
T O O L D E M O N S T R A T I O N

Lrc - A G e n e r a t o r for I n c r e m e n t a l
L a n g u a g e - O r i e n t e d T o o l s

Matthijs Kuiper and Jo£o Saraiva
(kuiper, saraiva}@cs, ruu. nl

Department of Computer Science, University of Utrecht,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

1 I n t r o d u c t i o n

Lac is a generator for graphical, easy to use, Language-Oriented Tools. Lttc
accepts as input an Higher Order Attribute Grammar (HAG) [VSK89] specifying
a particular language and generates incremental attribute evaluators.

Lac generates tools that have advanced interactive interfaces and these in-
terfaces are computed. That is, the interface may depend on the structure being
edited and also on computed properties. A change in that structure may cause
the interface to change. This provides users with powerful facilities to interact
with programs.

One of the key features to handle interactive environments is the ability to
perform efficient recomputations after each user interaction. The incremental
evaluators produced by Lac are efficient: incremental behaviour is achieved via
function caching, an efficient strategy for handling HAGs [PSV92,CP96]. Fur-
thermore, LItc uses several optimizations which increase the evaluators' perfor-
mance, such as, the elimination of nodes and copy rules and tree deforestation
[SKS97].

The system has been used to develop severM kind of applications such as:
language based editors, compilers and even simple games. It has Mso been used
to support a compiler construction course. Lac produces portable C and Haskell
code. LRc itself and the generated tools can be installed in any system with an
ANSI C compiler and the Tcl/Tk toolkit.

The LRc system can be found on the Internet at the address:

http://www.cs.ruu.nl/people/matthys/irc_html/

2 C o m p o n e n t s o f L r c

The LRc system consists of three components:

- The genera tor , constructs purely functional attribute evaluators for higher-
order attribute grammars. The evaluators consist of strict functions which
recursively call each other in order to decorate trees.

299

- The f u n c t i o n cache , the cache makes evaluators incremental by storing
calls to visit-functions. Incremental behaviour is achieved by reusing results
of visit-function calls previously cached.

- The i n c r e m e n t a l s c r e e n u p d a t e r : It is a modern graphical user interface
tool. It provides a predefined set of widgets like menus and buttons. These
widgets can be easily included in the HAG specification.

Q

O
0 0 0

•]

t fur~ion

of derived i~fot~on

tree s ~ g e ~ u~ractions

/ / \

• ' visualizer

visual sWactttre
,~reen representation

Fig. 1. Operation of tools.

The generator translates the higher order attr ibute grammar into a set of
pure visit-functions. These functions are incrementally evaluated using a func-
tion cache. One of the attributes being computed by the visit-functions is an
abstract description of the interface. This abstract interface is presented on the
screen by a visualizer. After a change to the term the abstract interface is incre-
mentally recomputed and then redisplayed by the visualizer. The visualizer is
itself incremental and only updates screen parts which have changed (figure 1).

3 A n E x a m p l e

To show the graphical user interface which LRc produces we have defined an
interactive interface to the Unix find command. Interactive file finders, like the
one on the Macintosh, let users define a predicate on fitenames and file contents
with the aid of buttons and menus. We have defined a language of predicates in
LRc's specification formalism and generated a tool from that definition. Figure 2
displays the interface of the tool generated by LRC. The operations offered to a
user depend on the predicate under construction. The but ton labeled with "fewer
choices" in window Find of figure 2 removes the last choice. This but ton is only
displayed if two or more choices are presented.

4 T h e G e n e r a t o r

The generator translates higher order attr ibute grammars into incremental at-
t r ibute evaluators. These attribute evaluators are based on the visit-sequence

300

Fig. 2. The Interactive File Finder.

paradigm [Kas80] which perform multiple traversals over the abstract syntax
trees. The attribute evaluators are purely functional and consist of a set of strict
functions, called visit-functions. Each visit-function takes as parameter a tree
and a subset of the inherited attributes of the tree's root node and returns a
subset of the synthesized attributes of the tree. The entire evaluator consists of
visit-functions that recursively call each other in order to decorate the tree.

