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Abs t rac t .  In this paper we present an approach to the induction of re- 
cursive structures from examples which is based on the notion of recursive 
program schemes. We separate induction from examples in two stages: (1) 
constructing initial programs from examples and (2) folding initial pro- 
grams to recursive program schemes. By this separation, the induction of 
recursive program schemes can be reduced to a pattern-matching prob- 
lem which can be handled by a generic algorithm. Construction of initial 
programs is performed with an approach to universal planning. "Back- 
ground knowledge" is given in the form of operators and their conditions 
of application. Furthermore synthesizing recursive program schemes in- 
stead of programs in a predefmed programming language enables us to 
combine program synthesis and analogical reasoning. A recursive pro- 
gram scheme represents the class of structural identical programs and 
can be assigned different semantics by interpretation. We believe that 
our approach mimicks in some way the problem solving and learning 
behavior of a (novice) human programmer and that our approach inte- 
grates theoretical ideas and empirical results of learning by doing and 
learning by analogy from cognitive science in a unique framework. 

Keywords :  Inductive Program Synthesis, Planning and Learning, Anal- 
ogy, Cognitive Modelling 

1 Introduction 

Building recursive definitions from examples is an old topic in automatic pro- 
gram construction [3]. Such techniques can be exploited in different fields as 
automatic  theorem proving or generation of (robot) action sequences. There was 
a lot of interest on inductive approaches to the synthesis of recursive programs 
during the seventies and eighties in the context of functional (LISP) program- 
ming which is now revived in inductive logic programming (ILP; [9]). The general 
idea of inductive program synthesis is to generalize over the structures of a set 
of (positive) examples with a kind of unsupervised learning algorithm. 

We propose an approach to inductive program synthesis which differs from 
the LISP-based methods and from ILP in two aspects: Firstly, we take a more 
abstract view on programs, tha t  is, we describe programs as elements of a term 
algebra and we infer recursive program schemes (RPSs; cf. [6, 7]) instead of LISP 
functions or PROLOG clauses. Secondly, we separate the problem of program 
synthesis from examples in two distinct processes: we deal with the construction 
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of "Summers"-like initial programs from examples [18, 20] with methods of "uni- 
versal planning" [17, 21] and use the initial programs as input to our program 
synthesis algorithm. 

We believe that our approach mimicks certain aspects of human (novice) 
programmers (cf. [2]). Building initial programs from examples by planning can 
be viewed as constructing the minimal sequence of operations by which the 
example input can be transformed into the desired output (i.e. goal state) by 
using only primitive functions (i.e. predefined operators). Combining different 
simulation traces in one planning tree can be viewed as integrating experience 
with different inital states of a problem (i.e. examples) into a single structure 
which is composed of conditional expressions. This process corresponds roughly 
to compilation/chunking of rules in cognitive models of skill acquisition (cf. [1]). 
Using the planning tree (initial program) as input to program synthesis describes 
a second stage of learning, generalization over recursive enumerable problem 
spaces. This stage of skill acquisition sketches the learning of a specific problem 
solving strategy. Using RPSs rather than a programming language enables us 
to model a third stage of learning, generalization over classes of programs, by 
abstracting from the concrete semantics of the symbols contained in an RPS. 

Let's illustrate this idea with an example: A novice programmer or our system 
is confronted with the problem to write a program to sum the elements of a list 
of natural numbers. In a first step he/it constructs sequential solution sequences 
for example lists of length zero, one, two and three: 

1. if empty(l) then O, 
2. if empty (tail(l)) then head(l), 
3. if empty(tail(tail(l))) then plus(head(l), head(tail(l))), 
4. i/ empty(tail(tail(tail(•)))) than plus(head(l)• plus(head(tail(l))• head(tail(tail(l))))). 

These traces (describing cases mutually excluding each other) are integrated in 
a kind of universal plan representing the initial program: 

if empty(l) then 0 
else if empty(ta£1(1)) then head(l) 

else £f empty (tail(tail (1)) ) then plus (head(1), head(tail(1) ) ) 
else if empty(tail(tail(tail(1)))) 

then plus (head (1), plus (head(tail (I)), head (tail (tail (I)) ) ) ). 

