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Abstract.  The naive Bayesian classifier provides a very simple yet sur- 
prisingly accurate technique for machine learning. Some researchers have 
examined extensions to the naive Bayesian classifier that seek to further 
improve the accuracy. For example, a naive Bayesian tree approach gen- 
erates a decision tree with one naive Bayesian classifier at each leaf. 
Another example is a constructive Bayesian classifier that eliminates 
attributes and constructs new attributes using Cartesian products of ex- 
isting attributes. This paper proposes a simple, but effective approach 
for the same purpose. It generates a naive Bayesian classifier committee 
for a given classification task. Each member of the committee is a naive 
Bayesian classifier based on a subset of all the attributes available for 
the task. During the classification stage, the committee members vote 
to predict classes. Experiments across a wide variety of natural domains 
show that this method significantly increases the prediction accuracy of 
the naive Bayesian classifier on average. It performs better than the two 
approaches mentioned above in terms of higher prediction accuracy. 

1 Introduct ion 

Naive Bayesian classifier learning is based on Bayes' theorem and an attribute 
independence assumption (Duda and Hart 1973; Kononenko 1990; Langley and 
Sage 1994). Given training examples described using a vector of attribute val- 
ues together with a known class for each example, the naive Bayesian classifier 
predicts the class of a new example V = < vl, v2 , . " ,  vn > as the one with the 
highest probability of Ci given V: 

p(C~IV ) = P(Ci) Hj  P(vjlC~) 
P(V) (1) 

This learning technique is simple and fast. It has been shown that in many 
domains the prediction accuracy of the naive Bayesian classifier compares sur- 
prisingly well with that of other more complex learning algorithms such as deci- 
sion tree learning, rule learning, and instance-based learning algorithms (Cest- 
nik, Kononenko, and Bratko 1987; Langley, Iba, and Thompson 1992; Domingos 
and Pazzani 1996). In addition, naive Bayesian classifier learning is robust to 
noise and irrelevant attributes. Some experts report that the learned theories 
are easy to understand (Kononenko 1993). However, when the strong attribute 
independence assumption is violated, which is very common, the performance of 
the naive Bayesian classifier can be poor. 
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A few techniques have been developed to improve the performance of the 
naive Bayesian classifier. Two examples are the constructive Bayesian classifier 
(BsEJ) (Pazzani 1996), and the naive Bayesian tree (NBTREE) approach (Ko- 
havi 1996). It has been shown that it is possible to improve the naive Bayesian 
classifier, although Domingos and Pazzani (1996) argue that the naive Bayesian 
classifier is still in fact optimal when the independence assumption is violated 
so long as the ranks of the conditional probabilities of classes given an example 
are correct. The extent to which the above approaches improve upon the perfor- 
mance of the naive Bayesian classifier suggests that these ranks are in practice 
incorrect in a substantial number of cases. 

Most existing techniques for improving the performance of the naive Bayesian 
classifier require complex induction processes. For example, NBTREE adopts a 
hybrid model of decision trees and naive Bayesian classifiers. Each leaf of such a 
tree contains a naive Bayesian classifier. BSEJ employs a wrapper model (John, 
Kohavi, and Pfleger 1994) with the leave-l-out cross-validation estimation to 
find the best Cartesian product attributes from existing nominal attributes for 
the naive Bayesian classifier (Pazzani 1996). It also considers deleting existing 
attributes. This paper proposes a simple method to improve naive Bayesian 
classifier learning. It is called the naive Bayesian classifier committee (NBC). 

The idea of NBC is inspired by recent promising theoretical and empirical 
research results in boosting (Freund and Schapire 1996a, 1996b; Quinlan 1996; 
Schapire, Freund, Bartlett, and Lee 1997). Boosting induces multiple individual 
classifiers in sequential trials. At the end of each trial, instance weights are ad- 
justed to reflect the importance of each training example for the next induction 
trial. The objective of the adjustment is to increase the weights of misclassified 
training examples. Change of instance weights causes the learner to concentrate 
on different training examples in different trials, a thus resulting in different clas- 
sifters. Finally, the individual classifiers are combined through voting to form 
a composite classifier. Quinlan (1996) shows that boosting can significantly in- 
crease the prediction accuracy of decision tree learning. 

