
Induct ion of Recurs ive Program Schemes

Ute Schmid ~ Fritz Wysotzkl

Department of Computer Science
Technical University Berlin

email: schmid,wysotzki@cs.tu-berlin.de

Abs t rac t . In this paper we present an approach to the induction of re-
cursive structures from examples which is based on the notion of recursive
program schemes. We separate induction from examples in two stages: (1)
constructing initial programs from examples and (2) folding initial pro-
grams to recursive program schemes. By this separation, the induction of
recursive program schemes can be reduced to a pattern-matching prob-
lem which can be handled by a generic algorithm. Construction of initial
programs is performed with an approach to universal planning. "Back-
ground knowledge" is given in the form of operators and their conditions
of application. Furthermore synthesizing recursive program schemes in-
stead of programs in a predefmed programming language enables us to
combine program synthesis and analogical reasoning. A recursive pro-
gram scheme represents the class of structural identical programs and
can be assigned different semantics by interpretation. We believe that
our approach mimicks in some way the problem solving and learning
behavior of a (novice) human programmer and that our approach inte-
grates theoretical ideas and empirical results of learning by doing and
learning by analogy from cognitive science in a unique framework.

Keywords : Inductive Program Synthesis, Planning and Learning, Anal-
ogy, Cognitive Modelling

1 Introduction

Building recursive definitions from examples is an old topic in automatic pro-
gram construction [3]. Such techniques can be exploited in different fields as
automatic theorem proving or generation of (robot) action sequences. There was
a lot of interest on inductive approaches to the synthesis of recursive programs
during the seventies and eighties in the context of functional (LISP) program-
ming which is now revived in inductive logic programming (ILP; [9]). The general
idea of inductive program synthesis is to generalize over the structures of a set
of (positive) examples with a kind of unsupervised learning algorithm.

We propose an approach to inductive program synthesis which differs from
the LISP-based methods and from ILP in two aspects: Firstly, we take a more
abstract view on programs, tha t is, we describe programs as elements of a term
algebra and we infer recursive program schemes (RPSs; cf. [6, 7]) instead of LISP
functions or PROLOG clauses. Secondly, we separate the problem of program
synthesis from examples in two distinct processes: we deal with the construction

215

of "Summers"-like initial programs from examples [18, 20] with methods of "uni-
versal planning" [17, 21] and use the initial programs as input to our program
synthesis algorithm.

We believe that our approach mimicks certain aspects of human (novice)
programmers (cf. [2]). Building initial programs from examples by planning can
be viewed as constructing the minimal sequence of operations by which the
example input can be transformed into the desired output (i.e. goal state) by
using only primitive functions (i.e. predefined operators). Combining different
simulation traces in one planning tree can be viewed as integrating experience
with different inital states of a problem (i.e. examples) into a single structure
which is composed of conditional expressions. This process corresponds roughly
to compilation/chunking of rules in cognitive models of skill acquisition (cf. [1]).
Using the planning tree (initial program) as input to program synthesis describes
a second stage of learning, generalization over recursive enumerable problem
spaces. This stage of skill acquisition sketches the learning of a specific problem
solving strategy. Using RPSs rather than a programming language enables us
to model a third stage of learning, generalization over classes of programs, by
abstracting from the concrete semantics of the symbols contained in an RPS.

Let's illustrate this idea with an example: A novice programmer or our system
is confronted with the problem to write a program to sum the elements of a list
of natural numbers. In a first step he/it constructs sequential solution sequences
for example lists of length zero, one, two and three:

1. if empty(l) then O,
2. if empty (tail(l)) then head(l),
3. if empty(tail(tail(l))) then plus(head(l), head(tail(l))),
4. i/ empty(tail(tail(tail(•)))) than plus(head(l)• plus(head(tail(l))• head(tail(tail(l))))).

These traces (describing cases mutually excluding each other) are integrated in
a kind of universal plan representing the initial program:

if empty(l) then 0
else if empty(ta£1(1)) then head(l)

else £f empty (tail(tail (1))) then plus (head(1), head(tail(1)))
else if empty(tail(tail(tail(1))))

then plus (head (1), plus (head(tail (I)), head (tail (tail (I))))).

The experience with lists up to length three provides the basis for generalization
to lists of arbitrary length n, that is for inferring an I~PS: sumlist(1) = if empty(1)
then 0 else plus(head(l), sumlist(tail(l))). The infered RPS is stored in memory
and can be used to solve structural identical problems with different semantics
by analogical reasoning, for example sum(x) = i f eqO(x) then 0 else plus(succ(x),
sum(p ed(x))).