The experience with lists up to length three provides the basis for generalization 
to lists of arbitrary length n, that is for inferring an I~PS: sumlist(1) = if empty(1) 
then 0 else plus(head(l), sumlist(tail(l))). The infered RPS is stored in memory 
and can be used to solve structural identical problems with different semantics 
by analogical reasoning, for example sum(x) = i f  eqO(x) then 0 else plus(succ(x), 
sum(p ed(x))). 

In this paper - in contrast to other work on inductive program synthesis - we 
do not focus on the usual list or number problems (as the programs given above) 
but we will concentrate on blockworld problems (cf. [13]). Thereby we hope to 
bridge the gap between planning and inductive programming. Especially, our 
approach could help to overcome the complexity problems in universal planning 
[10] by restricting planning to problems of small complexity and using inductive 



216 

program synthesis to scale up. In section 4.2 will be shown, that using block- 
world problems (and interpreting them as RPSs) does not restrict the class of 
recursive programs which can be inferred to this domain. For most list or num- 
ber problems there are structural equivalent blockworld problems. A blockworld 
problem corresponding to the linear structure of the examples given above is for 
example to clear a given block x in a tower: clearblock(x,s) = if  cleartop(x) then 
s else puttable(topof(x), clearblock(topof(x),s)), where s is a situation variable. 

In the following we will first describe work which is related to our approach. 
Afterwards we will introduce the concept of recursive program schemes and 
describe our induction algorithm together with examples of synthetizised struc- 
tures. Than we will shortly illustrate our use of planning and analogical reasoning 
in inductive program syntheses. The paper finishes with a conclusion and plans 
for further work. 

2 R e l a t e d  W o r k  

Our approach has its background in the work on synthesis of functional programs 
(esp. [11, 18]). That the methodologies introduced in the seventies are apt to 
handle the benchmarks for recursive program synthesis given by ILP was shown 
on the example of the BMW algorithm [4, 11]. 

The original idea of inferring RPSs rather than LISP functions and of sepa- 
rating the generation of initial programs from program synthesis was presented 
in [20] and [21]. In contrast to most work in ILP (cf. [9]), we use only a small 
number of positive examples (also of interest now in ILP; cf. [14]). By restricting 
the synthesis task to generalizing over initial programs we have no need of re- 
garding background knowledge, that is, our work is similar to the generalization- 
to-n approaches in grammatical inference (cf. [5]). That is, by splitting program 
synthesis in construction of initial programs (where domain specific background 
knowledge is used) and folding initial programs to RPSs we can reduce the syn- 
thesis algorithm to pattern-matching which can be performed with a generic 
algorithm. 

Our main interest is not to present theoretical results on inductive synthesis of 
recursive structures but to make these ideas useful in the context of planning and 
problem solving. While [13] presented a formal approach to deductive reasoning 
in planning, we want to introduce inductive program synthesis as an alternative 
approach to learning in the domain of plan construction as for example employed 
in PRODIGY (cf. [19]). Finally, we believe, that our approach integrates ideas 
and empirical findings in the area of skill acquistion as introduced in cognitive 
science (cf. [1]). The notion of RPSs enables us to model the acquisition of 
problem solving schemes and their use in analogical reasoning in a unified way 
(see [16]). 

3 R e c u r s i v e  P r o g r a m  S c h e m e s  ( R P S s )  

The theoretical framework for induction of RPSs was presented in [6], which 
we use as background for our approach. In the following we give some basic 
definitions before introducing the concept of an RPS. 
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Defini t ion 1 (Term Algebra)  Let V be a set of variables and F a set of 
function symbols with F i C_ F as set of function symbols with arity i and 12 E F 
as symbol for "undefined". Then M(V,  F) is the set of all welldefined terms: 
I. v E V and e E F ° (constant symbols) are terms. 
2. i f  t l . . . t ,  are terms and f E F n is a function symbol of arity n then 

Y(tl . . . t , )  is a term. 

Defini t ion  2 (Ex t ended  Term Algebra)  Let • = {G~, . . .  Gn} be a set of 
function variables with arity Gi = ki. Then we call M(V,  F U q~) the extended 
term algebra. 