We implemented a boosting algorithm for naive Bayesian classifier using a 
similar method to that for boosting decision trees (Quinlan 1996). Although the 
algorithm achieves higher accuracy than the naive Bayesian classifier in some 
domains, the overall accuracy improvement over the naive Bayesian classifier in a 
large set of natural domains is very marginal. The reason might be that boosting 
implicitly requires the instability of the boosted learning systems (Quinlan 1996). 
Naive Bayesian classifier learning is more stable than decision tree learning. A 
small change to the training set will have little impact on a naive Bayesian 
classifier. On the other hand, naive Bayesian classifier learning is not stable in 
the sense that a small change to the attribute set could lead to very different 
classifiers. Moreover, due to the attribute independence assumption, a naive 
Bayesian classifier built on an attribute subset might perform better than a 

1 This can be implemented by either changing the weights of training examples directly 
if the learner can handle it, or drawing a succession of independent bootstrap samples 
from the original training set. 
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naive Bayesian classifier created using all attributes (Langley and Sage 1994). 
Therefore, generating naive Bayesian classifier committees could be an approach 
to improving the performance of the naive Bayesian classifier. In the committee, 
each member is a naive Bayesian classifier built using a subset of attributes. The 
final class prediction is made through committee voting. 

2 The NBC Algorithm 

Table I details the naive Bayesian classifier committee learning algorithm, NBC. 
The idea is to generate a set of naive Bayesian classifiers in sequential trials to 
form a committee. Each naive Bayesian classifier is based on a different subset of 
attributes. All committee members make the final decision through voting when 
classifying examples. The estimated performance of a naive Bayesian classifier 
is used to guide the formation of the attribute subset for creating the naive 
Bayesian classifier in the following trial. 

Leave-l-out cross-validation is used to estimate the error rates of naive 
Bayesian classifiers, since the leave-l-out cross-validation error rate is a bet- 
ter estimate than the resubstitution error rate (Breiman, Friedman, Olshen, and 
Stone 1984). In addition, for a naive Bayesian classifier, the operations of re- 
moving and adding an example are very easy and efficient. At the beginning, 
NBC builds a naive Bayesian classifier (called NBbase) using all attributes. Its 
leave-l-out cross-validation error rate is used as the reference for performance 
comparison when generating the committee. 

To decide how to choose a subset of attributes for building a naive Bayesian 
classifier in a trial, NBC maintains a probability vector P with one element 
for each attribute. Each trial starts from sampling an attribute subset from the 
set of all attributes using P.  The attribute a has the probability P[a] of being 
selected. Given a learning task, we usually do not know which attributes can 
be used to built a good naive Bayesian classifier. NBC just initialises each P[a] 
with 0.5. The idea is to let each attribute has 50% probability of being chosen 
at the beginning. Therefore, the subset contains about a half of all attributes. 

After the attribute subset is created, NBC does not need to do any calcula- 
tion to build the naive Bayesian classifier using this attribute subset, since all 
necessary probabilities and conditional probabilities are already available from 
the generation of the naive Bayesian classifier based on all attributes. The naive 
Bayesian classifier resulted from each trial only needs to maintain its attribute 
subset. However, to decide whether this naive Bayesian classifier is accepted as 
a committee member, it is evaluated using leave-l-out cross-validation on the 
training set. If its error rate e~ is lower than the error rate of NBbase, eNB~ .... 
it is accepted. Otherwise, it is discarded. 

At the end of each trial, P[a] for each attribute in the subset of the current 
trial t is modified by multiplying the value 1 / ~  which is defined in Equation 2. 
Note that/3t < 1, if et < eNB~,,; and/~t > 1, if et > ENBb.o~. The objective of this 
modification is that the probabilities that the attributes used in this trial will be 
selected in the next trial should be increased, if the naive Bayesian classifier built 
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Table  1. The naive Bayesian classifier committee learning algorithm 

N B C (  Att ,  D t r ~ 9 ,  T)  
I N P U ~  Art: a set of attributes, 

Dt~i~i,~g: a set of training examples described 
using Art and classes, 

T: the number of trials for generating the committee 
with the number of attributes, N, as its default value. 

OUTPUT. a naive Bayesian committee. 