In this paper - in contrast to other work on inductive program synthesis - we
do not focus on the usual list or number problems (as the programs given above)
but we will concentrate on blockworld problems (cf. [13]). Thereby we hope to
bridge the gap between planning and inductive programming. Especially, our
approach could help to overcome the complexity problems in universal planning
[10] by restricting planning to problems of small complexity and using inductive

216

program synthesis to scale up. In section 4.2 will be shown, that using block-
world problems (and interpreting them as RPSs) does not restrict the class of
recursive programs which can be inferred to this domain. For most list or num-
ber problems there are structural equivalent blockworld problems. A blockworld
problem corresponding to the linear structure of the examples given above is for
example to clear a given block x in a tower: clearblock(x,s) = if cleartop(x) then
s else puttable(topof(x), clearblock(topof(x),s)), where s is a situation variable.

In the following we will first describe work which is related to our approach.
Afterwards we will introduce the concept of recursive program schemes and
describe our induction algorithm together with examples of synthetizised struc-
tures. Than we will shortly illustrate our use of planning and analogical reasoning
in inductive program syntheses. The paper finishes with a conclusion and plans
for further work.

2 R e l a t e d W o r k

Our approach has its background in the work on synthesis of functional programs
(esp. [11, 18]). That the methodologies introduced in the seventies are apt to
handle the benchmarks for recursive program synthesis given by ILP was shown
on the example of the BMW algorithm [4, 11].

The original idea of inferring RPSs rather than LISP functions and of sepa-
rating the generation of initial programs from program synthesis was presented
in [20] and [21]. In contrast to most work in ILP (cf. [9]), we use only a small
number of positive examples (also of interest now in ILP; cf. [14]). By restricting
the synthesis task to generalizing over initial programs we have no need of re-
garding background knowledge, that is, our work is similar to the generalization-
to-n approaches in grammatical inference (cf. [5]). That is, by splitting program
synthesis in construction of initial programs (where domain specific background
knowledge is used) and folding initial programs to RPSs we can reduce the syn-
thesis algorithm to pattern-matching which can be performed with a generic
algorithm.

Our main interest is not to present theoretical results on inductive synthesis of
recursive structures but to make these ideas useful in the context of planning and
problem solving. While [13] presented a formal approach to deductive reasoning
in planning, we want to introduce inductive program synthesis as an alternative
approach to learning in the domain of plan construction as for example employed
in PRODIGY (cf. [19]). Finally, we believe, that our approach integrates ideas
and empirical findings in the area of skill acquistion as introduced in cognitive
science (cf. [1]). The notion of RPSs enables us to model the acquisition of
problem solving schemes and their use in analogical reasoning in a unified way
(see [16]).

3 R e c u r s i v e P r o g r a m S c h e m e s (R P S s)

The theoretical framework for induction of RPSs was presented in [6], which
we use as background for our approach. In the following we give some basic
definitions before introducing the concept of an RPS.

217

Defini t ion 1 (Term Algebra) Let V be a set of variables and F a set of
function symbols with F i C_ F as set of function symbols with arity i and 12 E F
as symbol for "undefined". Then M(V, F) is the set of all welldefined terms:
I. v E V and e E F ° (constant symbols) are terms.
2. i f t l . . . t , are terms and f E F n is a function symbol of arity n then

Y(tl . . . t ,) is a term.

Defini t ion 2 (Ex t ended Term Algebra) Let • = {G~, . . . Gn} be a set of
function variables with arity Gi = ki. Then we call M(V, F U q~) the extended
term algebra.

Defini t ion 3 (Par t i a l Order over M) The term algebra can be extended to
include infinite terms by defining a partial order over it. 12 is the bottom element
and we define t < t I if t ~ can be generated from t by replacing 12 in t by a term

12 (but which may contain the symbol 12). Every ordered subset A C M has
an upper limit Sup(A) which can be infinite.

Defini t ion 4 (McCar thy -Cond i t i ona l) The McCarthy-Conditional g(z,y,z)
is a function of arity three which can be interpreted as conditional expression (i f
x then y else z).

Defini t ion 5 (Recurs ive P r o g r a m Scheme) An RPS is a pair < S , t > with
S = < Gi(vl . . .v ,~) = ti [i = 1 . . . n > is a system of equations ("subroutines")
and t E M is the "main program".

