
executed earlier than v.

Thus it is of vital importance to arrange the operations of a single VLIW
instruction in such a way that all dependencies among them are reflected cor-
rectly. This can be done by sorting them according to their dependency relations,
using the structure of the data dependency graph ODG, which was built during
the code selection phase. The nodes of the ODG represent operations of the
program. Two nodes are connected by a directed edge from a to b, if there is a
direct dependency from a to b (see Fig. 7). Thus a is on a higher level 5 of the
directed acyclic ODG than b.

Taking this into account one can easily conclude that operations on the same
level are independent from each other. They can be executed in arbitrary order.
But operations which are dependent on each other are connected by a directed
path in the ODG. Therefore they are on different levels. It follows:

b is dependent on a if and only if there is a directed path from a to b in
the ODG, with level(a) > level(b).

The correct preservation of all da ta dependencies between operations of
a single VLIW instruction is guaranteed by sorting these operations in non-
increasing order of their levels in the ODG. The correct dependencies between
operations from different VLIW words are maintained by not changing their

5 The level ist the set of nodes with equal distance from the root of the ODG.

242

Fig. 7, Operations in the ODG structure

relative positions during sequentialization. Sequentialization is done during code
output, which means it is a local and independent task for each single VLIW
word. Because each VLIWword contains a constant number of operations, it
is clear that sorting adds only small constant time to the processing of each
instruction word.

If cache access allows, the dispatcher reconstructs the schedule from the se-
quential instruction stream. In case of deviation from the schedule there is no
risk of making things worse, because we have preserved all da ta dependencies.
Independent calculations have been interleaved by scheduling, so that the dis-
patchers lack of overview 6 is compensated, which has a positive effect even if
there is deviation from the schedule plan.

Ad-hoc factors like cache misses or interrupts cannot be regarded at schedul-
ing time. Their occurrence causes a temporary deviation of the dynamic schedule
produced by the dispatcher from the static schedule planned by the compiler.
This is the point where static planning and dynamic dispatching complement
each other.

4 S c h e d u l i n g R e s u l t s

Instruction scheduling techniques for VLIWprocessors have been proven to be
effective in decreasing execution t ime for that class of processors. Those tech-
niques are made applicable for a superscalar processor by modelling it as if it
was a VLIW-processor and subsequently serializing the scheduled horizontal
code. We now present runtime measurements that show how VLIWscheduling
performs on the PowerPC 504. In particular the results of different scheduling
techniques are compared and the effects of static assumptions ibr load/store
latencies are analyzed.

Measurements of generated code are performed on a AIX system with a
single PowerPC 604 processor, running at a clock rate of 110 MHz. The programs
selected for testing are taken from the Stanford benchmarkT: including three well

6 In case of the 604 processor the dispatch unit has a local window of four operations
on the code. But because of the reservation stations its decisions are based on a
broader view of the code stream taking some additional operations into account.

7 Programs have been made conformant to the ANSI C Standard.

243

known sorting algorithms, namely bubblesort, quicksort and treesort (bubble,
qui ck and t r e e s). Furthermore two matrix multiplication programs, one of them
with integer coefficients (intmt) and the other with floating point coefficients
(m 0. Another benchmark from the mathematical domain is a program for fast
fourier transformation (~ft). and a program solving the eight queens problem
(queens). All programs are embedded into external loops and repeated as often
as needed to achieve significant timing results. All measurements are conducted
under low load in multiuser mode. In order to filter random effects we take
only runs without page faults and a CPU utilization greater or equal to 99 %.
Then we calculate the mean value of five execution times, measured under these
conditions.

Our goal is to measure the benefits of scheduling on its own. Unfortunately
most standard compilers allow scheduling only to be activated in conjunction
with an elaborate set of complementing optimizations. This makes it difficult
to contribute the resulting savings in execution time correctly. Furthermore the
aim of our work is not the absolute quality of the applied scheduling techniques
but the feasibility of adapting them to superscalar processors--while preserving
their positive effects. Thus a comparision of our results with those of a standard
compiler would not contribute meaningful information in this respect.

4.1 Compar i son of Schedul ing Techniques

Examination of the run time behavior of code scheduled with different techniques
shows, that the overall behavior is similar to that known from VLIWarchitec-
tures: list scheduling techniques, which are known to be effective for VLIW
show similar results on the superscalar 604 processor and loop restructuring
techniques, namely software pipelining, show promising results in cases where
they are expected to be successful. This is an important result, because it makes
the transfer of VLIWoptimizations to superscalar architectures worth while.