Build a naive Bayesian classifier using Art and Dt,~i~i~g, called NBb~,~ 
eNBb,,~ = Leave-l-out-Evaluation(NBba,~, D t ~ i ~ g )  
Add NBbase into Commi t t ee  as the first member which uses all attributes, 

that is, NBo = NBb~,~ 
M a x T  = 10 x T 
Initiatise P[a] = 0.5 for each attribute a in Art 
l = 1  
t = l  
WHILE 
{ 

(t < =  T and I < =  M a x T )  
Att~ubset = Sample attributes from Art based on P 
NBtemp = Build a naive Bayesian classifier using Att~bset  
et =Leave- l-out-Evaluation( N Btemp, Dtr~i~ing ) 
a t  = (•t - -  f N B b a m e  "~- 1)/2 
~t = a t / ( 1  - a t )  
FOR each attribute a in Att,ub~et 

Pta] = P[al/~, 
N Normalise P such that ~'~,=1 P[a] = 0.5N 

I f ( Z t  < 1) 
{ N B t  = NBte,,~v 

t = t + l  
} 
1 = I + 1  

} 
T = t - 1  
R E T U R N  the naive Bayesian committee containing N Bt,  t = O, 1 , . . . ,  T 

in this trial performs bet ter  than NBbase.  They should be decreased otherwise. 
After the modification, the probabilities of all a t t r ibutes  are normalised such 
tha t  their sum is equal to 0.5 times the number  of all a t t r ibutes.  This makes the 
a t t r ibute  subset in the following trial also contain about  a half  of all a t t r ibutes .  

= at~(1 - at ) ,  where a t  = (et - eNSb, , ,  + 1)/2 (2) 

NBC generates T naive Bayesian classifiers using different a t t r ibute  subsets 
and put  them into the committee.  T is equal to the number  of all a t t r ibutes  
by default. To make NBC efficient in practice, NBC is set to carry out at  most  
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10 x T trials, even if too many naive Bayesian classifiers which have higher error 
rates than NBbase are created. In this situation, the committee may contain 
less than T naive Bayesian classifiers. To avoid the extreme situation where 
no naive Bayesian classifier better than NBbase is created in any trial, NBC 
includes NBbase in the committee. Therefore, the committee always has at least 
one member at the end. It usually contains T + 1 naive Bayesian classifiers. 

To classify a new example, each naive Bayesian classifier in the committee is 
invoked to produce the probability that this example belongs to each possible 
class. For each class, the probabilities provided by all committee members are 
summed up. The class with the largest summed probability wins the vote, and 
is used as the predicted class for this example. Ties are broken randomly. 

3 Experiments 

In this section, we use experiments in natural domains to study the performance 
of the naive Bayesian classifier committee learning algorithm by comparing with 
a naive Bayesian classifier learning algorithm, NB. Note that classifiers generated 
by NB are identical to the naive Bayesian classifiers created on all attributes in 
NBC. The performance measure used here is the error rate on the test set (unseen 
cases). In addition, the computational requirement of NBC is addressed. 

3.1 Experimental Domains and Methods 

Twenty=nine natural domains are used in the experiments. They include all the 
domains used by Domingos and Pazzani (1996) for studying the naive Bayesian 
classifier. These twenty-nine domains cover a wide variety of different domains 
and all are available from the UCI machine learning repository (Merz and Mur- 
phy 1097). 

In each domain, two stratified 10-fold cross-validations (10=CV) (Breiman et 
al. 1984; Kohavi 1995) are performed for each algorithm. A 10=CV is carried out 
by randomly splitting the data set into 10 subsets that have similar size and class 
distribution. For each subset in turn, an algorithm is run using the examples in 
the remaining nine subsets as a training set and tested on the unseen examples in 
the hold-out subset. All the algorithms are run with their default option settings 
on the same training and test set partitions in every domain. An error rate 
reported in this paper is an average of the 20 trials for an algorithm. 

Since the current implementations of the NBC and NB algorithms can only 
deal with nominal attributes, continuous attributes are discretized as a pre- 
process in the experiments. An entropy-based discretization method (Fayyad 
and Irani 1993; Ting 1904) is used. For each pair of training set and test set, the 
test set is discretized by using cut points found from the training set. 

