
Portable Debugging and Profiling

Mikael Pettersson*

INRIA Sophia Antipolis, France
E-mail: mikpe@sophia, inria, fr

Abstract. This paper addresses the problem of implementing portable
debuggers for compiled or translator-based language implementations.
We describe a general strategy based on viewing application execution
as event generation, and debugging as event processing. The implemen-
tation approach relies on instrumentation of the compiler's intermediate
code. We give examples of portable and efficient implementations of sev-
eral common debugging primitives, and also show how profiling support
can be added using similar ideas.

1 Introduct ion

Support for debugging and profiling is an important quality-of-implementation
issue for most programming languages. Even very high level languages, exe-
cutable specification languages, and application domain specific languages need
varying forms of such support.

Traditionally, debugging mechanisms such as breakpoints, single-stepping,
and catching hardware faults, have been implemented primarily using special
hardware and operating system facilities. For source-level debugging, compil-
ers have been relied upon to provide the mapping between source-level objects
and their machine-level counterparts, usually by generating less optimized code
and additional system-dependent symbol tables (e.g. "stabs") in object modules.
Thus, debugging support has required significant amounts of non-portable code
in both debuggers and compilers.

This is a problem when portability is desired, in debuggers, compilers, or
both. Another problem is that the traditional debugging mechanisms may be
inadequate for effective debugging of very high level languages.

In this paper we address the problem of implementing portable debuggers
for compiled or translator-based language implementations. After outlining some
possible implementation strategies, we describe a general strategy based on view-
ing application execution as event generation, and debugging as event processing.
The implementation approach relies on instrumentation of the compiler's inter-
mediate code. We give examples of portable and efficient implementations of
several common debugging primitives, and also show how profiling support can
be added using similar ideas. Related work is discussed.

* Visiting researcher, on leave from LinkSping University, Sweden. This work was sup-
ported by a grant from the Swedish Research Council for Engineering Sciences, TFR.

280

There are several papers on specific implementations of more-or-less portable
debuggers in the literature. We believe our contribution to be the amalgamation
of several ideas and techniques spread throughout the literature, augmented with
our improvements:

- A general event-based model of execution and debugging.
- An intermediate-code level instrumentation approach to compiler support.

By performing the instrumentation at an early stage in the compiler, the
back-end can remain mostly ignorant of the debugger. Code optimizations
do not prevent precise debugging.

- A collection of debugging primitives with portable implementations. Com-
pared to some previous work [6, 5], we emphasize both portability and ef-
ficiency, and describe generalizations for richer languages and higher-level
debugging primitives.

2 A p p r o a c h e s t o d e b u g g i n g s u p p o r t

2.1 Native debugging

In this approach the compiler generates system-dependent debugger symbol ta-
bles (e.g. Unix "stabs"), and the the debugger uses system-dependent debuggee-
control mechanisms (e.g. the Unix p t r ace system call or /p roc file-system).
The advantages include improved performance for simple debugger actions, such
as breakpoints, and the possibility of perhaps using the system's debugger in-
stead of writing a new one. The disadvantages include: non-portable code in the
compiler to generate system-specific data structures, non-portable and machine-
specific code in the debugger, difficulties debugging optimized code, and diffi-
culties bridging the semantic gap between a high-level language and the limited
low-level debugging features normally supported.

2.2 Wrapper on top of existing debugger

A native debugger is used to control the debuggee. Commands are translated to
commands for the native debugger, and its responses are translated back. There
is less porting effort to write the debugger wrapper, but it becomes difficult to
implement features that the underlying debugger does not support.

The compiler can either generate machine code with system-dependent sym-
bol tables, or it can translate via a lower-level language, like C, and compile that
code with debugger support. A problem is that additional data structures have
to be generated to explain (to the debugger wrapper) the relationships between
the high-level language's concepts and those of the intermediate code.

2.3 Our approach: code instrumentation

The compiler instruments its intermediate code with data structures, polling
code, and calls to a debugging monitor. The debugger executes either in the
monitor itself, or as a separate process that communicates with the monitor.

28t

1. The features (e.g. breakpoints) and constraints (e.g. compatibility between
debugged and non-debugged code) of the debugger are determined.

2. Runtime events that should be monitored to support the features are iden-
tified, as are the code sites where those events can occur.
Thus, the program generates potentially interesting events at certain sites,
and the debugger processes these events, performing suitable actions as a
result. The application and debugger monitor are assumed to execute as
coroutines rather than as concurrent processes.