However, there exist some deviations from the VLIW-like behavior due to
some characteristics of the PowerPC 604 processor, respectively due to some
particularities of our VLIW development environment. Especially the loop re-
structuring techniques which are present in our environment, are often disabled
by the fact that they rely on special VLIW features, namely register queues,
which usually do not exist in superscalar processors. But there are many tech-
niques to solve this problem [2,4,6]. Another effect which turned out to be a
handicap for loop restructuring is the fact, that the enormous code compact-
ness of the restructured code overcharged the 604 's write-back capacities. This
causes an extraordinary occurrence of write-back stalls, destroying any positive
loop scheduling effect.

This is a surprising effect, which shows that the write-back phase is not well
balanced with the capacity of functional units. To consider this fact in future
approaches a virtual resource, representing this bottleneck, has to be introduced
in our modelling of the 604 processor.

244

16,2

15,2

14,2

13,2

12,2

11,2
10,2

9,2

S,2

7,2

16,2

15,2

14,2

132

12,2

1t,2

1o,2

9,2

s,2

7;z

16,2

142

13,2

12,2

11,2

10,2

9,2

S,2
7,2

~ 6 , 2

15,2

14,2
bubble 13,2 fli

12,2

11,2
I . 1o,2 I

9,2 •
8,2 I a i
7,2 I i ! i

no~hed l~tasap I~atap so~hm so~nk~p nosohed t~esap ~ t a ~ p so~lera soflrssp

15,2 mm ' '

inln~ma 14,2

13,2

12,2 i
'1 " m 11,2 " •

, • I I 10,2

9,2

8,2

7,2
no sched list asap list alap soft lain soft z~sp no sched llst asap l i s t a l ~ p sof~ lain soft rssp

16,2
t5,2 , ,,

qui~: 1 4 , 2 I

13,2

12,2 - - - -

I 11,2

l IO,2

.... 9,2

8,2

Fig. 8. Execution times in seconds for different VLIW scheduling techniques

In Fig. 8 the execution times in seconds for each of the scheduling algorithms
are shown. We use the following abbreviations:

l i s t a s a p : List Scheduling with As Soon As Possible Strategy;
l i s t a l a p : List Scheduling with As Late As Possible Strategy;
soft l a i n : Software Pipelining according to Monica S. Lam;
soft r s s p : Resource Sensitive Software Pipelining.

The first scheduling techniques are well known and can be found in literature
[1,5]. The last one was developed in our research group and presented in [9]. The
speciM feature of software pipelining lies in the fact, that different iterations of
one loop can be interlaced and thus processed in parallel, to allow for better util-
ization of the parallel functional units inside a VLIW or superscalar processor.
Operations outside any loops are scheduled with a standard technique, in our
case with list scheduling.

Because it is not always possible to schedule loops successfully with software
pipelining, in some cases the execution time of the scheduled code with software
pipelining equals that of the scheduled code with list scheduling. These cases

245

are emphasized in the diagrams by using grey fill patterns for the time indicator
instead of black.

Discussion of Resu l t s Concentrating first on the result of the simple list
scheduling techniques, we find out that usually both have produced significant
improvements in execution time. The maximum improvement rate is 23 % (f f t)
and the minimum rate is 3 % (i n t ~) .

To discuss the results of the code scheduled with software pipelining tech-
niques further information is needed. The execution time of a loop scheduled
with software pipelining is dependent on two relevant factors. The first factor
is the so called Initiation Interval (II), which is the length of the folded loop
body. Its worst case equals the length of the original loop body. The second
relevant factor is the number of times the loop is iterated. Software pipelining
adds a fixed overhead to the new loop body that must be amortizised. Thus
the number of iterations must be large enough to reach gMns in execution time
despite of the existing overhead.

It would go too much into detail here to present these values and discuss
them exhaustively. Instead of this we give a short summary of the essential
facts. There are two opposite effects:

1. In cases where the initiation interval is long, which means near or equal to
the length of the unscheduled loop body, it appears that the run through
values are small, so that there is an overall negative effect on execution time
compared to pure use of list scheduling;

2. In other cases, where the initiation interval is short, which means about half
the original length of the loop body, another problem arises: the lifetime
of some register values inside the pipelined loop extends beyond the length
of the initiation interval. So the pipelined loops would require special hard-
ware support (register queues) not present in the PowerPC to be executed
correctly.