Defini t ion 3 (Par t i a l  Order  over M )  The term algebra can be extended to 
include infinite terms by defining a partial order over it. 12 is the bottom element 
and we define t < t I if  t ~ can be generated from t by replacing 12 in t by a term 

12 (but which may contain the symbol 12). Every ordered subset A C M has 
an upper limit Sup(A) which can be infinite. 

Defini t ion 4 (McCar thy -Cond i t i ona l )  The McCarthy-Conditional g(z,y,z) 
is a function of arity three which can be interpreted as conditional expression (i f  
x then y else z). 

Defini t ion  5 (Recurs ive P r o g r a m  Scheme) An RPS  is a pair < S , t  > with 
S = <  Gi(vl . . .v ,~)  = ti [ i = 1 . . . n  > is a system of equations ("subroutines") 
and t E M is the "main program". 

If Gi is contained in ti, the equation defines a recursive function. 
To illustrate the notion of an RPS we give an example. We define the extended 

term algebra as M({x, s}, {12, cleartop 1, topo f 1 , puttable 2 } U {clearblock2} ). We 
define S as clearblock(x,s) = g(cleartop(x), s, puttable(topof(x), clearblock(topof(x), 
s)))  and t = elearblock(z, s). That is, our S consists of a single equation. Note 
that the lefthand side of the equation corresponds to the head of a function, the 
righthand side to the body. We have terms in M with 12 < g(cleartop(x), s, put- 
table(topof(x), 12)) < g(cleartop(x), s, puttable(topof(z), g(clearblock(topof(x), s, 
puttable(topof(topof(x)), 12))))) < . . . .  

In a similar way as in eval-apply interpreters, a system of equations (func- 
tions) can be solved, by replacing the name of a user-defined function (i.e. a 
function variable) by its body: 

Def in i t ion  6 (Rewr i t e  Rule)  An expression can be transformed by the rewrite 
rule 0 in the following way: 

1. O ( z ) = z  i f z E V U F  ° 
e. o ( y ( t l . . . t k ) )  = f ( O ( h ) . . . O ( t k ) )  
3. O(G(t~ . . . t~) )  = O(a)[e(,,)l~,_.e(,~)l~,]. 

That is, the head of G is replaced by its body O(G) where all variables vi are 
substituted by the rewritten terms ti with which G was "called". Note, that 
with an expression [t/v] we denote the substitution of a variable v by a term 
t (often written as v 4-- t). 
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We can use the rewrite rule given above to expand an RPS to a certain length 
l. A sequence of expansions from 1 = 0, 1, 2 . . .  is called Kleene-sequence: 

Defini t ion 7 (Kleeno-Sequence)  
We can define a sequence G~ for l 

t i [ ~ - l l G 1  . . . ~ l n - l t G n  1. That is, an 
substituting function calls Gi in t by 

For the example given above we can 

90= t2 

Let Gi = ti E ~ be a recursive equation. 
---- 0 , 1 ,2 . . .  by: {~o _ 12, {~I = O(ti) = 
expansion of length I can be constructed by 
ezpansions ~ -  I . 

expand clearblock(z, s) by 

9 ~ = 9( cleartop( z ), s, puttable( topo f ( x ), t2 ) ) 
92= 9( cleartop( x ), s, puttable( topo f ( a: ), 

a( cleartop( topo f ( x ) ), s, puttable( topo f ( topo y ( x ) ), t2)))) 

( t  "- g( cleartop( x ), s, puttable( topo f ( z ) , #~t-o~o l (~) /~l ) ) " 

For the Kleene-sequence it can be shown that ~t-1 < ~t and that Sup(~ t) is the 
least fixpoint of E7 (see fixpoint semantics; el. [8, App. 13]). 

Up to now we only have regarded the syntactical aspects of RPSs. To calcu- 
late a value for an RPS (i.e. to compute a result), the symbols of the RPS have 
to be interpreted by functions and values have to be assigned to the variables: 

Defini t ion 8 ( I n t e r p r e t a t i o n  and  Valuat ion)  
- Interpretation I of an RPS: Function and constant symbols in the RPS  are 

interpreted by functions and constants of a domain model with corresponding 
arity (and possibly types). 

- Valuation ~ of variables: Each variable occuring in the (head of the) R P S  
has to be assigned a value (corresponding to variable type). 