Attribute values are not stored in the nodes of the tree, they only exist
as arguments and results of the visit-functions. Since attributes are not stored
in the tree, multiple instances of the same tree can be shared. Sharing not only
reduces memory consumption, it also allows for fast equality tests between terms:
a pointer comparison suffices. This is particularly important when decorating
higher order attributes which may be large attributed trees and which must be
compared for equality.

Other features o f the Generator:

- Parallel Evaluation: Lac includes a parallelism detector which identifies in-
dependent visit-function calls (i.e., independent visit operations of the visit
sequences). Visit-functions are amenable for parallel evaluation since they
do not have side effects.

- Sliced Attribute Evaluators: LFtC produces sliced attribute evaluators. The
slices are produced in respect to the synthesized attributes of the AG's root
symbol. A sliced evatuator includes only the computations needed to evaluate
the synthesized attributes of the AG's root considered in the slice.

- Readable At tr ibute Evaluators: Lac produces readable attribute evaluators.
Moreover, it generates a DTF~X version of the HASKELL based evaluators.
The ~ evaluators use different colours and fonts for different entities of
the evaluators. They also shadow the computations not performed in a AG's
slicing, identify the visit-function dependencies, etc.

5 T h e F u n c t i o n C a c h e

Incremental attribute evaluation is achieved through the caching of calls to the
visit-functions. An entry in the visit-function cache stores the arguments and

301

results of one visit-function call. When a visit-function is called a lookup in the
cache is performed. If the cache contains an entry corresponding to the call then
the result in that entry is returned. Otherwise, the visit-function is applied to
the arguments and the call is cached.

To prevent unbounded growth of the function cache Lac uses several function
cache update algorithms [SKS96].

6 The Incremental Screen Updater

Lac produces modern graphical user interface tools. It defines a set of predefined
widgets like menus and buttons. Widgets can be horizontal or vertical combined
to form the interface. The text widget is used to offer more traditional textual
editing.

The interface of the tool is defined in the higher order at tr ibute grammar.
The widgets which are used in the interface and how they are combined is defined
in the HAG. The visual structure of the tools is computed from the underlying
data structure during attribute evaluation.

The incremental screen updater contains a visualizer which performs incre-
mental screen updates. After each user interaction the visualizer computes the
difference between the actual visual structure presented in the screen with the
visual structure that must be presented. This difference is translated into incre-
mental updates of the screen.

References

[cP961

[Kas80]

[PSV921

Alan Carle and Lori Pollock. On the optimality of change propagation for
incremental evaluation of hierarchical attribute grammars. ACM Transactions
on Programming Languages and Systems, 18(1):16-29, January 1996.
Uwe Kastens. Ordered attribute grammars. Acta In/ormatica, 13:229-256,
1980.
Maarten Pennings, Doaitse Swierstra, and Harald Vogt. Using cached func-
tions and constructors for incremental attribute evaluation. In M. Bruynooghe
and M. Wirsing, editors, Programming Language Implementation and Logic
Programming, volume 631 of LNCS, pages 130-144. Springer-Verlag, 1992.

[SKS96] Jo£o Saraiva, Matthijs Kuiper, and Doaitse Swierstra. Effective Function
Cache Management for Incremental Attribute Evaluation. Technical re-
port UU-CS-1996-50, Department of Computer Science, Utrecht University,
November 1996.

[SKS97] Jo£o Saraiva, Matthijs Kniper, and Doaitse Swierstra. Specializing Trees for
Efficient Functional Decoration. In Michael Leuschel, editor, ILPS97 Work-
shop on Specialization of Declarative Programs and its Applications, October
1997. (Also available as Technical Report CW 255, Department of Computer
Science, Katholieke Universiteit Leuven , Belgium).

[VSK89] Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. Higher order attribute
grammars. In ACM SIGPLAN '89 Con]erence on Programming Language
Design and Implementation, volume 24, pages 131-145. ACM, July 1989.

