
Boost ing Trees for Cost-Sensit ive Classifications

Kai Ming Ting 1 and Zijian Zheng 2

1 Department of Computer Science, University of Waikato, Hamilton, New Zealand.
2 School of Computing and Mathematics, Deakin University, Vic 3217, Australia.

Abst rac t . This paper explores two boosting techniques for cost-sensitive
tree classifications in the situation where misclassification costs change
very often. Ideally, one would like to have only one induction, and use
the induced model for different misclassification costs. Thus, it demands
robustness of the induced model against cost changes. Combining mul-
tiple trees gives robust predictions against this change. We demonstrate
that the two boosting techniques are a good solution in different aspects
under this situation.

1 I n t r o d u c t i o n

Most research on classifier learning has focused on minimum error classification.
It aims to minimize the number of incorrect predictions or classifications made
by classifiers. This kind of learning method ignores the differences between dif-
ferent types of incorrect prediction. It is very common in real world applications
that different types of incorrect prediction cost differently. The cost of incorrect
predictions is more important than the number of incorrect predictions in many
real world domains such as in medical and financial areas. For example, in med-
ical diagnosis, diagnosing someone as healthy when one has a life-threatening
disease is usually considered to be more serious (thus higher cost) than another
type of e r ror - -of diagnosing someone as ill when one is in fact healthy. Never-
theless, very little attention has been paid to cost-sensitive classification where
the objective is to minimize the total cost of incorrect predictions or the number
of high cost errors.

Moreover, in some cost-sensitive classification situations, misclassification
costs may change very often. For example, in bank loan decision making, man-
agers in different branches may assign different costs to the same type of incorrect
decision. In addition, the costs may change from time to time even within the
same branch. To the best knowledge of the authors, this situation has not been
investigated. In this paper, we explore cost-sensitive classification techniques to
handle this type of situation, and focus on decision tree learning in this study.

The most straightforward and simple approach to this problem is to alter the
prediction selection process during classification, without modifying the classifier
learning process. This can be done for a decision tree learning algorithm, such
as C4.5 (Quinlan, 1993), in the following fashion. During the classification stage,
an example to be classified is assigned the class with the minimum expected
misctassification cost (Michie, Spiegelhalter, & Taylor, 1994) at the leaf to which
the example is traced down, rather than the class with the maximum weight.

191

Because no modification to the tree induction process is required, the same tree
can be re-used when the misclassification costs change. C4.5c is the variant of
C4.5 modified in this manner and it is used as the base line of this research.

Intuitively, combining multiple models shall give more robust predictions
than a single model under the situation where misclassification costs change
very often. Boosting has been shown to be an effective method of combining
multiple models in order to enhance the predictive accuracy of a single model
(Quinlan, 1996; Schapire, Freund, Bartlett , & Lee, 1997). Thus, it is natural to
think that boosting might also reduce the misctassification costs of C4.5c. In this
paper, we explore two techniques of boosting C4.5c. The first technique is ordi-
nary boosting combined with the minimum expected cost criterion. The second
technique is a variant of ordinary boosting which utilizes the misclassification
cost information during the induction of decision trees. We call the first method
Boosting, and the second Cost-Boosting. We conduct empirical evaluation to
assess the performance of Boosting and Cost-Boosting under the situation.

The next section describes the procedures used in Boosting and Cost-Boosting.
Section 3 reports experiments with C4.5c, Boosting, and Cost-Boosting. We sum-
marize our findings in the final section.

2 Boosting and Cost-Boosting

Here, Boosting is implemented by maintaining a weight for each training exam-
ple (Quinlan, 1996) rather than drawing a succession of independent bootstrap
samples from the original examples. Boosting induces multiple individual clas-
sifiers in sequential trials. At the end of each trial, the vector of weights is
adjusted to reflect its importance for the next induction trial. This adjustment
effectively increases the weights of misclassified examples. These weights cause
the learner to concentrate on different instances in each trial and so lead to
different classifiers. Finally, the individual trees are combined through voting to
form a composite classifier. The Boosting procedure is shown as follows. Note
that the weight adjustment formula in step (iii) below are from a new version of
boosting (Schapire, Freund, Bartlett , & Lee, 1997).