3. The compiler is modified to instrument its code to perform the necessary
event generation at the possible event sites, and to emit supporting data
structures, subject to the design constraints.
This is the most complex step, the details of which depend heavily on the
source language and the chosen debugger features. Our main focus in this pa-
per is the realization of standard debugger features for sequential languages
with notions like procedures, variables, and call stacks.

3 M e c h a n i s m s

In this section we discuss several low-level debugging mechanisms. Our emphasis
is on efficient portable implementations; to this end, we occasionally use C to
describe data structures and instrumentation code.

3.1 Breakpoints

To support breakpoints, a debugger must be able to map from a source-code
position to the corresponding event site in the code. Then it must instrument
that site to invoke the debugger when control reaches it. Traditionally, debuggers
have mapped a source-code statement line number to the first instruction of that
statement, and then replaced that instruction either by a trap instruction or by
an out-of-line call to a debugger hook.

A portable debugger cannot actually change the code dynamically; what it
can do is to have the compiler generate instrumentation code that polls the
breakpoint condition for that site, and if true invokes the debugger.

Posi t ion- to-s i te map. For simple languages, positions might just be source-
code line numbers, and sites be placed at the start of statements.

For a more fine-grained and flexible solution, the HLL compiler can record
the character position of every newline in an array, and annotate every syntax
tree node with its source-code region, i.e. start and stop character positions.
Assuming debugger instrumentation takes place at the syntax-tree level, every
event site is associated with the corresponding source-code region. For every
site, the compiler generates a static site descriptor that includes the region
information, and all descriptors are also placed in an array or list so they can be
enumerated. The newline array and the set of site descriptors are inserted into
the generated code, as static immutable data objects.

282

In a debugger session, the user inputs a source code position to specify a
breakpoint location, and the debugger searches the set of sites for a site whose
region includes the indicated position. Inversely, given a site, its region informa-
tion plus the newline array allows the debugger to highlight the corresponding
source region.

Pol l ing and suspending. To implement the polling code it suffices to associate
a breakpoint ftag with every site. The instrumentation code calls the debugger
library with its site number as a parameter; this corresponds to generating a
"reached site #i" event. The debug monitor checks the breakpoint flag: if set,
the debugger is invoked, otherwise it returns immediately to the debuggee.

For performance reasons, since most sites will not have breakpoints most of
the time, the test and possible invokation of the debugger should be inlined in
the instrumentation code. This saves the overhead of many procedure calls.

The breakpoint flag can be placed in the site's descriptor. This makes the flag
easy to find from the debugger, but has the disadvantage of making the entire de-
scriptor mutable. (Since this data structure is included in the debuggee's address
space, we would like it to be immutable, in order to protect it from pointer/arraY
bugs.) Making the flag a separate variable allows the site descriptors to remain
immutable, but causes a slight performance problem; with separate flags, the
breakpoint test code at some site i becomes:

if(flag_i) generate_event(~descriptor_i);

Since the flag is separate from the descriptor, the compiler has to emit additional
code to compute a new global address when the actual breakpoint occurs. By
placing the flags in one array and the descriptors in another, both indexed by
site number, the code can be changed to:

i f (f l a g [i]) gene ra t e_even t (&f l ag [i]) ;

The debugger uses the flag pointer to derive its index in the flag array, and then
uses that index to locate the corresponding descriptor.

If the language has separate compilation, i.e. modules, then there is likely
to be one flag array and one site descriptor array per module. As described
later, every procedure starts by pushing a new shadow stack frame on a shadow
stack, and the shadow frame contains a pointer to the static descriptor for that
procedure. We let the procedure's descriptor contain a pointer to its module's
descriptor, which in turn points to the flags and site descriptors for the module.

Since the debuggee suspends itself by making a recursive procedure call to
the debugger monitor, returning from the monitor resumes the debuggee.

In the cdb [5] debugger the compiler emits a "coordinate" word for each site,
that includes a 16-bit line number, a 10-bit line offset, and a one-bit breakpoint
flag positioned in the sign bit. The instrumentation code tests if the word is
negative, and if so, invokes the debugger with the site number and current scope
descriptor as parameters. (These parameters being new values, additional code
is generated to compute them.)