- In the following we will regard untyped structures only. 

4 Synthesis of RPSs from Initial Progams 

4.1 An Algo r i t hm for Induc t ion  of  R P S s  
Our approach to inductive synthesis of RPSs is based on the idea of the Kleene- 
sequence given above. That is, we reverse the process of expanding an RPS as 
proposed originally by [20]. We regard a given initial program as dement of some 
Kleene-sequence which we try to identify and than fold the initial program to an 
RPS. Note, that our approach currently is restricted to infer a single recursive 
equation. 

Defini t ion 9 ( Induc t ion  of  a (Hnear) R P S )  Let G E M be an initial pro- 
gram. Then G can be folded into an RPS if  G can be segmented in a sequence 
G ° t2, gt z-1 = = tr(~[t/~]/rn), where t is a vector of terms by which the vector 
v of variables in tr  is replaced and where m is the place in term tr where the 
substitution by ~t-1 is performed. 
I f  the complete initial program G can be described equations ~t that is i f  G = ~ t° 
for some l*, we assume, that we can generalize ~ t° to an infinite sequence. That 
is, we eztrapolate the RPS  ~ = tr(G[t/~]/rn). 
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Let 's  go back to our clearblock-example for illustrating this idea: Input  into 
the synthesis algori thm may be the following initial program, defined for one up 
to three-block towers: 

G = g(cleartop(x), s,puttable(topof(x), 

g( cleartop( topo f ( x ) ), s, puttable( topo f ( topo f ( x ) ), 

g( cleartop( topo f ( topo f ( x ) ) ), s, puttable( topo f ( topo f ( topo f ( x ) ) ), 
a)))))). 

We can segment G into C °, G 1 , G 2 as shown in section 3 and in G 3 = G. G can 
be folded by induction into an RPS according to definition 9: 

G = g(cleartop(z),  s, puttable(topof(b),  g[topo1(=)/=])). 

This RPS generalizes the experience with clearing the bo t tom block of towers 
consisting of one up to three blocks to towers of  arbi trary height. 

The definition given above covers all structures with a single recursive call 
0nly, tha t  is tail recursion and linear recursion (see figure 2). To deal with struc- 
tures with more than one recursion point  and with tree recursion (see section 
4.2), the definition can be extended: 

D e f i n i t i o n  10 ( I n d u c t i o n  o f  a n  R P S )  Let G E M be a initial program. Then 
G can be folded into an R P S  if  G can be segmented in a sequence C o = 12, G ~ = 
t r ( G l ~ ] / m l  ""~['-/~][~'-1/mnj ~ with mi as positions in t r  where the substitution 

by G t-  1 is performed. I f  1 is su2~iciently high, we can extrapolate the R P S  

G = t r (G[tx l , , ] /ml . . .  G t t . l~] /m, ) .  

An operational method for performing the induction of an P~PS is given 
in algorithm 1. To find an RPS according to the definition above, we have to 
construct hypothetical  segmentations of an initial p rogram G and check the 
current hypothesis t r  by matching it with subexpressions of G. For a given t r  
we than  have to determine substitutions ~ which hold fo~ G. Our a im is to find 
the simplest hypothesis to fold the initial program G into an RPS. Therefore we 
enumerate the hypotheses in the order given in algorithm 1. 

A l g o r i t h m  1 ( I n d u c t i o n  o f  a n  R P S )  
- Find s t r u c t u r e  tr: 

For all the following hypotheses tr of the recursive structure of G, the hypothesis 
holds if G can be segmented into subexpressions which are unifyable with tr 

1. Assume tr starts at the root node, consists of a single conditional expression 
and of one recursion point only 

2. If this assumption fails: enlarge the number of conditional expressions con- 
tained in tr (from two up to half of the number of occurences of the symbol g 
in G) 

3. If these assumptions fail: assume a constant initial part in G and move the 
starting point for looking for tr from the root to another occurence of g (from 
the second position of g in G up to n - 2 if n is the number of occurences of 
g in G) 
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4. If these assumptions fail: assume that there exists more than one recursion 
point in G and start with assuming two recursion points and enlarge the hy- 
pothesis up to half of the number of occurences of g in G 

- Find subs t i t u t ions  a i :  

1. If the hypothesis consists of a single recursion point, generate a hypothesis 
for a by unifying tr with that subexpression of G at which tr occurs for the 
second time 

2. If the hypothesis consists of more than one recursion point, generate separate 
hypotheses a~ for each recursion point by unifying tr with that subexpression 
ti of G where tr ouccures the i-th time. 