For this reason we cannot take full advantage of the software pipelining tech-
niques implemented in our development environment. But this is no real problem
because there exist several solutions to the lifetime problem, although up to now
none of them is implemented inside our environment.

To avoid the impression that software pipelining doesn't show any positive
effects we refer to the programs f f t , ±ntaua and ram: For the f f t program the
initiation intervals found were relatively large too, but the pipelined loop was
iterated so many times that the seemingly minor effect cumulated to a consid-
erable gain in execution time.

Nevertheless this gain in execution time is smaller than that accomplished
with any of the list scheduling strategies. But this goes along with another effect
which is most prominent in loops allowing for a strong pipelining. Looking at
the pipelined loop body of the central loop in the f f t program, one could see
that it consists mostly of operations which write back their results to integer
registers. Because of this enormous compactness present in the loop body, there

246

is high pressure on the integer write back capacities of the PowerPC 604, which
seem to be a possible bottleneck of the processor design. Indeed the processor is
not able to process the compact loop body in the expected way, which leads to
a diminished gain in execution time.

The programs intmm and ma are completely identical except for the fact that
the first one requires integer arithmetic and the second one floating point arith-
metic for the actual matrix multiplication. Indeed they show a similar behavior
concerning the execution times, but not exactly the same: whereas for ram soft-
ware pipeiining reaches the largest gain in execution time, for tntma the list
scheduling technique is more successful. This is astonishing, because the 604
has three integer units but only one floating point unit. So, one could expect,
that there is a higher amount of parallelism in the integer version of matrix
multiplication, than in the floating point version, and therefore a higher gain in
execution time due to more compact loop bodies. But as for the f f t program,
greater compactness in code overcharges the write-back capacity of the 604.

In order to verify this effect we have made minor modifications to the pro-
cessor model which simulate a better approximation to the actual write-back
behavior. For the f f t benchmark these changes improve the performance of
software pipelining significantly~--even beyond the list scheduling techniques.
However, some other test programs showed only marginal changes in execution
times. This might be caused by the remaining small differences between the
model and the real write-back stage or by additional effects not yet uncovered.

4.2 Latencies Model led Imprecise

The code for a VLIWprocessor has to be scheduled exactly with respect to
operation timings, and it is executed exactly according to that schedule. In
our approach however, the scheduled code for the superscalar processor can be
understood as a suggestion that may or may not be rearranged by the dispatcher.
Hence, schedules are executed correctly even if they are too densely packed or
unnecessarily scattered due to imprecise assumptions on operation latency. The
effect should be observable by longer run-times in either case.

We changed the tatencies for all load/store instructions, as a typical and
important class of instructions. Changing load/store instructions was chosen
because they allow for increase and decrease in modelled latency and there are
no exact predictions of actual tatencies available. The latencies were varied in
both directions, at which decreasing stopped by a minimum value of one cycle
latency for each instruction.

We examined the effects on execution time for the programs bubble and f f t .
The latter was selected, because of its complexity. Besides a sufficient number of
load and store instructions it contains a manifold mixture of other instructions.
This is important because, without any instructions executing on different func-
tional units it would be impossible to observe any effect in changing load/store
latencies. They would only result in multiple empty VLIW instructions, which
would be deleted during sequentialization.

247

12,24 : ~ - - -~ _ 4 , . . . , . . ~ " 11,6 :

12,20 11,2 : . . ~ "

lO,Si ~ -"-- "~ " ~ ~"
12.16

- ~" -- - -~ 10,4 -
12,12 ' ' ' I

t lO,0 : [

12,08

12,04 : 9,2

• - - o - 41-- -o - - - - • - , - o - - - - o - - - 4
12,00 8,8

-2 -I 0 1 2 3 4 5 6 -2 -1 () 1 2 3 4 5 6

list map list alap

Fig. 9. Variation of latencies for load/store instructions

For this evaluation we only used the list scheduling techniques, because of
their straight behavior. The results can be seen in Fig. 9. To illustrate the tend-
ency of changes in execution time we have connected the discrete measure points
by lines, although no intermediate values exist.