Boosting p r o c e d u r e : Given a training set iT containing N examples, wk(n)
denotes the weight of the nth example at the kth trial, where wl(n) = 1/N
for every n. In each trial k = 1 , . . . , K, the following steps are carried out.

(i) A decision tree Tk is constructed by using C4.5 from the training set
under the weight distribution wk.

(ii) 7- is classified using the decision tree Tk. Let d(n) = 1 if the n th example
in iT is classified incorrectly; d(n) = 0 otherwise. The error rate of this
tree, ek, is defined as

ek = ~ wk(n)d(n). (1)
n

If ek >_ 0.5 or ek = 0, then all wk(n) is set equal and perturbed with
uniform noise and re-normalized, and carry on the process from step (i).

192

(iii) The weight vector w(k+l) for the next trial is created from wk as follows:

w(k+l) (n) = wk(n) exp(--C~k(--1)d(~)), (2)
Z k

where the normalizing term zk and ~k are defined as

zk ---- 2x/(i - ek)e~, ak = ½ln((1 - ~) / ~) . (3)

After K trials, the decision trees T1,...,TK are combined to form a
single composite classifier. Given an example, the final classification of the
composite classifier relies on the votes of all the individual trees. The vote of
the tree Tk is worth ak units. Since we use the expected misclassification cost
to select the predicted class, the voting is not simply summing up the vote
of every individual tree. Instead, the following computation is performed.

Let tk(x) be the leaf of the tree Tk where the example x falls into, and
Wi(tk (x)) be the total weight of class i examples in tk(x). The expected mis-
classification cost for class j with respect to the example x and the composite
classifier consisting of trees T1 , . . . , TK is given by:

I K

EcAx) (4)
i k

where cost(i,j) is the misclassification cost of classifying a class i
example as class j; and I is the total number of classes.

To classify a new example x, ECj (x) is computed for every class. The ex-
ample x is assigned to class j with the smallest value for ECj(x). That is,
ECj(x) < ECj,(x) for a l l j ' # j .

From the description above, it can be seen that Boosting only utilizes the
misclassification cost information during classification through Equation (4). Its
classifier induction process does not employ the cost information. This allows a
single Boosting induction to be used for different misclassification costs.

One can modify the Boosting procedure so that the weights of misclassified
examples are updated according to the costs associated with these misclassifica-
tions. Thus, each subsequent tree is cost-sensitive. Based on this idea, Boosting
is modified to create a variant: Cos t -Boos t i ng . Cost-Boosting uses the same
procedure as Boosting except the weight adjustment process in step (iii). We
assume a unity condition cost(i,j) >_ 1,Vi ~ j (see details in the next section);
and the weight adjustment is re-defined as follows.

t n w(k+l)() (5)
w(k+l)(n) = ~ w~k+l) (n)'

, ~ cost(actual(n), predicted(n)), if actual(n) y£ predicted(n);
w(k+l) (n) = t Nwk (n), otherwise. (6)

Because all trees (except the first one) are cost-sensitive, Cost-Boosting needs
to perform induction every time the misclassification costs change.

193

During the classification stage, Cost-Boosting also uses Equation (4) for se-
lecting the class with the minimum expected cost except tha t each individual
tree in Cost-Boosting is worth 1 unit for voting, that is, c~k = 1.

As Boosting and Cost-Boosting, the base line algorithm C4.5c also employs
the same formulae for selecting the class, in which K = 1 and (~k = 1.

Note that the first tree in both Boosting and Cost-Boosting is exact ly the
same as tha t produced by C4.5c.

3 E x p e r i m e n t s

In this section, we empirically evaluate Boosting and Cost-Boosting by compar-
ing with C4.5c. Twenty natural domains from the UCI machine learning reposi-
tory (Merz & Murphy, 1997) are used in the experiments. This test suite covers
a wide variety of different domains with respect to dataset size, the number of
classes, the number of attributes, and types of attributes.

The misclassification cost information is provided in the form of a cost mat r ix
of size I x I , where I is the number of classes in a domain. The off-diagonal entries
contain the costs of misclassifications, while the entries on the diagonal contain
the cost of correct classifications which are equal to zero.