3.2 Experimental Results 

Table 2 shows error rates of NBC and NB. In the column headed "NBC", bold= 
face font indicates that the error rate of NBC is lower than that of NB at a 
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Table  2. Comparison of the error rates (%) of NBC and NB 

Domain NB 
Annealing 2.78 
Audiology 23.19 
Breast (W) 2.65 
Chess (KR-KP) 12.20 
Credit (Aust) 13.98 
Echocaxdiogram 28.95 
Glass 30.91 
Heart (C) 16.82 
Hepatitis 14.19 
Horse colic 20.79 
House votes 84 9.75 
Hypothyroid 1.69 
Iris 6.33 
Labor 9.00 
LED-24 34.25 
Liver disorders 35.08 
Lung cancer 47.08 
Lymphography 16.12 
Pima 25.20 
Postoperative 33.89 
Primary tumor 50.91 
Promoters 9.27 
Solar flare 19.44 
Sonar 23.55 
Soybean 9.16 
Splice junction 4.38 
Tic-Tac-Toe 30.64 
Wine 2.22 
Zoology 5.45 

average 18.62 
Y~ 

significance level 

NBC NBC / NB 
2.73 .98' 

1 7 . 8 9  .77 
2.72 1.03 

6 . 0 7  .50 
13.91 .99 
30.49 1.05 
31.59 1.02 
17.32 1.03 
14.50 1.02 

1 6 . 5 8  .80 
7'.69 .79 
1.50 .89 
5.33 .84 
8.00 .89 

3 0 . 0 0  .88 
34.48 .98 
50.83 1.08 
17.88 1.11 
24.42 .97 
30.55 .90 
52.66 1.03 
8.54 .92 

16.34 .84 
24.55 1.04 

8.65 .94 
3.94 .90 
29.70 .97 

2.22 1.00 
4.00 .73 

17.76 .93 

N B C  - NB 

-0.05 
-5.30 
0.07 

-6.13 
-0.07 
1.54 
0.68 
0.50 
0.31 

-4.21 
-2.06 
-0.19 
-1.00 
-1.00 
-4.25 
-0.60 
3.75 
1.76 

-0.78 
-3.34 
1.75 

-0.73 
-3.10 
1.00 

-0.51 
-0.44 
-0.94 
0.00 

-1.45 
-0.85 

20/1/9 
.0436 

significance level bet ter  than  0.05 using a two-tailed pairwise t- test  (Chatfield 
1978) on the results of the 20 trials in a domain. The  error rate  ratios and dif- 
ferences of NBC and NB are also included in the table. A rat io less than  1.00 or 
a difference less than  0.00 means tha t  NBC has lower error rate  than  NB. The  
line headed "w/ t / l "  shows the "won-tied-lost" record in the 29 domains,  t ha t  
is, the number  of domains in which NBC has lower, the same, and higher error 
ra tes  than  NB. 

From Table 2, the significant advantage of NBC over NB in te rms of lower 
error rate can be clearly seen. On average over the 29 domains, NBC reduces 
the error rate of NB by 7%. The one-tailed pairwise sign test  (Chatfield 1978) 
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on the error rates of NBC and NB in the 29 domains shows that NBC is more 
accurate than NB at a significance level of 0.0436 (see the last line of the table). 
In 8 out of these 29 domains, NBC achieves significantly lower error rates than 
NB. NBC does not obtain any significantly higher error rates than NB in all of 
these domains. If ignoring the differences between NBC and NB that are not 
significant (only considering the significant differences), the one-tailed pairwise 
sign test shows that NBC is significantly more accurate than NB at a level of 
0.0039 in these domains. 

Since the class prediction of NBC relies on the voting of the naive Bayesian 
classifier committee, it is interesting to know the effect of the committee size on 
the performance of NBC. Figure 1 depicts the error rate of NBC as a function of 
T in the Chess (KR-KP) and Splice junction domains, the two largest domains 
in the test suite. For each value of T, the same experimental method described 
above is used except that T uses the given value instead of the default one. The 
error rates of NB, as a reference, are also given in the figure. Since T has nothing 
to do with NB, the error rates of NB are always the same when T changes. 