Two things can be seen: first the effect of changing latencies on execution
time of the generated code is small. For bubble it is below 1% and for the more
complex f f ¢ a greater maximum of 3.5 %, which could be expected because it
offers more opportunities for code rearrangements performed by the scheduling
algorithm. The second aspect we see is that there exists a minimum for the
originally chosen latencies.

It becomes clear by this example that the superscalar 604 processor with its
dispatcher unit is quite tolerant against local or inexact scheduling assumptions.
As mentioned above the code isn't guaranteed to be executed exactly as planned.
The dispatcher unit decides the ultimate order of execution within a local scope,
dependent on actual processor state. In this case it leads to the advantage,
that code which was generated for a certain processor could run with good
performance on a similar processor, even if there are differences in their models.

5 Conclusions

Our development environment for VLIW compiler backends has proven to be
really retargetable, even when the target architecture was switched from ab-
stract research-oriented VLIW processors to a real-world superscalar processor.
Without retargetability it would not have been feasible to transfer our existing
VLIWcompiler techniques to the superscalar PowerPC 604 with surprisingly
little effort. Processor modelling and implementing code linearization have been
the essential tasks with the linearization step adding only slightly to the run
time of the generated compiler backend.

Measurements have shown that dynamic scheduling at run time is improved
by static scheduling at compile time. Groups of operations beyond the dispatch-
er's instruction window can only be interlaced by statically rearranging the whole

248

code in (an approximation of) a perfect schedule. The static schedule becomes
tolerant against disturbing dynamic effects occurring at run time (like unpre-
dictable memory latencies) by means of the dynamic scheduling performed by
the dispatcher. This guarantees correct execution and allows for temporary devi-
ations from the planned static schedule. Tightly parallelized static loop schedules
uncovered an unexpected problem: A bottleneck in the write-back capacity of
the PowerPC 60~ causes the dispatcher to break an otherwise feasible schedule.

To summarize, we have shown that scheduling benefits for VLIW can be
carried over to superscalar processors. In practice this can be done with minimal
effort, if the VLIWtechniques are implemented retargetable for different VLIW
architectures. Static and dynamic scheduling complement each other, providing
desirable robustness of static planning against dynamic effects.

A c k n o w l e d g m e n t s Thanks to the anonymous referees for their useful com-
ments and suggestions.

References

1. E. G. Coffman. Computer and Job-Shop Scheduling Theory. John Wiley, New York,
1976.

2. Alexandre E. Eichenberger, Edward S. Davidson, and Santosh G. Abraham. Min-
imum register requirements for a modulo schedule. In Proceedings of the 27th Annual
International Symposium on Microarchitecture, pages 75-84, San Jose! California,
November 30-December 2, 1994. ACM SIGMICRO and IEEE Computer Society
TC-MICRO.

3. Chris W. Fraser and David R. Hanson. A Retargetable C Compiler: Design and
Implementation. Benjamin/Cummings Pub. Co., Redwood City, CA, USA, 1995.

4. Richard A. Huff. Lifetime-sensitive modulo scheduling. SIGPLAN Notices,
28(6):258-267, June 1993. Proceedings of the ACM SIGPLAN '93 Conference on
Programming Language Design and Implementation.

5. M. Lain. Software pipelining: An effective seheduing technique for VLIW machines.
In Proceedings of the SIGPLAN '88 Conference on Programming Language Design
and Implementation, pages 318-328, Atlanta, GA, June 1988.

6. Josep Llosa, Antonio Gonzdlez, Eduard Ayguad@, and Mateo Valero. Swing modulo
scheduling: A lifetime-sensitive approach. In Proceedings of the 1996 Conference
on Parallel Architectures and Compilation Techniques (PACT '96), pages 80-86,
Boston, Massachusetts, October 20-239 1996. IEEE Computer Society Press.

7. Motorola. PowerPC 604: RISC Microprocessor User's Manual. USA: Motorola
Literature Distribution~ P.O. Box 20912, Phoenix, Arizona 85036, 1994.

8. Motorola. PowerPC Microprocessor Family: The Programming Environments. USA:
Motorola Literature Distribution, P.O. Box 20912, Phoenix, Arizona 85036, 1994.

9. Peter PfaMer and Georg Piepenbrock. A Comparison of Modulo Scheduling Tech-
niques for Software Pipelining. In Proc. 6th International Conference on Compiler
Construction, CC'96, volume 1060, pages 18-32. Lecture Notes in Computer Sci-
ence, Springer Verlag, 1996.