283

Heymann's debugger [6] uses source lines to identify sites. The compiler emits
a breakpoint array, BPA, with one byte per source line. The instrumentation code
for an executable source line stores its site number in a globally-accessible vari-
able, tests its BPA entry, and invokes the debugger (with no parameters) if the
value is non-zero. BPA entries that do not correspond to executable source-code
lines are pre-loaded with a special marker, to prevent breakpoints from being
planted there. The site number is stored unconditionally because asynchronous
faults (e.g. pointer errors or division by zero) are caught by Unix signal handlers,
which then produce a stack dump.

3.2 Single-stepping

Single-stepping is like breakpointing, except that every breakpoint site should
be triggered. A global flag might be added, but this would cause code growth
and slowdown; a better solution is to reuse the existing breakpoint mechanism
to force breakpoints at relevant sites.

Since each breakpoint flag is usually a byte or an integer for fast access, three
different flag values can be used: '0' for no breakpoint, '1' for a real breakpoint,
and '2' for a single-step breakpoint. To set single-step mode, all '0' entries are
changed to '2'; to leave single-step mode, all '2' entries are reset to '0'.

Since there may be very many breakpoint sites in a complete application,
changing to and from single-step mode can be slow. A more fine-grained im-
plementation is possible if every procedure descriptor includes a list of all its
breakpoint sites. To enter single-step mode, only the breakpoints in the cur-
rent procedure are set. Before a procedure exit, the single-step breakpoints are
removed from the current procedure, and the breakpoints of the returned-to
procedure are set.

Procedure call sites are more challenging: the called procedure may not have
been compiled with debugging enabled, but we still want a breakpoint if it in
turn invokes a debug-enabled procedure; the called procedure may also be a
runtime value whose descriptor is unknown at the call site. One solution is to
set a global flag indicating single-step mode. As a debug-enabled procedure is
entered, it calls the debugger to register its shadow stack record, dynamic scope
record, and static procedure and scope descriptors. (This is described later.)
The debugger library then sets every breakpoint in the entered procedure if the
single-step flag is set.

Heymann's debugger [6] uses all these techniques. The cdb debugger [5] sup-
ports breakpoints but not single-stepping. The authors suggest that either a
control-flow graph of breakpoints be generated, so that only a few need to be
set between each single-step break, or that machine-dependent means be used,
but that is non-portable and requires a detailed map between high-level site
locations and their corresponding machine instructions.

S tep-Over . Step-over is like single-step, except that recursively invoked pro-
cedures are not executed in single-step mode. This is easy with the mechanism
described here: just clear the single-step flag before making a recursive call.

284

3.3 Inspecting the call stack

Being able to traverse the call stack, and inspect the state of individual sus-
pended procedure involutions, is a useful standard debugger feature. But the
standard implementation techniques are inappropriate for portable debuggers
or debuggers for certain kinds of high-level languages. We consider two cases:

1. Source-level procedures and recursions are mapped to target-level procedures
and recursions. Since almost no language above the level of assembly code
allows programs to do detailed inspection of activation records or call stacks,
any such access would have to be made at the machine-level, and be non-
portable.

2. Implementations of languages with tailcalls, backtracking, coroutines, or it-
erators, often choose highly specialized representations for procedures and
recursions. In some cases, suspended invokations are represented using con-

crete continuations, and (non-local) control flow using tailcalls [13]. Contin-
uations are created, manipulated, and invoked explicitly, instead of relying
on C or machine-level procedure boundaries, calls, and returns. The machine
stack is either not used at all, or is used in non-standard ways. Compilers
often employ aggressive inlining and other code transformations, so source-
level procedure boundaries do not necessarily correspond meaningfully to C
or machine-level procedure boundaries [11].

In both cases, machine stacks and activation records are either inaccessible, or
have no obvious meaning. The suggested solution is to maintain explicit shadow

stacks and shadow activation records that present a portable view of the chain
of procedure involutions.

Shadow act ivat ion records. A shadow activation record should include the
following fields:

- A dynamic link to the shadow activation record of the previous procedure,
to allow traversing the shadow stack. This link might be implicit if records
are always located at fixed offsets from each other.

- A s tat ic descriptor l ink to the complete static information about the invoked
procedure, e.g. name, return type, argument types, list of breakpoint sites,
the module it is defined in, etc.

- A call s i te link to allow stack backtraces to locate the descriptor for the site
where a procedure was suspended in a recursive call.

- If the language has nested procedure declarations, then there should be a
s tat ic l ink to the shadow activation record of the most recent involution of
the lexically enclosing procedure.
Normally, compilers choose between static links or displays to provide access
to enclosing scopes, based on overheads, calling conventions, and costs for
non-local variable accesses. However:
1. The debugger may walk up and down the stack, accessing different acti-

vation records that occur at the same scope depth. A global display alone
does not work.

