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Abstrac t .  In this paper we study batch classification problems where 
multiple predictions are made simultaneously, in contrast to the stan- 
dard independent classification case, where the predictions axe made in- 
dependently one at a time. The main contribution of this paper is to 
demonstrate how the standard EM algorithm for finite mixture models 
can be modified for the batch classification case. In the empirical part of 
the paper, the results obtained by the batch classification approach are 
compared to those obtained by independent predictions. 

1 I n t r o d u c t i o n  

In the standard classification approach, the model used to classify data is first 
constructed by using the available training data, and each classification problem 
is then solved independently with the produced model. In this paper, we extend 
this classification problem by allowing multiple predictions (classifications) to 
be made at the same time. In this batch classification case, all the classification 
problems are given simultaneously, and instead of dealing with a single vector 
to be classified, the task is to find a correct classification for a set of vectors. 

The batch classification problem can be regarded as a missing data problem, 
where the missing data consists of the correct classifications of query vectors, 
the vectors to be classified. Intuitively, one could expect the batch classification 
to produce better results than independent classifications, since in the batch 
case the data available for making predictions consists not only of the original 
training data, but also of the set of all the query vectors. A closer look reveals, 
however, that the amount of missing data has also increased, making the missing 
data estimation problem more difficult. Therefore it is interesting to investigate 
the trade-off between the advantage of using the increased information available 
in the query batch, and the disadvantage of increased complexity in the search 
process. Similar work has been reported in [2], where the unclassified vectors 
were used as background knowledge for a conceptual-clustering algorithm. 

In order to study this problem, we use the probabilistic model family of finite 
mixtures [3, 7], where the problem domain probability distribution is approxi- 
mated as a finite, weighted sum of simple component distributions. The standard 
way to fix a finite mixture model is to estimate the values of the latent clustering 
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variable via the Expectation Maximization (EM) algorithm [1] (see, e.g., [5]), and 
then to choose the maximum a posteriori probability (MAP)  parameter  values. 

The  contribution of this paper is to demonstrate how the s tandard EM al- 
gorithm for finite mixtures is modified for the batch classification case, so tha t  
it can be used for estimating both  the missing classification data,  and the miss- 
ing latent variable da ta  at the same time. In other words, the same algorithm 
used normally for constructing the models from training data,  is in our approach 
used also for making predictions. In the empirical part  of the paper, we com- 
pare the results obtained by using the batch classification with the modified EM 
algorithm to the results obtained by the standard approach, where each query 
vector is classified independently. 

2 D i s c r e t e  f i n i t e  m i x t u r e s  

In the following, the problem domain is modeled by using m discrete random 
variables X 1 , . . . ,  Xm (continuous variables are assumed to be discretized by 
quantization). A data instantiation d is a vector in which all the variables Xi have 
been assigned a value, d = (X1 = x l , . . .  , Xm = x,~), where x~ E {X~l,. •. , xi,~, ). 
A random sample D = ( d l , . . .  ,dN)  is a set of N i.i.d, da ta  instantiations, where 
each dj is sampled from the joint distribution of the variables X I , . . .  , X,~. 

In the discrete variable case, the finite mixture [3, 7] distribution for a data  
instantiation d can be writ ten as 

P ( d )  = P ( Y  = p(x  = x lY = . 

k = l  i = 1  

where Y denotes a latent cMstering random variable, the values of which are not 
given in the data  D, K is the number of possible values of Y, and the variables 
X 1 , . . .  , Xm are assumed to be independent, given the value of the clustering 
variable Y. 

In the following, we assume both the cluster distribution P ( Y )  and the 
intra-class conditional distributions P(X~tY  = Yk) to be multinomial. Thus a 
finite mixture model can be defined by first fixing K ,  the model class (the 
number of the mixing distributions), and then by determining the values of 
the model parameters 6} = (~,#),~9 C /2, where ~ = (c~l, . . .  ,~K)  and # = 
(#IX,--- , # i r a , . - .  , #K1 , - . .  , #Kin), with the denotations ~k = P ( Y  = Yk), and 
#ki : ( ¢ k i l , "  "" , Ckin , ) ,  where ¢kil = P(X~ = xi l lY  = Yk). 

