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Abs t r ac t .  The benefits obtained from the decomposition of a classific- 
ation task involving several classes, into a set of smaller classification 
problems involving two classes only, usually called dichotomies, have 
been exposed in various occasions. Among the multiple ways of applying 
the referred decomposition, Pairwise Coupling is one of the best known. 
Its principle is to separate a pair of classes in each binary subproblem, 
ignoring the remaining ones, resulting in a decomposition scheme con- 
taining as much subproblems as the number of possible pairs of classes 
in the original task. Pairwise Coupling decomposition has so far been 
used in different applications. In this paper, various ways of recombin- 
ing the outputs of all the classifiers solving the existing subproblems are 
explored, and an important handicap of its intrinsic nature is exposed, 
which consists in the use, for the classification, of impertinent informa- 
tion. A solution for this problem is suggested and it is shown how it can 
significantly improve the classification accuracy. In addition, a powerful 
decomposition scheme derived from the proposed correcting procedure 
is presented. 
Keywords  : Classification, decomposition into binary subproblems, pair- 
wise coupling. 

1 I n t r o d u c t i o n  

The goal in au tomated  learning consists in finding an approximation F of an 
unknown function F defined from an input space 12 onto an output space ~,  
given a training set: T = {(~P, F(~P))}P=I C 12 x ~ .  When the output  space 
is discrete and unordered, a classification problem is presented and the function 
F : 12 --* { 1 , . . . , K }  defines a K-par t i t ion  of the input space into sets F-1(k) 
called classes and denoted wk. 

The  collection of learning algorithms available to solve classification prob- 
lems originate in different domains such as: statistics (e.g. Bayesian classifiers, 
see [8]), logic (e.g.logical analysis of da ta  [4, 1]), neural networks (e.g. perceptron 
algori thm [16], backpropagation [19]), artificial intelligence (e.g. decision trees [2, 
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14]). Among these, only those capable of handling mutticlass problems are ap- 
plied, in general, to solve problems where the number of classes exceeds two. 

It is possible, however, to apply Boolean methods (i.e. those that  can handle 
only two-class problems) to learn tasks where K >> 2. In fact, different reasons 
motivate the decomposition of a large scale problem into smaller subproblems 
dealing with only two classes. On the one hand, some algorithms do not scale 
up nicely with the size of the training set. Others are not suited to handle a 
large number of classes. On the other hand, even when using an approach which 
can deal with large scale problems, an adequate decomposition of the classific- 
ation problem into subproblems can be favorable to the overall computational  
complexity as well as to the generalization ability of the global classifier [17, 3, 
20]. 

The use of a decomposition scheme allows the transformation of a K-par t i t ion 
F : $2 --* { 1 , . . . ,  K}, into a series of L bipartitions, f l , . . . ,  fL. A reconstruction 
method is coupled with each decomposition scheme to make the fusion of the an- 
swers of all the L classifiers for a particular input in order to select one of the K 
classes. Among the simplest decomposition schemes frequently used, there is the 
one-per-class (OPC) and the pairwise coupling (PWC). A / ( -pa r t i t i on  is decom- 
posed by the former method into I~" bipartitions, each separating one class from 
all the others. The latter requires ½K(K - 1) 2-class problems, one for each pair 
of classes, the bipartition for the pair (i, j )  focusing on the separation of class wi 
from class a;j and ignoring all other data. This paper concentrates on these two 
decomposition schemes, which are quite intuitive. A more sophisticated scheme 
is proposed in [7, 5, 10]; in ECOC, redundancy is explored in the decomposition 
as a way of increasing the error-correcting capability of the reconstruction. This 
method has served as base for other developments in the same framework. The 
authors in [tl]  present a similar scheme where the error-correcting component is 
kept, but the decomposition is made a posteriori, so that  the grouping of classes 
in the sub-problems respects the class distribution in the input space. As another 
example, Shapire [18] combines ECOC with Boosting. 

2 Decomposit ion 

The decomposition scheme specifies the target function ft : t9 --* { -1 ,  +1} for 
subproblem 1. To be valid, if = ( f l , . . . ,  f i )  T should allow reconstruction, i.e. 
there should not be two pairs (x, k), (y, k t) E T, with k ~ k t and if(x) = f ( y ) .  If 
no additional information is available, typically, all data  of a same class wilt be 
associated to the same value by fl. Therefore, the overall decomposition scheme 
can be specified by a decomposition matrix D E { + 1 , - 1 , 0 }  L×K such  that  

+1 if class ~k is associated with +1 by fz 
Dik = --1 if class ~k is associated with - 1  by fz 

0 if class ~ does not belong to the task of fz • 

The validity of the decomposition scheme is expressed by the constraint that  for 
every two columns of D,  there is at least one row for which the coefficients in 
the two columns are +1 and -1 .  