285

2. If debug-enabled and non-debug-enabled code should be compatible,
then the calling conventions cannot in general be changed to pass "de-
bugger" static links as additional parameters, or the representation of
procedure arguments be similarly changed.

Our suggestion is to use a shadow display of pointers to shadow activation
records, but only for parameter passing. On entry to a nested procedure, it
sets its shadow static link by indexing the shadow display.

Main ta in ing the shadow stack. If the source language or its implementation
is not properly tall-recursive, then maintaining the shadow stack is simple. A
global shadow stack top variable always points to the top-most shadow activation
record. Source level procedure entries and exits are events: on entry, a new
shadow activation record is allocated and initialized, and the shadow stack top
is set to refer to the new record; on exit, the shadow stack top is set to the
value of the dynamic link in the top-most activation record. A procedure call
is an event site; just before the call, the instrumentation code updates the call
site link in its shadow activation record to refer to the site's descriptor. (The
implementation does become more involved in the presence of non-local exists,
though.)

Allocating the shadow activation records as local stack variables in the gen-
erated C or machine-level code is simple and fast. The disadvantage is that they
become vulnerable to unchecked out-of-bounds array indexing errors. Keeping
them in a separate region of the address space should reduce, but not eliminate,
the risks of data corruption. (We ignore the possibility of keeping all debug-
ger state in separate processes, or even on separate machines, due to the high
runtime costs.)

Tailcalls. In the presence of tailcalls, a caller's activation record must be re-
moved before the callee's activation record is pushed. This can be done by mark-
ing tailcalls as special events whose instrumentation code perform the necessary
pop before the actual tailcall. 1

3.4 Inspec t ing variables in scope

To display variables, the debugger must first map a suspended site to the set of
variables visible there, their types, and locations, and then access their values.
If local variables are assigned to registers, and if extensive optimizations are
permitted, then accessing these values from the debugger may be impossible
(e.g. when a dead variable's register has been reassigned), difficult (e.g. when
a variable is replaced by a derived value), or simply highly machine dependent
(e.g. when a variable is assigned to a callee-save register, we have to traverse the

1 The psd Scheme debugger [9] usually preserves tail-recursiveness, except when in
single-step mode. In the sm].d SML debugger [14,15], application code remains tail-
recursive, but the debugger's shadow activation record is not deallocated at a tailcall.

286

stack to see where and if it has been saved). Traditional debuggers either require
that optimizations be turned off, so that local variables are stored in memory,
or become unable to inspect variables in optimized procedures.

If local variables are allocated in memory and their addresses are exported
to the debugger, the access problems disappear. Optimizations such as assigning
temporaries to registers or scheduling instructions, need not be disabled.

For each procedure, all its local variables are collected in a single dynamic
scope record. A static scope descriptor is built, in which every local variable has a
local variable descriptor describing its name, type, and memory location relative
the dynamic scope record. The instrumentation code at a procedure's entry event
registers the address of its dynamic scope record and static scope descriptor with
the debugger. For example, the Pascal procedure

procedure proc ;
var x: integer, y: real;
begin ... end;

could be instrumented as follows in C: 2

struct local_var_desc {
char *name;
TYPE type;
size_t offset; /* from start of dynamic scope record */

} local_var_desc ;
struct proc dynamic scope { int x; double y; };
const struct local_var_desc proc_static_desc[2] = {

{ "x", TYPE_INT, offsetof(proc_dynamic_scope,x) },
{ "y", TYPE_REAL, offsetof(proc_dynamic_scope,y) }

},
void proc (void)
{ struct proc_dynamic_scope locals;

register_locals(2, proc_static_desc, &locals) ;
/* the procedure body uses locals.x and locals.y */

}

(In reality the dynamic scope record would be combined with the shadow stack
frame, and there would be only one event site at procedure entries.)

The cdb debugger [5] has a static '%ymboF' record for every local variable. On
entry to a procedure, every local variable has its address taken, and the differ-
ence between it and the procedure's shadow activation record (a generated local
variable) is stored in the variable's "symbol" record. This forces local variables
to memory, but incurs continuous runtime overhead.

The compiler/debugger by Heymann [6] uses a similar approach, but per-
forms the registration only once. At program startup, the debugger sets a global
flag and calls every procedure; a called procedure will, when this flag is set,

2 offsetof(type,name) is an ANSI-C macro whose compile-time value is the byte
offset of the name field in type records [1, Section 4.1.5].