3 B a t c h  c l a s s i f i c a t i o n s  w i t h  t h e  E M  a l g o r i t h m  

In this paper we consider prediction problems where the goal is to correctly 
classify a set of L test vectors q l , . . .  , qL by using the given training data  D. 
In the following, let Xm denote the class variable, the values of which are to be 
estimated, in which case all the test vectors qj are of the form 

qj : (X1 : x l , . . .  ,Xm-1 = Xm--1). 
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The standard Bayesian procedure for solving this problem is to first to con- 
struct the maximum a posterior probability (MAP) model OD with respect to 
the given data D, and then to classify the test cases independently by using the 
model constructed. In the Bayesian framework for a single test vector qj this 
is done by determining the following predictive distribution for all the possible 
values Xm of the class variable X,~: 

K 

P(xm l q~,dgn) c~ P(qj ,Xm lop) = E P(qj ,xm,Zj  = k lOD), 
k=l 

(1) 

where the value of variable zj denotes the value of the clustering variable Y 
corresponding to the test case qj. 

Unfortunately, determining the MAP parameter values 6)D exactly is not 
possible in practice because of the missing data imposed by the latent variable 
Y. However, the Expectation Maximization (EM) algorithm [1] is an iterative al- 
gorithm that can be used for finding an approximation of the MAP model. The 
EM algorithm can also be understood as an unsupervised clustering algorithm, 
where the estimated values of the latent variable determine the (probabilistic) 
clusters. In the E-step of the algorithm the conditional expected values of the 
sufficient statistics of the complete data (D, Z) are needed, in our case the ex- 
pected values of the parameters hk and fkit, where hk = )'~jL1 Zjk is the number 

of instantiations in cluster k, and fkit = ~ ;= i  ZjkVjil is the number of instanti- 
ations in cluster k with variable Xi having value xit. Here the indicator variable 
Zjk has value 1 i f d j  is sampled from P(.[Y = ya), and the indicator variable vjit 
has value 1 if dji = xit. 

The expectations of the sufficient statistics at the time step t of the EM 
algorithm are computed by setting hk E[hk [ D, O (t)] g = = ~j=1 Wjk, and fkit = 
E[fkit [ D, O (0] g = ~j=1 wjkvjit, where 

wjk = E[Zjk I D, O (t)] = 
1-Ii=l 1-I =1 k k,il) ) 

In the batch classification case, the predictive distribution can be written as 

L 

P(c l , . . .  , cL, q l , . . .  , qL I ~)D,Q) = H P(qJ' cj I OD,Q), 
j=l 

(2) 

where c = (c l , . . .  ,CL) denotes a vector consisting of classifications of all the 
test vectors Q = ( q l , . . . ,  qL). Consequently, the test vectors can be classified 
independently also in the batch classification case, but the MAP model 6) must 
in this case be estimated by using the joint database (D, Q), not the original data 
D alone. In addition to this, the missing data consists not only of the cluster 
indicators zj~, but also of the classifications of the test vectors, Cl , . . . ,  cL. By 
conditioning the class indicator variables C 1 , . . . ,  CL with the cluster indicator 
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= = = ,~(t) , where as before, variables, we get Cjtk P(Cj I I Zjk 1,qj ,  O(t)) = Wkmt 
m denotes the index of the class variable. The last equality follows from the 
fact tha t  the attr ibutes are assumed to be independent,  given the value of the 
clustering variable Y. 

Because of the absence of the values of the class variable Xm, the expecta- 
tions of the cluster indicators corresponding to the test cases must be calculated 
differently than with the standard EM. The modified formulas for computing 
these expectations are given by 

wjk = E[Zjk I D, 0 = 
O k ( t )  y-rm-- 1 {~h(t) ~ vii' 

Ck '= l  (OL(t') 1-I?=~ 1 l-I~___/1 kWk, il] ) 
(3) 

In addition, the expectations of the parameters fkmt must now be calculated by 
i - L . . . . . . .  uS ng fkml = ~j=l  WjkCjZk. Detailed derivation of these formulas is similar to 

the derivations used in [5], but  technically somewhat involved and omit ted here. 
In the M-step, the parameter  values axe updated in such a way that  the 

obtained expected posterior is maximized (for the update  formulas, see e.g. [5]). 