The  expansion of t r  is restricted by the number  of conditional expressions of 
which an initial p rogram G is composed. For example,  we restrict the number  
of  conditional expressions in t r  to half the number  of conditional expressions 
contained in G. Otherwise, we would construct a hypothesis which could not be 
validated for the given G. An illustration of algori thm 1 with the clearblock- 
problem is given in figure 1. The procedure can be made more intuitive if we 
represent G as a tree. 

first hypothesis: start at root, take one conditional 

/ ? \  / 
deartop s p u ~ e  / validate hypothe#s 

x 'r: s" ~ ///" 
x ," cteartop S puttable / • m/Mate hypothes/s 

t~pof rotor // / ?  ~ / 

1 , !  x/ tolo, ,~i~, , ' -  
i t 

to,of topOfl ~/ 

x t O l r f /  

x ;  
t 

,," 
dnrlop s i~Jttable / 

t 
X tooof ,,/ a ,. 
",, r ,, 

~x< cleartop s puttable/ 
hypothesis: t¢cof tooof " g I /  ,,' 

x topOf~ deartop $ puttable i 

"~xl tooof tc}pof / 

validate hypothes/s ~'~ ~O00f topof / 
t ' ~ , l  • 
x to?of / 

- -  I 

X #1 

I 

Fig. 1. Illustration of algorithm 1 

Algori thm 1 was implemented and tested for a variety of recursive structures. 
The  recursive structure t r  can be composed of one ore more conditional expres- 
sion and the possibility of a constant par t  in G not contained in the recursive 
structure is included in the algorithm. Up to now we are only dealing with cases, 
where the substi tutions of variables are independent f rom each other. The  sep- 
arat ion of "find structure" and "find substi tution" is introduced because we are 
planning to extend our substitution algori thm to cases of dependent variables. 
This  extension is needed to deal with problems like the sorting of lists, where a 
counter j is substi tuted in relation to a counter i (i.e. we have a "nested loop").  
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4.2 P e r f o r m a n c e  o f  t h e  A l g o r i t h m  

We will give some examples to illustrate the performance of algorithm 1. The 
structures given in figure 2 are initial programs for the well known recursive 
functions last (fig. 2a, tail recursive), member (fig. 2b, tail recursive with two 
conditional expressions), addlist (fig. 2c, linear recursive, similar to clearblock) 
and the function myadd (fig. 2d), which has a constant part not included in the 
recursive structure. 

I tail 

tall 

! 

ta l l  
I 
I 

empty 

tail ernpb/head 
I I J 
I tall fail 

I I 
tall tall 
I I 
tall I 
I 
I 

heed 

tall empty 0 
I /p,u  

I ~II head 
/ I 
tell tall 
I J 
I tall 

I 
I 

! let! T t l  

! head x 

pred x oqO succ Q 
I I I 
y p~sd suc¢l 

pred x 
I 
Y 

Fig. 2. Examples for recursive structures: tail recursion (a), tail recursion with two 
conditionals (b), linear recursion (c) and tail recursion with constant initial part (d) 

Function last can be folded by the first hypothesis algorithm 1 generates. Func- 
tion member can be folded by the second hypothesis, that  t r  consists of two con- 
ditional expression: G -- g(empty(l), nil, g(eq( head(l), z), T, g[tail(l)/l] ) ). Func- 
tion addlist can be folded by the first hypothesis again, similar to the clearblock- 
problem given above. Function myadd can be folded after the hypotheses for 
tr starting at the root and consisting of one or two conditional expressions 
have failed by starting for a recursive structure in G at the second conditional 
expression. The RPS can be constructed by concatenating the constant part 
g(eqO(z),y, ~2) with ~ = g(eqO(y), z,~[succ(~)/x,pred(y)/y]). (Note that  the ini- 
tial programs for member and myadd have to be expanded one level deeper to 
validate the hypothesis for tr). 