If Gi is contained in ti, the equation defines a recursive function.
To illustrate the notion of an RPS we give an example. We define the extended

term algebra as M({x, s}, {12, cleartop 1, topo f 1 , puttable 2 } U {clearblock2}). We
define S as clearblock(x,s) = g(cleartop(x), s, puttable(topof(x), clearblock(topof(x),
s))) and t = elearblock(z, s). That is, our S consists of a single equation. Note
that the lefthand side of the equation corresponds to the head of a function, the
righthand side to the body. We have terms in M with 12 < g(cleartop(x), s, put-
table(topof(x), 12)) < g(cleartop(x), s, puttable(topof(z), g(clearblock(topof(x), s,
puttable(topof(topof(x)), 12))))) <

In a similar way as in eval-apply interpreters, a system of equations (func-
tions) can be solved, by replacing the name of a user-defined function (i.e. a
function variable) by its body:

Def in i t ion 6 (Rewr i t e Rule) An expression can be transformed by the rewrite
rule 0 in the following way:

1. O (z) = z i f z E V U F °
e. o (y (t l . . . t k)) = f (O (h) . . . O (t k))
3. O(G(t~ . . . t~)) = O(a)[e(,,)l~,_.e(,~)l~,].

That is, the head of G is replaced by its body O(G) where all variables vi are
substituted by the rewritten terms ti with which G was "called". Note, that
with an expression [t/v] we denote the substitution of a variable v by a term
t (often written as v 4-- t).

218

We can use the rewrite rule given above to expand an RPS to a certain length
l. A sequence of expansions from 1 = 0, 1, 2 . . . is called Kleene-sequence:

Defini t ion 7 (Kleeno-Sequence)
We can define a sequence G~ for l

t i [~ - l l G 1 . . . ~ l n - l t G n 1. That is, an
substituting function calls Gi in t by

For the example given above we can

90= t2

Let Gi = ti E ~ be a recursive equation.
---- 0 , 1 ,2 . . . by: {~o _ 12, {~I = O(ti) =
expansion of length I can be constructed by
ezpansions ~ - I .

expand clearblock(z, s) by

9 ~ = 9(cleartop(z), s, puttable(topo f (x), t2))
92= 9(cleartop(x), s, puttable(topo f (a:),

a(cleartop(topo f (x)), s, puttable(topo f (topo y (x)), t2))))

(t "- g(cleartop(x), s, puttable(topo f (z) , #~t-o~o l (~) /~l)) "

For the Kleene-sequence it can be shown that ~t-1 < ~t and that Sup(~ t) is the
least fixpoint of E7 (see fixpoint semantics; el. [8, App. 13]).

Up to now we only have regarded the syntactical aspects of RPSs. To calcu-
late a value for an RPS (i.e. to compute a result), the symbols of the RPS have
to be interpreted by functions and values have to be assigned to the variables:

Defini t ion 8 (I n t e r p r e t a t i o n and Valuat ion)
- Interpretation I of an RPS: Function and constant symbols in the RPS are

interpreted by functions and constants of a domain model with corresponding
arity (and possibly types).

- Valuation ~ of variables: Each variable occuring in the (head of the) R P S
has to be assigned a value (corresponding to variable type).

- In the following we will regard untyped structures only.

4 Synthesis of RPSs from Initial Progams

4.1 An Algo r i t hm for Induc t ion of R P S s
Our approach to inductive synthesis of RPSs is based on the idea of the Kleene-
sequence given above. That is, we reverse the process of expanding an RPS as
proposed originally by [20]. We regard a given initial program as dement of some
Kleene-sequence which we try to identify and than fold the initial program to an
RPS. Note, that our approach currently is restricted to infer a single recursive
equation.

Defini t ion 9 (Induc t ion of a (Hnear) R P S) Let G E M be an initial pro-
gram. Then G can be folded into an RPS if G can be segmented in a sequence
G ° t2, gt z-1 = = tr(~[t/~]/rn), where t is a vector of terms by which the vector
v of variables in tr is replaced and where m is the place in term tr where the
substitution by ~t-1 is performed.
I f the complete initial program G can be described equations ~t that is i f G = ~ t°
for some l*, we assume, that we can generalize ~ t° to an infinite sequence. That
is, we eztrapolate the RPS ~ = tr(G[t/~]/rn).

219

Let 's go back to our clearblock-example for illustrating this idea: Input into
the synthesis algori thm may be the following initial program, defined for one up
to three-block towers:

G = g(cleartop(x), s,puttable(topof(x),

g(cleartop(topo f (x)), s, puttable(topo f (topo f (x)),

g(cleartop(topo f (topo f (x))), s, puttable(topo f (topo f (topo f (x))),
a)))))).