We can see, from Figure 1, that NBC always has significantly lower error rates 
than NB in the Chess (KR-KP) domain as T changes. NBC has significantly 
lower error rates than NB for most values of T in the Splice junction domain. 
Only when T is equal to 20 (the first point), does NBC has the same error rate 
as NB in this domain. In the Chess (KR-KP) domain, NBC achieves the lowest 
error rate when T is 40. This value is close to the number of attributes of this 
domain, which is 36. In the Splice junction domain, NBC has the lowest error 
rate at the point 180. It is 3 times the number of attributes of this domain, which 
is 60. However, the error rate of NBC for T with the value 60 is not significantly 
higher than this lowest error rate. Therefore, using the number of attributes as 
the default value of T is reasonable, although it might not be optimum in some 
domains. 

3.3 Computational Requirement 

NBC is slower than NB. However, the extra cost of NBC for generating each 
committee member is creating an attribute subset and performing a leave-l-out 
cross-validation evaluation. Therefore, NBC's time complexity is O(m. n. T), 2 
while NB's time complexity is O(m. n), where m is the size of the training set, 
n is the number of attributes. Since T is equal to n by default, NBC's time 
complexity is O(m. n2). Note that n is usually much smaller than m. 

Figure 2 shows the execution time of NBC (including both learning and clas- 
sification stages) as a function of T in the Chess (KR-KP) and Splice junction 
domains. The time is measured using CPU second on a SUN SPARCstation 5. 
The experimental method is exactly the same as that for drawing the learning 
curves above. These two curves indicate that the computational requirement of 
NBC is linear in T. 

2 The time complexity of NBC is O(m. n + T- (n + m. n)) = O(m. n. T). 
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Fig. 1. Effect of T on the performance of NBC 
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Fig. 2. Computational requirement of NBC as a function of T 

Figure 3 depicts the execution time of NBC (including both  learning and 
classification stages) as a function of training set size in the Chess (KR-KP) 
and Splice junction domains. T uses its default value (the number of attributes) 
in this experiment. Each point of a learning curve is an average value over 20 
trials. For each trial, the training set used at every point is a randomly selected 
subset of the training set used in the corresponding trial of the two 10-fold cross- 
validations on the entire dataset of the domain. In each trial, the training set at 
a point is a proper subset of the training set at the next adjacent point. The  test 
set at  every point of a trial is the same as the test set used in the corresponding 
trial of the two 10-fold cross-validations. 

This figure clearly shows that  the computational requirement of NBC is linear 
in training set size, although the time for NBC increases faster than that  for NB 
as the training set size increases. 
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Fig. 3. Computational requirement of NBC as a function of training set size 

4 D i s c u s s i o n  

Since the constructive naive Bayesian classifier BSEJ (Pazzani 1996) and the 
naive Bayesian tree learning algorithm NBTaEE (Kohavi 1996) also intend to 
improve the performance of naive Bayesian classifier learning, it is interesting to 
compare NBC with them. We implemented BSEJ and NBTREE based on Pazzani 
(1996) and Kohavi (1996) respectively. Note that the naive Bayesian classifier NB 
is used in all the implementations of BSEJ, NBTaE~., and NBC. Our experiments 
with these two algorithms using the same experimental method described in the 
previous section show that BSEJ and NBTREE achieve the average error rates 
18.10% and 17.90% respectively in these 29 domains. The one-tailed pairwise 
sign test indicates that neither the error rate reduction of BSEJ nor the error 
rate reduction of NBTREE over NB is significant at the level 0.05, while the 
error rate reduction of NBC over NB is significant. It has been found that both 
BsEJ and NBTREE obtain significantly higher error rates than NB in two out of 
the 29 domains. The average error rates of BSEJ and NBTaEE are 2% and 1% 
higher than that of NBC in the 29 domains respectively. These results suggest 
that  NBC performs better than the constructive naive Bayesian classifier and 
the naive Bayesian tree learning method in terms of lower error rate. 

During the classification stage, for each example to be classified, NBC sums 
up the class distributions produced by all committee members. The class with 
the highest summed probability is used as the predicted class of the example. An 
alternative method is the majority vote. Instead of the class distribution, each 
committee member provides a predicted class for a given example. Then, NBC 
classifies the example as the class with the support from the largest number 
of committee members. With this voting technique, the average error rate of 
NBC over the 29 domains is 17.75%, very close to the error rate of the method 
described in Section 2. 