287

bypass its normal body and instead generate debugger information for every
local variable, with its name, type, and address offset from the shadow activa-
tion record. However, this scheme is broken by modern C compilers. The code
only takes the addresses of the local variables when executing the registration
code; during normal execution, there is no control-flow path in which the locals
have their addresses exported. Hence, a good C compiler will allocate the locals
to registers in the real procedure body. We found that several compilers would
break the scheme, unless invoked with no or low optimizations. Furthermore,
since the debug flag is always tested, normal execution is still slowed down.

Both Hanson/Raghavachari's and Heymann's schemes use pointer subtrac-
tion between the addresses of different objects, something the ANSI-C stan-
dard [1, Section 3.3.6] marks as undefined. By placing all locals in a single record,
our scheme is well-defined.

N e s t e d scopes. If the language has nested scopes, a.k.a, blocks, then the scope
information changes dynamically as the control point moves around in a proce-
dure. The cdb [5] debugger exports a pointe r to the innermost scope descriptor
at stopping points, and each descriptor contains a pointer to the descriptor of the
surrounding scope. If scope changes are infrequent, it may be faster to register
and de-register the new scopes at block entries and exits.

For minimal overhead, we suggest that all local variables be collected in a
single procedure-global dynamic scope record, with a union of sub-records for
nested scopes. (This is effectively what many compilers do already, since they
can then avoid having to dynamically change the size of stack frames.)

The HLL compiler builds an inverted tree of static scope descriptors, where
each node describes one block and contains a pointer to the node for the sur-
rounding block. The tree is emitted as a set of static immutable data objects. The
static site descriptor for every stopping point is extended to include a pointer to
its corresponding node in the static scope tree.

With this scheme, no additional events (block entries/exits) occur, and no
additional parameters are passed in calls to the debugger library.

3.5 D a t a b reakpo in t s

Data breakpoints are used to implement queries such as: "stop when variable x
is assigned." Existing efficient implementations use various non-portable tech-
niques, such as replacing store instructions, or write-protecting virtual mem-
ory pages and emulating caught write instructions [16]. Pre-filtering techniques
have been proposed to improve performance by reducing the number of checked
stores [17, 10]. Since a portable software-only implementation cannot access and
patch code, we use cheap conditional breakpoints at interesting stores, and pre-
filtering to allow many stores to be unchecked.

Checking if a n a d d r e s s is watched. Data breakpoints are implemented by
maintaining a set of watched addresses, and generating debugger events when

288

data at watched addresses is updated. For the set, Wahbe et al [17] recommend
using a segmented bitmap instead of a hash table: a hash table would require
a loop of memory fetches and comparisons to resolve hash conflicts, while the
segmented bitmap can be inspected using only two fetches and some arithmetic.

A fiat bitmap with one bit per byte would be very large and very sparse.
If a segment table is used to point to smaller bitmaps, all empty segments can
share the same empty bitmap. Assuming a fair level of locality among watched
addresses, storage requirements should be manageable. If the top-level segment
table is too large, the number of bits to index it can be reduced, or perhaps a
3-level segmentation scheme be used.

Another possibility is to use a hash table, and inline the code for computing
the hash and indexing the table. Only if the collision list is non-empty is an out-
of-line call made to complete the conditional breakpoint. Assuming a very fast
hash function, this might be cheaper than the segmented bitmap, partly because
it uses less space, and partly because the common case (store at non-watched
address, no hash collision) only uses one memory fetch instead of two.

Finally, source-level stores are made into conditional breakpoint sites, and
instrumented to perform the appropriate check and event generation:

/* site i: x := <exp>; */

if(isWatched(~x)) storeTrap(i, ~x) ;

x = <exp>;

Reduc ing the number of checked stores. If the isWatched test costs more
than a few instructions in the common case, then it might be worthwhile to add
a per-site isChecked flag, and augment the code to perform the test only if the
flag is set. Since checked stores now become more expensive, it is important that
most stores remain unchecked.

- If the source language is statically strongly typed and data cannot be ac-
cessed at different types, then any store of a type different from the type
of the watched address need not be checked. (This requires that updates
via out-of-bounds array indices or invalid pointers are caught, see [8].) The
compiler should include the type of the store in the descriptor generated for
every store site.