We presented only cases for structures growing in the else-part of a condi- 
tional expression (i.e. right-recursive structures). But our algorithm can also deal 
with left-recursive cases and with structures with more than one recursion point 
as well. For example we can synthesize the function maxlist which consists of 
two tail recursions: 

G = g(empty(l), z, g(greater(head(l), z), gttail(l)/l,head(O/~l, ~ttail(l)/ll)) 
and the tree recursive function for calculating fibonacci-numbers: 

= g(eq0(~), 1, gCeql(~), 1, pZus(~red(~)/~], ~--dCp--d(~))/~l)))" 
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5 I n t e g r a t i n g  P l a n n i n g ,  P r o g r a m  S y n t h e s i s  and 
A n a l o g i c a l  P r o b l e m  S o l v i n g  

The algorithm for induction of RPSs is the core of the system IPAL which 
is implemented in a first prototype in LISP. In IPAL we realize our idea of 
combining inductive program synthesis with planning and analogical problem 
solving. We give a short description of both aspects in the following. 

5.1 G e n e r a t i n g  Ini t ia l  P r o g r a m s  b y  P l a n n i n g  

In separating the generation of initial programs from examples from program 
synthesis itself we are trying to model the behavior of a novice programmer or 
problem solver, who first tries to solve a given problem in a straight-forward way 
(i.e. constructing an initial program) and than generalizes his solution strategy. 
For generating initial programs from examples we use a backward-planner which 
is able to handle conjunctive top-level goals (and is able to deal with conflicting 
goals). The most important feature of our planner is, that it does not cover 
a single initial state only but a set of initial states in one planning trial. The 
planning algorithm is based on a technique proposed by [21] which has some 
similarities to approaches to universal planning (of. [17]). 

We are not presenting the planner here. Instead we illustrate the general idea 
with the clearblock-example introduced above, which has one top-level goal only. 
A novice or our system may be confronted with towers consisting of one, two or 
three blocks. These situations are initial states for our planner corresponding to 
the input part of examples in program synthesis. The initial states are described 
by conjunctions of predicates. Three possible initial states for the clearblock- 
problem are given in figure 3. 

The system has to solve the problem to clear the base of the tower, i.e. block 
C. The goal state, which corresponds to the output part of examples in program 
synthesis, is represented by a single predicate: cleartop(C). Note that our planner 
can deal also with conjunctions of goals as for example on(A, B), on(B, C). The 
novice or our system has knowledge about operations and their conditions of 
application, corresponding to the background knowledge used in ILP approaches. 
This knowledge is represented as production rules with ADD and DEL lists for 
specifying the semantic of an operation. The operation needed to achieve the 
goal to clear a block is on(x,y), cleartop(x) -~ puttable(x); ADD cleartop(y) 
DEL on(x,y). 

Our planner builds a tree starting with the goal as root node. A left branch is 
introduced for the case that the goal is already fulfilled and a right branch for the 
case that it is not. The right branch is labelled with that operation which is given 
at the righthand side of a production rule containing the desired predicate in the 
ADD-list. Predicates given in the condition part of this rule and not occuring in 
the DEL-list are introduced as new subgoals. That is, our planner works with a 
backward chaining algorithm. Variables occuring in the goal predicate are used 
to instantiate the selected production rules. If there remain unbound variables 
these are instantiated by a lookup in the set of initial states. 
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In our example we start with cleartop(C) as the root. In the left successor, 
no subgoal is left. Here we terminate with a leaf s which represents a situation 
variable. In the right branch we introduce the operator puttable(z). Variable y in 
the production rule is instantiated with C and we find situations sl and s2 in our 
set of initial states so that on(z, C) can be unified with on(B, C) and variable z 
in the production rule is instantiated accordingly. A new subgoal, cleartop(B) 
is introduced as right successor-node. The resulting plan is given in figure 3. 

j deartop(C) Initial States: 
~.~.uttable(B) 

s / cleadop(B) 
J ~p.uttable(A) 

s / cleadop(A) 

s 

sO: cleartop(A), cleartop(B), cleartop(C) 
st: on(B,C), cleartop(B), cleadop(C) 

s2: on(A,B), on(B,C), cleartop(A) 

Fig. 3. Plan for dealing with the clearblock-problem 

The plan can be reformulated with help of the background knowledge on(x, y) 
- topof(y) = x. Thereby we gain the initial program which is than used in 
program synthesis. 