We can segment G into C °, G 1 , G 2 as shown in section 3 and in G 3 = G. G can
be folded by induction into an RPS according to definition 9:

G = g(cleartop(z), s, puttable(topof(b), g[topo1(=)/=])).

This RPS generalizes the experience with clearing the bo t tom block of towers
consisting of one up to three blocks to towers of arbi trary height.

The definition given above covers all structures with a single recursive call
0nly, tha t is tail recursion and linear recursion (see figure 2). To deal with struc-
tures with more than one recursion point and with tree recursion (see section
4.2), the definition can be extended:

D e f i n i t i o n 10 (I n d u c t i o n o f a n R P S) Let G E M be a initial program. Then
G can be folded into an R P S if G can be segmented in a sequence C o = 12, G ~ =
t r (G l ~] / m l ""~['-/~][~'-1/mnj ~ with mi as positions in t r where the substitution

by G t- 1 is performed. I f 1 is su2~iciently high, we can extrapolate the R P S

G = t r (G[tx l , ,] /ml . . . G t t . l~] /m,) .

An operational method for performing the induction of an P~PS is given
in algorithm 1. To find an RPS according to the definition above, we have to
construct hypothetical segmentations of an initial p rogram G and check the
current hypothesis t r by matching it with subexpressions of G. For a given t r
we than have to determine substitutions ~ which hold fo~ G. Our a im is to find
the simplest hypothesis to fold the initial program G into an RPS. Therefore we
enumerate the hypotheses in the order given in algorithm 1.

A l g o r i t h m 1 (I n d u c t i o n o f a n R P S)
- Find s t r u c t u r e tr:

For all the following hypotheses tr of the recursive structure of G, the hypothesis
holds if G can be segmented into subexpressions which are unifyable with tr

1. Assume tr starts at the root node, consists of a single conditional expression
and of one recursion point only

2. If this assumption fails: enlarge the number of conditional expressions con-
tained in tr (from two up to half of the number of occurences of the symbol g
in G)

3. If these assumptions fail: assume a constant initial part in G and move the
starting point for looking for tr from the root to another occurence of g (from
the second position of g in G up to n - 2 if n is the number of occurences of
g in G)

220

4. If these assumptions fail: assume that there exists more than one recursion
point in G and start with assuming two recursion points and enlarge the hy-
pothesis up to half of the number of occurences of g in G

- Find subs t i t u t ions a i :

1. If the hypothesis consists of a single recursion point, generate a hypothesis
for a by unifying tr with that subexpression of G at which tr occurs for the
second time

2. If the hypothesis consists of more than one recursion point, generate separate
hypotheses a~ for each recursion point by unifying tr with that subexpression
ti of G where tr ouccures the i-th time.

The expansion of t r is restricted by the number of conditional expressions of
which an initial p rogram G is composed. For example, we restrict the number
of conditional expressions in t r to half the number of conditional expressions
contained in G. Otherwise, we would construct a hypothesis which could not be
validated for the given G. An illustration of algori thm 1 with the clearblock-
problem is given in figure 1. The procedure can be made more intuitive if we
represent G as a tree.

first hypothesis: start at root, take one conditional

/ ? \ /
deartop s p u ~ e / validate hypothe#s

x 'r: s" ~ ///"
x ," cteartop S puttable / • m/Mate hypothes/s

t~pof rotor // / ? ~ /

1 , ! x/ tolo, ,~i~, , ' -
i t

to,of topOfl ~/

x t O l r f /

x ;
t

,,"
dnrlop s i~Jttable /

t
X tooof ,,/ a ,.
",, r ,,

~x< cleartop s puttable/
hypothesis: t¢cof tooof " g I / ,,'

x topOf~ deartop $ puttable i

"~xl tooof tc}pof /

validate hypothes/s ~'~ ~O00f topof /
t ' ~ , l •
x to?of /

- - I

X #1

I

Fig. 1. Illustration of algorithm 1

Algori thm 1 was implemented and tested for a variety of recursive structures.
The recursive structure t r can be composed of one ore more conditional expres-
sion and the possibility of a constant par t in G not contained in the recursive
structure is included in the algorithm. Up to now we are only dealing with cases,
where the substi tutions of variables are independent f rom each other. The sep-
arat ion of "find structure" and "find substi tution" is introduced because we are
planning to extend our substitution algori thm to cases of dependent variables.
This extension is needed to deal with problems like the sorting of lists, where a
counter j is substi tuted in relation to a counter i (i.e. we have a "nested loop").