- If the watched address is a named location, and there is no aliasing by name,
then any store whose target is a different named location need not be checked.
In the store site descriptor, the compiler should include the address of the
target, as global x, local x, or dynamic pointer.

- In the presence of pointers or references, range analysis might be performed
to eliminate further checks, but it is not clear that the benefits make up for
the added implementation complexity [17].

Reus ing dynamic type checks. Dynamically typed languages, like Lisp,
Scheme, and Prolog, often tag runtime data, and perform type checks before
accesses and updates [4]. It may be possible to implement data watchpoints by

289

reusing the dynamic type checks already performed. Usually, there is an n-bit
type tag in every object's header. We add one more tag bit, and modify the com-
piler to retrieve and check all n + 1 bits during type checks before data updates.
(The runtime cost should be the same as before.) When an object is watched,
the extra bit is set; updates invoke the error handler, which in turn notifies the
debugger.

Compilers that perform "soft" type inference in order to eliminate unneces-
sary type checks should only optimize read accesses, not write accesses.

Some implementations tag pointers and omit hea~iers from common small
objects, e.g. cons cells. Our technique will not work for those objects.

Copy ing G C and V M page pro tec t ion . An implementation with a copying
garbage collector could relocate a watched data object to its own VM page,
write-protect that page, and install a store fault handler. (This is reasonably
portable in modern Unixes.) Since a portable debugger cannot patch code, the
fault handler should unprotect the page, arrange for a breakpoint as soon as
possible after the store has completed, and resume the debuggee. At the following
breakpoint, the debug monitor re-protects the page, and sends the appropriate
event to the debugger.

Every store could update a global "next site" pointer before it executes, in
order to allow the fault handler to plant a breakpoint there; unfortunately, this
incurs overheads even when no watchpoints are active. If procedure descriptors
include a list of their breakpoint sites, then by accessing the top frame of the
shadow stack, the handler can set every breakpoint in the current procedure.
Alternatively, all breakpoints can be set.

3.6 Profi l ing

Traditional profiling tools collect two pieces of information for every source-level
procedure: the number of times it was called, and the percentage of total exe-
cution time spent in it. Every procedure is given a call-count variable, and code
is added to the procedure's prologue to increment its call-count. A histogram,
indexed by ranges of code addresses, is also maintained. An operating system
service, such as Unix' p r o f i l system call, is requested to sample the value of
the program counter at regular intervals, scale the program counter by the size
of the ranges, and increment the corresponding entry of the histogram. At pro-
gram termination, the call-counts and the histogram are written to a file, which
is then processed by the profiling tool.

The code instrumentation for call-counts is traditionally buried in the back-
end, but could easily be done by modifying the intermediate representation of
every procedure to include a declaration of a private call-count variable, and
code to increment the call-count at procedure entry.

Sophisticated compilers often perform code transformations such a (full or
partial) inlining or cloning which significantly complicate the mapping from code
addresses to source locations. Another problem occurs for implementations that

290

compile via another language, say C. The profiling tool uses C procedure names
when reporting call-counts and timings, but a single C procedure may corre-
spond to (parts of) the code for several HLL procedures. Garbage collectors
that relocate code blocks present further problems.

Appel et al [2] describe a profiling tool for an early version of the SML/NJ
compiler. To avoid the problems described above, they instrument the program
(at the abstract syntax level) to maintain a global cur ren t variable, which points
to the clock interrupt counter for the currently executing function. The clock
interrupt handler increments the cell pointer to by current . Now, even if the
function is inlined in several different places, all copies will charge the same
call-count and interrupt-count variables.

The technique can also be used for profiling smaller program units, such as
basic-blocks, or for recording true/false frequencies in conditionals.

Modern workstations and PCs allow applications to install interrupt han-
dlers invoked at regular sub-second intervals, e.g. using the Unix s igna l and
s e t i t i m e r system calls. If this support is unavailable, the HLL compiler can
explicitly instrument each basic block to update the corresponding histogram
entry; the time to charge can be estimated to the size of the basic block.

4 R e l a t e d w o r k

Heymann [6] developed a "portable" debugger for a simulation language that is
translated to C. The translator inserts additional calls to a debugging library at
procedure entries and exits, and before each statement. At start-up, the debugger
invokes all procedures in a special mode (a global flag is set) that causes their
instrumentation code to register various meta-information with the debugger.
The instrumentation code maintains a shadow stack and registers the addresses
of local variables, but, as we have described, the implementation is non-portable
and broken.