162 

The subproblem I will be trained using all the information available, i.e. the 
training sample 7] used to learn fz is the set of all the pairs (w, Dt~) such that 
D l k ¢  0 and (x,k) E T. 

As illustration, the decomposition of the one-per-class and pairwise coupling 
schemes, for K -- 4, are given by the decomposition matrices of Fig. 1 (a) and (b). 

t +l -1  0 0 1 
-1  +1 -1 -1  +1 0 0 -1 
-1  -1  +1 -1  0 +1 -1  0 
-1  -1  -1  +1 0 +1 0 -1  

0 0 +1 -1  

(b) 

Fig. 1. Classical decomposition matrices D. Each row corresponds to one dichotomy 
and each column to one class. (a) illustrates the decomposition matrix of the one-per- 
class scheme; the matrix in (b) corresponds to the pairwise coupling scheme 

3 P a i r w i s e  C o u p l i n g  R e c o n s t r u c t i o n  

In PWC, when an input vector ~ is to be classified, it is presented to all the 
classifiers, each providing a partial answer that concerns the two involved classes. 
Considering these answers as votes, a natural approach for the global classific- 
ation consists in selecting the class that wins more votes. Assuming that the 
classifier discriminating between class wi (as positive) and class wj (as negative) 
computes an estimate 15/j of the probability 

p # = P ( ~ e ~ l x ,  ~ E ~ U ~ ) ,  (1) 

then, the classification is determined by 

m a x  > (2) 
- -  I < i < K  

- - j # i  

The operator [[.1 is defined as: 

I 1  if ~/is true, 
~/] = 0 otherwise 

This combination considers the outputs of the classifiers as binary decisions. 
A different reconstruction approach consists in taking into consideration the fact 
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that  the outputs/~ij of the classifiers represent probabilities. Then, these values 
can be used to calculate approximations/5i of the a posteriori probabilities 

p~ = P ( =  e ~ i  I z )  . 

Considering a square matr ix 16 with the value ~5q in position (i, j) i , j=l ..... K, iej  
and with Pji = 1 - /g i j ,  the values of the 16i's can be obtained from 

2 
K ( K - 1 )  ~ p i j  , j#i  

and the classification can then be given by 

(3) 

This procedure will hereafter be called soft reconstruction, as opposed to the 
voting procedure (2), referred to as rough reconstruction. The formulation given 
in (3) and (4) can be generalized to incorporate the two kinds of reconstruction: 

2 
arg max 13i P i  - -  E cr(Pij) 

I < i < K  ' K ( K - 1 )  ' 
- - j~i 

where cr takes the form of a threshold function at 0.5 for the rough reconstruction 
and the identity function for the soft reconstruction. Note that whenever ~ is 
symmetric on [0,1], i.e. c~(1 - x) = 1 - or(x), then the pi's sum to 1 and can thus 
be considered as probability estimates. 

The two schemes presented explore the available information differently and 
about this a remark can be made. The fbllowing example follows from an obser- 
vation made in [9]. Consider the matr ix P with the Pij'S for a particular input 
vector ~ in a problem with three classes: 

- 0.6 0.6 ) 
0,4 - 0.9 
0.4 0.1 - 

(5) 

It can be verified that  x is classified as class wt by a rough reconstruction, while 
a soft reconstruction will classify it as class w2. Given that  these two functions 
may produce different outputs, some experiments were made to compare their 
performance. In addition, alternative forms for the function (r have been pro- 
posed and Mso experimented. The reconstruction schemes are summarized and 
labeled from PWC1 to PWC5 in Fig. 2. 