Since no datasets from real-world domains where misclassification costs of-
ten change are available to us, we simulate this type of situation by artificially
generating cost matrices. A cost matr ix for each domain is randomly generated
for each experimental run. In each matrix, the costs in the off-diagonal entries
are any randomly generated integer between 1 and 10. In two-class domains,
one of the two off-diagonal entries must be 1 and the other more than 1. In
multi-class domains, at least one of the entries is 1. The only reason using this
unity condition is to allow us to measure the number of high cost errors.

One 10-fold cross-validation is carried out in each domain, except in the
Waveform domain where 10 pairs of training set of size 300 and test set of size
5000 are randomly generated. In each fold, we conduct 10 runs on the same
training and test sets using 10 randomly generated cost matrices to simulate
the cost changing situation. In each run, the same cost matr ix is employed in
training and testing. All reported results are averaged over 100 runs.

We use two measures to evaluate the performance of the algorithms employed
for cost-sensitive classification. The first measure is the total cost of misclassifica-
tions made by a classifier on a test set (i.e., ~ m cost(actual(m), predicted(m))).
The second measure is the number of high cost errors. It is the number of mis-
classifications associated with costs higher than t made by a classifier on a test
set. Note tha t the lowest misclassification cost is 1 in a normalized cost matr ix.
A good cost-sensitive classifier should have low total misclassification cost, or
small number of high cost errors, or both.

The parameter K controlling the number of classifiers generated in both
Boosting and Cost-Boosting is set at 10 for the experiments. It is interesting
to see the performance improvement that can be gained by a single order of
magnitude increase in computation. All C4.5c parameters have their default
values, and only pruned trees are used.

194

Table 1. Comparison of C4.5c, Boosting and Cost-Boosting
Datasets

Echocardiogram
Hepatitis
Heart
Horse
Credit
Breast-W
Diabetes
Hypothyroid
Euthyroid
Coding
iLymphography

C4.5c Boosting
vs C4.5c

cost #i~ce cost #hce
ratio ratio

Cost-Boosting
vs C4.5c

Glass
Waveform
Soybean
Annealing
Vowel
Splice
Abalone
Nettalk(s)
Satellite

Mean

7.9 0.82
7.5 0.93

19.6 2.67
17.0 1.62
24.5 2.88
12.8 1.85
39.0 3.75

8.4 1.20
21.2 3.O0

1277.9 139.68
14.9 2.52

.82 .16

.71 .13

.64 .13
1.08 .04
1.15 .26

.66 .21

.92 .22
1.42 .47
1.26 .42

.7O .O7

.95 1.17

.67 .82

.61 .72

.90 .99

.86 .97

.56 .73
1.05 1.19

.81 .92

.79 .93

.67 .85

cost #hce
ratio ratio

38.1 6.41
7330.9 1189.75

29.6 5.21
30.0 5.52

103.8 17.27
96.7 15.38

691.8 118.70
475.7 82.42
466.9 77.84

.81 .32

.68 .42

.62 .31

.93 .74

.81 .59

.51 .36

.84 .43

.90 .78

.89 .73

.67 .13

.89 1.10

.69 .84:

.60 .70

.72 .89

.82 .98

.6O .81

.83 .94

.77 .87

.75 .87

.64 .79

Cost-Boosting
vs Boosting
cost ~hce

ratio ratio
.99 2.00
.96 3.25
.97 2.40
.86 20.00
.70 2.25
.78 1.76
.92 t .98
.63 1.65
.70 1.74
.95 1.91
.94 .94

1.03 1.03
.99 .98
.80 .90
.95 1.01

1.07 1.10
.79 .79
.95 .94
.95 .95
.96 .93
.89 2.43 .86 .57 .75 .68

Table 1 shows the misclassification costs and the number of high cost errors
of C4.5c, and the ratios for the pair-wise comparison among C4.5c, Boosting,
and Cost-Boosting are presented in the last three columns. A ratio of less than 1
for Boosting vs C4.5c, for example, represents an improvement due to Boosting.
The mean ratios over 20 domains are shown in the last row.