Another issue is voting weights for classification. NBC does not use weights 
for committee voting. In other words, the vote of each committee member in 
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NBC is worth 1 unit. One might think that weighted voting may further im- 
prove the performance of NBC. Unfortunately, although this issue is worthy of 
further investigation, our preliminary exploration has not found any appropriate 
weighting method that can reduce the error rate of the current NBC on average. 
For example, NBC with log(l/fit) as the weight of the naive Bayesian classifier 
generated in trail t obtains an average error rate of 17.80% in the 29 domains. It 
is slightly higher than the error rate of NBC without voting weights, although 
the difference is not significant. It remains an open question whether an ap- 
propriate weighting method can be designed to significantly reduce the average 
error rate of NBC. 

5 R e l a t e d  W o r k  

From the point of view of improving the performance of naive Bayesian clas- 
sifter learning, the work related to NBC includes the constructive Bayesian 
classifier (BsEJ) (Pazzani 1996) and the naive Bayesian tree (NBTREE) ap- 
proach (Kohavi 1996) mentioned in the introduction section, as well as the semi- 
naive Bayesian classifier (Kononenko 1991) and the attribute deletion technique 
(Langley and Sage 1994). Kononenko's semi-naive Bayesian classifier performs 
exhaustive search to iteratively join pairs of attribute values (Kononenko 1991). 
The aim is to optimise the tradeoff between the "non-naivety" and the reliability 
of estimates of probabilities. Langley and Sage (1994) have shown that attribute 
deletion can improve the performance of the naive Bayesian classifier when at- 
tributes are inter-dependent, especially when some attributes are redundant. 

The investigation of the naive Bayesian classifier committee learning method 
is motivated by recent research on boosting (Freund and Schapire 1996a, 1996b; 
Quinlan 1996; Schapire et aL 1997). Another related approach is bagging 
(Breiman 1996; Quinlan 1996). Bagging builds a set of classifiers with each using 
a separately sampled training set (with replacement) of the same size from the 
original training set. Final classification is also through voting among all of these 
classifiers. Both boosting and bagging generate different classifiers by deriving 
different training sets from the original one, while NBC creates different clas- 
sifters by deriving different attribute subsets. Boosting and bagging have been 
applied on weak learning algorithms with great success, such as decision tree 
learning (Quinlan 1996). No published research has been seen so far on applying 
boosting or classifier committee techniques to naive Bayesian classifier learning. 
No effort has been made to explore approaches to generating, as a composite 
classifier, a set of classifiers using different attribute subsets. 

When generating a naive Bayesian classifier as a committee member, NBC 
chooses an attribute subset based on the probability distribution of all attributes 
that are resulted from the performance of naive Bayesian classifiers created in 
the previous trials. Attribute subset selection has been studied for a while for 
classification learning (e.g. Almuallim and Dietterich (1992), Kira and RendeU 
(1992), John et aL (1994), and Langley (1994)). However, all of these exist- 
ing methods choose an attribute subset to build a single classifier, while NBC 
generates a set of classifiers with each based a different attribute subset. 
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6 Conclus ions  and Future Work 

This paper presented a method of generating naive Bayesian classifier commit- 
tees by building individual naive Bayesian classifiers using different attribute 
subsets in sequential trials. During classification stage, the committees make 
the class prediction through voting. In the current implementation of the NBC 
algorithm, no weights are used for voting. Appropriate weighting techniques 
may further improve the performance of NBC. NBC chooses about a half of at- 
tributes, to create a naive Bayesian classifier, using the probability distribution 
of all attributes, which is built up based on the performance of naive Bayesian 
classifiers generated previously. Other approaches to attribute subset selection 
for this purpose are worth exploring. 

The experimental study in a wide variety of natural domains shows that 
the naive Bayesian classifier committee learning can significantly increase the 
prediction accuracy of naive Bayesian classifier learning on average. It performs 
better, on average, than the naive Bayesian tree learning and the constructive 
naive Bayesian classifier learning in the set of domains under investigation. 
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