The schemes PWC1 and PWC2 are the threshold and linear combinations, 
while the sigmoidal function used in PWC3 is a compromise between the two. 
PWC4 is a semi-threshold function where the linear behavior of the first half 
range aims at recovering negative information that  is close to the threshold and 
that  might be caused by poor classifier performance. By negative information it 
is meant here the probability vMues below 0.5, which correspond to a negative 

arg m a x  pl.  (4)  
I<_{_<K 
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o-(x) = { 10 if Xotherwise > 0.5 (PWC1) 

1 (PWC3) a(x)  = 1+e-12 (=-o.~) 

f x if z > 0.5 if(x) (PWC5) 0 otherwise 

~r(x) = x (PWC2) 

f 1 if x > 0.5 if(X) (PWC4) x otherwise 

Fig. 2. The function a used in the reconstruction schemes PWC1 to PWC5. The plots 
of these functions are presented in Fig. 3. 

vote in the case of a threshold function. PWC5 uses a concept similar to the 
previous scheme, but  in this case negative information is given full meaning while 
positive information is given increasing importance with increasing distance from 
the threshold. Fig. 3 contains the plots of the different forms of a. 

PWC 1 PWC2 PWC3 PWC4 PWC5 

-o o.51 o.5 o. .5 0.5 

o} . . . .  o o o 

o 0.5 1 o 0.5 1 o 0.5 1 o 0.5 1 o 0.5 1 
Pi] Pij Pij Pij Pij 

Fig. 3. The different forms of the function a as defined in Fig. 2. 

In [13], a different way of approximating the class probabilities is proposed. 
Given 

Pi 
Pij - -  

P~ + Pj 

and considering that  for all i, 

E ( p i  + p j )  - ( K - 2 )  Pi = 1 , 

then the following expression can be derived: 

1 
(PWC6) . 

- (K - 2 )  
P~ = ~ ¢ i  ~--'~ 

This scheme has been included in the experiments and is labeled PWC6. 
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The results of the experiments are presented in Fig. 4. The learning algorithm 
used to implement the classifiers is the decision tree algorithm C4.5 [15]. For each 
of the five databases from [12] that have been used in the tests, 20 runs with 3- 
folding were executed. The 3-fold cross-validated paired t test [6] was applied to 
check for significant differences between the average error rates, with a confidence 
level of 0.95. 

Audiology Glass Letter 

o'e 24 31 

,~, 23 30 
22 

4 1 6 3 5 2 1 4 6 3 2 5 4 2 3 5 1 6 

Soybean Vowel 

23 

t~ 22 

2 3 5 1 4 6 4 2 3 6 5 1 

Fig. 4. Comparison between different PWC reconstruction methods. Numerical values 
~re presented in Table 1. Bars connected by the same light-coloured horizontal strip 
represent values that do not differ significantly (0.95). 

Table 1. Comparison between different PWC reconstruction methods. The values 
represent the average percentage of misclassification on the test set (and respective 
standard deviations). 

Method audiology glass  l e t t e r  soybean vowel 
PWC1 
PWC2 
PWC3 
PWC4 
PWC5 
PWC6 

22.64=t=4.2 30.75=t=4.6 9.644-0.4 7.56-t-1.5 23.09+2.2 
25.334-4.3 31.714-4.8 9.394-0.4 7.164-1.4 22.734-2.4 
23.424-4.1 31.69::E4.6 9.394-0.4 7.244-1.4 22.734-2.4 
22.515=4.2 31.574-4.4 9.314-0.4 7.68:t=1.5 22.344-2.4 
25.314-4.3 31.884-4.9 9.484-0.4 7.30=t=1.5 23.044-2.2 
23.044-4.3 31.624-4.5 9.824-0.4 8.044-1.4 22.795=2.3 

The major outcome of Fig. 4 is that the results are quite regular, with none 
of the proposed reconstruction schemes performing significantly better than the 
others. This means that although the methods differ in behavior at a local level, 
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they perform similarly globally, and thus there is no reason to give preference to 
any of them. 

4 I m p r o v e m e n t  o f  t h e  P W C  D e c o m p o s i t i o n  S c h e m e  

A closer analysis of the PWC decomposition scheme reveMs an important prob- 
lem, which is related to the nonsense introduced by the values of pij when the 
item under consideration belongs neither to class wi nor to class wj. Indeed, 
by (1), Pij assumes that  x is in class w~ or in class wj, but for a given item ~, the 
estimation of the Pi'S takes into account the outputs of all the pairwise classifiers, 
either significant or not. 

For example, consider again the 3-class problem (5) in Section 3. If ~ belongs 
to class wl, P23 is absolutely irrelevant because the respective classifier has not 
been trained with data  from class wl. Consequently, using it to find/~ is very 
likely to deteriorate the result of the calculation. If ~ does not belong to class wl, 
the high coefficient P23 = 0.9 is a strong indicator that  ~ belongs to class w2, 
which will be selected by method PWC2. The problem is that  the actual class 
of the item is obviously unknown a priori (this is precisely what we aim a t  
determining) and thus the meaningful classifiers cannot be selected. 