Boosting reduces the misclassification costs of C4.5c in 15 out of the 20 do-
mains, and increases the misclassification costs of C4.5c in the other 5 domains.
On average, Boosting achieves 14% reduction over C4.5c in terms of the mis-
classification costs. Cost-Boosting further reduces the misclassification costs of
C4.5c. Cost-Boosting obtains lower costs than C4.5c in all 20 domains. The av-
erage reduction is 25%. Compared with Boosting, Cost-Boosting has lower costs
in 18 domains, and higher costs in only 2 domains. On average, Cost-Boosting
achieves 11% lower misclassification costs than Boosting. These results clearly
show the advantage of Boosting over C4.5c, and the advantage of Cost-Boosting
over both C4.5c and Boosting in terms of misclassification costs.

In terms of the number of high cost errors, Boosting improves C4.5c dramat-
ically. It achieves 43% reduction over C4.5c on average. In comparison to C4.5c,
Cost-Boosting achieves the average reduction of 32%. Comparing Cost-Boosting
directly to Boosting, the former has the number of high cost errors 2.43 times
larger than the latter. Note that one single domain, Horse, makes a significant

195

contribution to this increase. In this domain, Boosting has 0.06 high cost errors,
while Cost-Boosting has 1.20 high cost errors. This gives a ratio of 20.00 for
Cost-Boosting vs Boosting.

Due to lack of space, results of investigations on some related issues, such as
the effect of K, are not reported here. They can be found in the full report (Ting
& Zheng (1998) at [http://www.cs.waikato.ac.nz/cs/Pub/Staff/kaiming.html]).

4 Summary
This paper has explored two techniques for dealing with cost-sensitive decision
tree classification in the situation where misclassification costs change very of-
ten. One is Boosting--the ordinary boosting with the minimum expected cost
criterion. It makes use of the cost information during classification stage by using
the minimum expected cost criterion to select the predicted class.

Another technique is Cost-Boosting, a variant of Boosting, designed specifi-
cally for cost-sensitive classification in this paper. This technique takes the ad-
vantage of the available misclassification cost information during training, which
makes the boosting procedure more sensitive to the cost of misclassification.
However, this advantage comes at a price of extra computation--Cost-Boosting
needs to create new classifiers every time misclassification costs change.

Experimental results show that both Boosting and Cost-Boosting can signif-
icantly reduce the misclassification cost and the number of high cost errors of a
single decision tree under the frequent cost change situation--combining multi-
ple trees in Boosting and Cost-Boosting gives more robust predictions against
cost changes. In terms of misclassification cost, Cost-Boosting is a better choice
than Boosting. When the aim is to minimize the number of high cost errors, we
strongly recommend to use Boosting.

R e f e r e n c e s

Merz, C.J. & P.M. Murphy (1997), UCI Repository of machine learning databases
[http://www.ics.uci.edu/-mlearn/MLRepository.html]. Irvine, CA: Univer-
sity of California, Department of Information and Computer Science.

Michie, D., D.J. Spiegelhalter, & C.C. Taylor (1994), Machine Learning, Neural
and Statistical Classification, Ellis Horwood Limited.

Pazzani, M., C. Merz, P. Murphy, K. Ali, T. Hume, & C. Brunk (1994), Re-
ducing misclassification costs, in Proceedings of the Eleventh International
Conference on Machine Learning, pp. 217-225, Morgan Kaufmann.

Quinlan, J.R. (1993), C~.5: Program for machine learning, Morgan Kaufmann.
Quinlan, J.R. (1996), Bagging, boosting, and C4.5, in Proceedings of the 13th

National Conference on Artificial Intelligence, pp. 725-730, AAAI Press.
Schapire, R.E., Y. Freund, P. Bartlett, & W.S. Lee (1997), Boosting the margin:

A new explanation for the effectiveness of voting methods, in Proceedings of
the Fourteenth International Conference on Machine Learning, pp. 322-330.

Ting, K.M. & Z. Zheng (1998), Boosting Trees for Cost-Sensitive Classifications,
Working Paper 1/98, Dept. of Computer Science, University of Waikato.