5 .2  P r o g r a m m i n g  by Analogy 

If an RPS was succesfully generated from an initial tree, we store it in memory. 
These RPSs enlarge the set of predefined functions available to IPAL and they 
can be used for analogical programming. Analogical programming can be seen 
as a special case of analogical problem solving which is described by four subpro- 
cesses in cognitive science literature [15]: (1) Retrieval of an example problem 
already solved which is structural similar to the current problem; (2) mapping 
the structures of example and goal problem; (3) adapt the example solution to 
the goal problem; and (4) generalize over the structure of example and goal 
problem. 

In the case of our programming problems, we assume, that a programmer/the 
system has already constructed an initial program and now wants to fold it to 
an RPS. The RPSs stored in memory can be expanded to initial programs of 
a given depth by the rewrite rule given in definition 6. We compare (map) the 
current initial program for which the RPS is unknown with initial programs ex- 
panded from RPSs stored in memory. Comparision of initial programs is done by 
a transformation algorithm: The current initial tree is tried to be made identical 
to an initial tree belonging to an RPS expanded from memory by substitution, 
deletion and insertion of nodes (i.e. symbols contained in the initial program 
term). This method is implemented as a special version of the tree-to-tree dis- 
tance algorithm proposed by [12]. If the transformation can be performed by 
unique subsitutions of symbols only, the structures of the example and goal tree 
are isomorphic. The new RPS can than be gained by subsituting symbols of 
the example RPS according to the mapping function. We can show that this 
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is less expensive than performing inductive program synthesis if the memory is 
effectively organized. 

Currently we are employing this method of analogical problem solving for iso- 
morphic structures only. But we are working on an extension to non-isomorphic 
cases, modifying example RPSs by deletion and insertion rules. 

6 Conclusions and Future Research 
We believe that segmenting inductive program synthesis in two parts - building 
initial programs by planning and folding initial programs to RPSs by a generic 
algorithm - may be a fruitful approach. Starting with an initial program as in- 
put makes program synthesis itself a not too difficult task and we can deal with 
complex recursive structures. The problem of inductive program synthesis from 
examples of course remains with all its well known difficulties. We only shift 
the greater part of the burden to the subproblem of generating initial programs 
from examples. But here we see possibilities to overcome some limitations in 
employing planning methodologies using heuristic techniques proposed in arti- 
ficial intelligence. Additionally we look at our approach as a potential model 
for human skill acquisition in the domain of problem solving. We can describe 
skill acquisition by three levels of generalization, all reported in cognitive science 
literature: the chuncking of rules in learning by doing (i.e. building initial pro- 
grams), descriptive generalization of the problem solving experience to a more 
general problem solving strategy (i.e. inductive program synthesis) and making 
use of already solved problems in analogical reasoning (i.e. giving an I~PS a new 
semantic by interpreting the operation symbols w.r.t, another domain model). 

Currently we can synthesize a variety of recursive structures from initial 
programs but our approach is restricted to independend variables, that is, we 
can not deal with nested loops. Our next goal therefore is, to extend the synthesis 
algorithm to finding dependencies in variable substitution. That is, we have to 
extend the "find subsitution" part of our algorithm from simple unification to 
a second cycle of induction. Another restriction to our approach is, that initial 
programs can be generated only for problems with finite data structures and 
primitive operations which can be defined by production rules, as blocksworld 
or Tower of Hanoi problems. While we are able to fold given initial programs 
representing numerical or list problems to RPSs, we are not able to construct 
initial programs from examples for these domains. To overcome this limitation 
we have to expand our planning algorithm from applying user-defined production 
rules only to making use of the operational semantics of already built-in functions 
of a given programming language (as plus or tail) and predicates (as eqO or 
empty). That is, we have to integrate the eval-apply interpreter of a functional 
language (as for example LISP) in plan construction. Last but not least, our 
approach can be extended to use not only predefined functions but making use 
of already inferred RPSs which makes it possible to infer complex recursive 
programs containing subprograms. 
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