4 Empirical results 

To validate the batch classification approach described in the previous section, 
we performed a series of experiments with a set of public domain classification 
datasets from the UCI repository z. For simplicity, in our experiments we used 
the uniform prior (Dirichlet with all the hyperparameters  set to 1) for both the 
independent (IC) and batch classification (BC). In the independent classification 
case each classification query was classified one at a time by using the MAP 
prediction defined by formula (1), where the approximation found by the EM 
algorithm was taken as the MAP model 19. In the batch classification case, the 
predictive distribution (2) was used instead, the difference being that  the MAP 
model was estimated from the joint database (D, Q) by using the EM algorithm 
as described in Section 3. Description of the datasets used, and the crossvalidated 
classification results obtained can be found in Table 1. The results are averages 
over 100 independent crossvalidation runs, and the number of folds used was the 
same as in [6]. 

The results show that  the batch classification approach does not demonstrate  
significant improvement over independent predictions. The reasons for this are 
twofold. Firstly, as discussed before, it seems likely that  the increase in the 
amount  of missing data  makes the search for good local maxima in the enlarged 
search space much more difficult, so the theoretical advantage of using the query 
information is in this case nullified by the increase in the complexity of the search 
problem. Secondly, if the training data  is already sufficient to model the joint 
distribution well, the auxiliary information in the query batch Q (sampled from 
the same distribution) cannot improve the predictions significantly. 

z http://www.ics.uci.edu/~mlearn/ 



212 

Table  1. The datasets used in the experiments and the corresponding crossvalidated 
classification accuracies obtained. 

Dataset Size Attrs Classes IC BC 

Lymphography 148 19 4 73.0 73.3 
Hepatitis 150 20 2 79.5 79.6 
Heart disease 270 14 2 81.9 81.9 
Primary tumor 339 18 21 41.5 41.8 
Australian 690 15 2 81.3 80.6 
Diabetes 768 9 2 68.6 68.6 

In order to test  the la t ter  hypothesis we performed a second set of experi- 
ments  to see how the methods  perform when the training sets D are not sufficient 
for building very good models, and small with respect to the size of the query 
ba tch  Q. In these experiments  we sampled small training sets randomly from the 
datasets ,  and used the rest  of the da ta  as the test  set. For each case, classification 
was done by using bo th  IC and BC methods.  The  average classification success 
ra te  was then plot ted as a function of the size of the training set. In Fig. 1 a 
typical behavior can be seen. Each da ta  point corresponds to an average of 100 
independent tests. 

Fig. 1. Average classification success rate as a function of the size of the training set 
in the Heart Disease data set case. 
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In these tests the results show a clear difference in the performance.  The  
batch approach is more efficient in extract ing regularities present in the data ,  
and outperforms the s tandard  IC approach in cases with very small amounts  of 
data.  When the size of the training set is increased, we can see IC "catching up" 
as the amount  of training da ta  becomes more sufficient for constructing a good 
model for the joint distribution. I t  seems probable  tha t  this saturat ion effect is 
the cause for the indifference in the results in the first set of experiments,  since in 
crossvalidation the amount  of training da ta  is usually quite high, e.g., in 10-fold 
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crossvalidation 90% of all the data  available. This observation seems even more 
plausible as it is known that  for many of the UCI data  sets a rather  small sample 
of the actual training data  is enough for building a good predictive model (see 
the discussion in [4]). 

5 C o n c l u s i o n  

We have studied the batch classification problem where multiple predictions can 
be made simultaneously, instead of performing the classifications independently 
one at a time. We demonstrated how the s tandard EM algorithm for finite mix- 
tures can be modified for estimating both  the missing latent variable data,  and 
the classification data  at the same time. In this unifying approach EM can be 
used both for model construction from training data  and for making predic- 
tions. The empirical results with public domain classification datasets indicate 
tha t  the batch approach may outperform the s tandard independent classification 
approach in cases with small sample sizes, where the extra  information in the 
query batch can improve the model constructed. 
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