Ramsey and Hanson [12] describe ldb, a retargetable debugger for the l cc
compiler. Code is compiled as usual, but the compiler generates additional de-
bugger symbol tables that are encoded as Postscript programs. A "hub" is linked
with the debuggee, and it is responsible for reading and writing the debuggee's
state. A breakpoint is set by finding the appropriate machine instruction via
the symbol tables, and then telling the nub to overwrite the instruction with a
trap instruction. Machine-dependencies are minimized, but there are still sev-
eral hundred lines of machine-dependent code, including some assembly, for every
supported platform.

Hanson and Raghavachari [5] describe cdb, a debugger for lcc. It is inspired
by ldb, but much smaller and almost completely portable. The difference from
ldb is that the compiler updates its high-level intermediate representation to
include data structures that contain the debugger symbol tables, and instruments
code to test breakpoint flags and maintain a shadow stack. The debugger does
not implement single-stepping or conditional breakpoints. Their instrumentation
code has some unnecessary overheads.

291

Tolmach and Appel [14, 15] describe a portable event-oriented debugger for
the SML/NJ compiler. Instrumentation code is inserted at the abstract syntax
level, in order to avoid having to change the complex middle and back-end com-
ponents of the compiler. The debugger supports execution replay. Side-effects are
logged and the state is checkpointed at certain intervals. To move back to some
previous event, the state is restored from the last checkpoint before that event,
and the code is re-executed until the event re-occurs. During re-execution, the
results of side-effects are taken from the logs. Breakpoints are triggered by source
site or by virtual time. Other features are implemented on top of these two prim-
itives. The implementation suffers from significant overheads, caused partly by
the instrumentation code, and partly by the work needed to checkpoint states,
log side-effects, and re-execute side-effects.

Appel et al [2] describe how profiling was added to the SML/NJ compiler
using simple code instrumentation and a runtime clock interrupt handler.

Kellom~iki [9] developed psd, a portable Scheme debugger. A source-level
transformation replaces every expression with a call to a debugging library with
the expression itself, converted to an anonymous function, as one of the pa-
rameters. It supports several standard features, but not call-stack back traces.
Debuggable and non-debuggable code modules may be mixed. Source code is
expanded by about an order of magnitude, and execution is slowed down by
about two orders of magnitude.

Wahbe [16] evaluates several different implementations of data breakpoints.
Code patching, which replaces stores by jumps to a debug library, is shown to have
better performance than either trap patching (replacing stores by traps, which
are then handled by the debugger) or VM protection (using VM page protection
to catch updates). Keppel [10] notes that VM protection can be used to perform
code patching lazily, which greatly reduces the number of store instructions that
need to be patched.

Wahbe et al [17] discuss several optimizations to the code patching scheme.
They describe a technique based on analysis of binary code that allows many
stores to be unchecked. The complexity of the analysis in relation to its benefits
is such that the authors recommend to simply check all stores.

Jones and Kelly [8] show how pointer bounds checking can be added to C code
without making it incompatible with non-bounds-checked code. They add code
to maintain a map of all valid objects and their address bounds, and instrument
every pointer operation to consult the map to verify the operation. A modified
version of the gcc compiler is used, and some library procedures are replaced
with bounds checked versions. Bounds checked code is slowed down 5-6 times in
the current implementation.

Ducass6 [3] described the Prolog Opium debugger which is based on event-
processing: the debuggee generates events at interesting points, and the debugger
processes them. Full time travel, i.e. the ability to reference events generated at
given time points, is supported. Performance or implementation details are not
discussed; however, Ducass6 found that for acceptable performance, executing a
pre-filter in the debuggee itself was necessary.

292

The p2d2 debugger from NASA Ames Research Center [7] is a portable
debugger for HPF programs distributed over a heterogeneous set of machines. It
uses a client-server protocol between a user-interface client and debugger servers
executing on the machines. Debugger servers are implemented as wrappers on
top of preexisting Fortran debuggers. The application code is also linked with a
modified library that reports interesting process and communication events to
the debugger server.

5 C o m m e n t s

At the time of this writing, we do not have a brand new debugger to show off
the ideas presented in this paper.

At an early stage, we tested some of the basic ideas in a prototype debug-
ger for Standard ML. This debugger uses source-code instrumentation, static
site descriptors, and places events at function entries and recursive calls. It sup-
ports breakpoints, single-stepping, variable inspection, and call stack traversal,
but does not catch runtime exceptions. The prototype relies on manual code
instrumentation and is unable to handle polymorphic variables, but these prob-
lems can be overcome [15]. The code size is 1300 lines of SML, with 550 lines
implementing the core functionality.