4.1 C o r r e c t i n g  Classif iers  

A procedure to overcome the referred problem is proposed here, which consists 
of, for each pairwise classifier separating class i from class j and with output  
pij, training an additional classifier separating classes i and j from all the other 
classes, producing output qij. The decomposition matrix notation is used in 
Fig. 5 to illustrate the case of four classes. The qij's provide an estimate that  
item x belongs to class i or class j ,  and it can be included in (3), which becomes: 

2 ~ P~i ' q~J • 
15i- K ( K - 1 )  j;ti 

The use of the correcting classifiers should cause the irrelevant/~ij's to loose 
significance and Mlow the quality of the estimation of the 15i's to be improved. 
This scheme is labeled PWC-CC. 

In the correcting scheme proposed, each value qij is in fact an estimate of 
pi + Pj, which suggests a different approach for its calculation. In the OPC 
scheme referred in Sect. 1, the classifier of each subproblem provides directly an 
estimate/~i. So, OPC can be used to perform the PWC correction task, by using 
the provided values of~i, that  will be referred to as qi, for all i = 1,..., K,  to find 
the qij 's. The great advantage of this combination is that  the total number of 
classifiers is ½K(K+I) ,  which is lower than I f ( K - l )  in PWC-CC, when K > 3. 
The label for the combination with OPC as correcting scheme is PWC-OPC. 

Experiments were made to compare the performance of the corrected schemes 
with the standard ones. The same algorithm (C4.5), the same databases, and the 
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t l 00] (11tl +1 0 --1 0 +1 --1 +1 --1 
+1 0 0 --1 +1 --1 --1 +1 

0 +1 --1 0 - 1  +1 +1 --1 
0 +i 0 -i -I +I -I +I 
0 0 +1 -1  - 1  - 1  +1 +1 

(a) Regular PWC matrix (b) Additional classifiers 

Fig. 5. Decomposition matrices for the PWC-CC corrected scheme. (a) contains the 
standard PWC subproblems; the matrix in (b) corresponds to the correcting classifiers. 

same statistical test used in the experiments reported in Fig. 4 were used here. 
The s tandard PWC reconstruction scheme used is PWC2. Figure 6 contains 
the results; the performance obtained by C4.5 applied regularly as a multiclass 
algorithm is included for comparison. 
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Fig. 6. Comparison between standard and corrected PWC. Numerical values are 
presented in Table 2. Bars connected by the same light-coloured horizontal strip rep- 
resent values that do not differ significantly (0.95). 

Two impor tan t  conclusions may be drawn from the experiments: 1) The  
correcting classifiers in PWC-CC introduce a significant correcting effect and 
improve the performance of PWC2 remarkably. 2) The performance of the PWC-  



168 

OPC combination is worse than that  of PWC-CC. For most of the databases, it 
even performs worse than PWC2. 

4.2 An a ly s i s  o f  t h e  C o r r e c t i n g  S c h e m e s  P r o p o s e d  

In order to investigate the cause of such a substantial difference between the 
performances of PWC-CC and PWC-OPC, experiments were made to compare 
the correcting component of each of the two combinations. Indeed, the set of 
additional classifiers used in PWC-CC can be used as a decomposition scheme 
by itself, as depicted in Fig. 5 (b), since it respects the constraint defined in 
Sect. 2. Its label is CC, by derivation. Given that  the output  of each classifier fz 
is in [0, 1] and that  the decomposition matr ix  D is defined as in Fig. 5 (b) with 
values in { -1 ,  +1}, the reconstruction in CC is made by: 

arg mkax ~ - ~ ( 2 . f ,  - 1)D,k . 
! 

OPC is, as known, a decomposition scheme also. Figure 7 contains the results of 
the comparison; the performance of PWC2, PWC-CC, and C4.5 multiclass are 
included for reference. The same procedure was followed as in the experiments 
described previously. 

Audiology Glass Letter 
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Fig. 7. Comparison between the CC and the OPC correcting schemes when used as 
decomposition schemes. Numerical values are presented in Table 2. Bars connected by 
the same hght-coloured horizontal strip represent values that do not differ significantly 
(0.95). 