A master's student is currently implementing a portable instrumentation-
based debugger for procedural languages. This work is in a very early stage, but
we will report on it when it is done.

Since traditional debuggers often require the optimizer to be turned off, it
may be that instrumentation-based debuggers do not lose too much performance
compared to traditional debuggers. To test this, we experimented with a small
C program, using gcc on the Alpha processor. The program was compiled in
three versions: normal (compilation flag -0), debug (-g), and instrumented (in-
strumentation code for breakpoints and variable inspection manually inserted,
compiled with -fl). Compared to the normal version, the debug version had 35%
more object code and was 55% slower, while the instrumented version had 99%
more object code and was 64% slower. Thus, it seems that code instrumentation
need not be unacceptably slow compared to traditional debugging support.

6 S u m m a r y

Code instrumentation is a very powerful technique: it can be used to implement
debugger functionality that is otherwise unavailable, and it may be performed
in a machine and operating system-independent manner, allowing both the in-
strumentation phase in the compiler and the debugger to be portable.

On the negative side, code instrumentation may make debug-enabled and
non-debug-enabled code incompatible, and it expands the size of generated code
and data segments. Executing parts of the debugger in the same process as the
debuggee allows for very fast conditional breakpoints and other tests, but makes
the debugger vulnerable to memory addressing errors in the debuggee.

293

The technical report version of this paper will include detailed code examples
for the debugging primitives described here.

References

1. ANSI X3.t59-t989. Programming Language - C. American National Standards
Institute, 1989.

2. Andrew W. Appel, Bruce F. Duba, and David B. MacQueen. Profiling in the
presence of optimization and garbage collection. Technical Report CS-TR-197-88,
Princeton University, November 1988.

3. Mireille Ducass~. Opium: An extendable trace analyser for Prolog. The Journal
of Logic Programming, 1998. To appear in the special issue on Synthesis, Trans-
formation and Analysis of Logic Programs, A. Bossi and Y. Deville (eds).

4. David Gudeman. Representing type information in dynamically typed languages.
Technical Report TR 93-27, University of Arizona, Department of Computer Sci-
ence, October 1993.

5. David R. Hanson and Mukund Raghavachari. A machine-independent debugger.
Software -Practice and Experience, 26(11):1277-1299, November 1996.

6. Jurgen Heymann. A 100% portable inline-debugger. ACId SIGPLAN Notices,
28(9):39-46, September 1993.

7. Robert Hood. The pPd2 project: Building a portable distributed debugger. In
SPDT '96: SIGMETRICS Symposium on Parallel and Distributed Tools. ACM,
May- 1996.

8. Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds check-
ing for arrays and pointers in C programs. In Third International Workshop
on Automated Debugging, AADEBUG'97, LinkSping, Sweden, May 26-27 1997.
http://waw-ala, doe. ic. ac. uk/~phjk/.

9. Pertti Kellom~ki. Psd - a portable Scheme debugger. Lisp Pointers, VI(1), 1993.
10. David Keppel. Fast data breakpoints. Technical Report UWCSE TR-93-04-06,

University of Washington, Department of Computer Science and Engineering, 1993.
11. Mikael Pettersson. Compiling Natural Semantics. PhD thesis, Department of

Computer and Information Science, LinkSping University, December 1995.
12. Norman Ramsey and David R. Hanson. A retargetable debugger. In Proceed-

ings of the ACM SIGPLAN '92 Conference on Programming Language Design and
Implementation, PLDI'92, pages 22-31. ACM Press, 1992.

13. John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the ACM Annual Conference, pages 717-740, 1972.

14. Andrew Tolmach and Andrew W. Appel. A debugger for Standard ML. Journal
of Functional Programming, 5(2):155-200, April 1995.

15. Andrew P. Tolmach. Debugging Standard ML. PhD thesis, Princeton University,
October 1992. Technical Report CS-TR-378-92.

16. Robert Wahbe. Efficient data breakpoints. In Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS'92, pages 200-212. ACM, 1992.

17. Robert Wahbe, Steven Lucco, and Susan L. Graham. Practical data breakpoints:
Design and implementation. In Proceedings of the ACM SIGPLAN '93 Confer-
ence on Programming Language Design and Implementation, PLDI'93, pages 1-12.
ACM Press, 1993.