From Fig. 7, it arises that  the scheme CC has by itself a level of accuracy 
comparable to the combination PWC-CC, while OPC has a very poor perform- 
ance. A logical explanation for this difference between the two schemes is their 
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Table  2. Comparison between the various decomposition schemes discussed in this 
paper. The values represent the average percentage of misclassification on the test set 
(and respective standard deviations). 

Method audio logy  g l a s s  l e t t e r  soybean vowel 
18.93=1=018 C4.5 

PWC2 
PWC-CC 
PWC-OPC 
CC 
OPC 

29.355=1.9 24.72=t=1.6 12.904-0.2 18.84-4-0.8 
25.11-I-4.1 31.69-1-4.8 9.31+0.4 7.15=t=1.4 22.685=2.4 
9.59=t=3.1 27.895=4.8 5.495=0.3 6.855=1.4 12.005=1.9 

20.265=4.1 31.555=5.3 12.975=0.4 9.625=1.9 24.835=2.4 
10.625=2.6 28.875=4.4 5.545=0.3 7.405=1.4 11.245=1.9 
23.06-t-3.5 33.805=5.5 15.045=0.4 11.265=2.0 27.495=2.4 

class separability. The class separability A of a decomposition scheme is defined 
as the minimal  distance de1 between every pair of columns (classes) in its decom- 
position matr ix,  and it has a major  influence on the error recovering capabili ty 
of the scheme. The distance measure dcl between classes is defined as: 

dcl(i , j)  = l{l : Du " Dij = - l } l .  

For CC, A = 2 ( K - 2 ) ,  while A = 1 in OPC. Considering that  the reconstruction 
method adopted in OPC is the selection of the class associated with the classifier 
with the highest output ,  then, a single defective answer of any of the classifiers 
is likely to produce a misclassification. The reconstruction in CC allows, on the 
contrary, to recover from errors in the classifiers. In general, the error correcting 
capabili ty of a decomposition scheme, when using a rough reconstruction, is at 
least 

As A = 2 ( K - 2 ) ,  CC allows the correction of at least K - 3  errors. 
The reasoning exposed above is not sufficient to explain the bet ter  perform- 

ance of PWC-CC against PWC-OPC,  because the correcting classifiers are not 
used directly in the reconstruction as normal classifiers, and thus they do not 
raise the class separability. The required explanation is, however, closely related 
to the one used to justify the difference between the correcting schemes alone 
and it also has to do with error-recovering capability. When OPC is used as 
correcting scheme, each output  qi will be used in the est imation of K -  1 of the 
1 K ( K - 1 )  values of qo" So, when one of the correcting classifiers makes a mis- 2 
take, it will be propagated along part  of the correcting scheme and subvert the 
global combination. In CC, each qo value is calculated by a single, different cor- 
recting classifier, which makes the global combination more tolerable to errors 
f rom the classifiers and thus more robust. 

It  can be concluded from Fig. 7 that  the CC scheme may  be preferred to 
s tandard PWC, with the disadvantage of having to train each classifier with 
all the data.  This has the virtue, however, of eliminating the problem of the 
incompetent  classifiers. Another interesting result is that  CC is able to at ta in 
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by itself the same level of performance as the combination PWC-CC in which 
it takes part. This result is in accordance with the theory behind the ECOC 
method, where the redundancy associated with a good class separation allows 
the reconstruction to be more robust, due to its error-correcting ability. 

5 Conclusions 

Decomposition by pairwise coupling is one of the existing techniques allowing 
a classification problem with several classes to be solved by a set of binary 
classifiers. It has been so far used in different applications, despite the fact that  
it suffers from the problem of using irrelevant information. Tha t  problem has 
been addressed here, and the proposed correcting procedure has been shown to 
be able to avoid the use of such information and to improve the performance of 
the decomposition scheme. Although that  improvement is achieved at the cost of 
having twice as many subproblems as in standard PWC, with the additional fact 
that  in the case of the correcting classifiers the whole training data  is used to 
train each of them, it is also true that  this task can be easily distributed, where 
in an ultimate solution all the classifiers can be trained and used in parallel. 

As a side result, CC has been found to be a good decomposition scheme by 
itself. It is not affected by the problem of the incompetent classifiers and it can 
be favorably used as a replacement to standard PWC. The disadvantage is that  
all the data  is used for the training of each classifier, which is negative from a 
point of view of training time. 

Finally, it has been shown that  the technique of decomposing by one-per-class 
has poor accuracy due to its high sensitivity to classifier performance. 
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