221

4.2 P e r f o r m a n c e o f t h e A l g o r i t h m

We will give some examples to illustrate the performance of algorithm 1. The
structures given in figure 2 are initial programs for the well known recursive
functions last (fig. 2a, tail recursive), member (fig. 2b, tail recursive with two
conditional expressions), addlist (fig. 2c, linear recursive, similar to clearblock)
and the function myadd (fig. 2d), which has a constant part not included in the
recursive structure.

I tail

tall

!

ta l l
I
I

empty

tail ernpb/head
I I J
I tall fail

I I
tall tall
I I
tall I
I
I

heed

tall empty 0
I /p,u

I ~II head
/ I
tell tall
I J
I tall

I
I

! let! T t l

! head x

pred x oqO succ Q
I I I
y p~sd suc¢l

pred x
I
Y

Fig. 2. Examples for recursive structures: tail recursion (a), tail recursion with two
conditionals (b), linear recursion (c) and tail recursion with constant initial part (d)

Function last can be folded by the first hypothesis algorithm 1 generates. Func-
tion member can be folded by the second hypothesis, that t r consists of two con-
ditional expression: G -- g(empty(l), nil, g(eq(head(l), z), T, g[tail(l)/l])). Func-
tion addlist can be folded by the first hypothesis again, similar to the clearblock-
problem given above. Function myadd can be folded after the hypotheses for
tr starting at the root and consisting of one or two conditional expressions
have failed by starting for a recursive structure in G at the second conditional
expression. The RPS can be constructed by concatenating the constant part
g(eqO(z),y, ~2) with ~ = g(eqO(y), z,~[succ(~)/x,pred(y)/y]). (Note that the ini-
tial programs for member and myadd have to be expanded one level deeper to
validate the hypothesis for tr).

We presented only cases for structures growing in the else-part of a condi-
tional expression (i.e. right-recursive structures). But our algorithm can also deal
with left-recursive cases and with structures with more than one recursion point
as well. For example we can synthesize the function maxlist which consists of
two tail recursions:

G = g(empty(l), z, g(greater(head(l), z), gttail(l)/l,head(O/~l, ~ttail(l)/ll))
and the tree recursive function for calculating fibonacci-numbers:

= g(eq0(~), 1, gCeql(~), 1, pZus(~red(~)/~], ~--dCp--d(~))/~l)))"

222

5 I n t e g r a t i n g P l a n n i n g , P r o g r a m S y n t h e s i s and
A n a l o g i c a l P r o b l e m S o l v i n g

The algorithm for induction of RPSs is the core of the system IPAL which
is implemented in a first prototype in LISP. In IPAL we realize our idea of
combining inductive program synthesis with planning and analogical problem
solving. We give a short description of both aspects in the following.

5.1 G e n e r a t i n g Ini t ia l P r o g r a m s b y P l a n n i n g

In separating the generation of initial programs from examples from program
synthesis itself we are trying to model the behavior of a novice programmer or
problem solver, who first tries to solve a given problem in a straight-forward way
(i.e. constructing an initial program) and than generalizes his solution strategy.
For generating initial programs from examples we use a backward-planner which
is able to handle conjunctive top-level goals (and is able to deal with conflicting
goals). The most important feature of our planner is, that it does not cover
a single initial state only but a set of initial states in one planning trial. The
planning algorithm is based on a technique proposed by [21] which has some
similarities to approaches to universal planning (of. [17]).

We are not presenting the planner here. Instead we illustrate the general idea
with the clearblock-example introduced above, which has one top-level goal only.
A novice or our system may be confronted with towers consisting of one, two or
three blocks. These situations are initial states for our planner corresponding to
the input part of examples in program synthesis. The initial states are described
by conjunctions of predicates. Three possible initial states for the clearblock-
problem are given in figure 3.

The system has to solve the problem to clear the base of the tower, i.e. block
C. The goal state, which corresponds to the output part of examples in program
synthesis, is represented by a single predicate: cleartop(C). Note that our planner
can deal also with conjunctions of goals as for example on(A, B), on(B, C). The
novice or our system has knowledge about operations and their conditions of
application, corresponding to the background knowledge used in ILP approaches.
This knowledge is represented as production rules with ADD and DEL lists for
specifying the semantic of an operation. The operation needed to achieve the
goal to clear a block is on(x,y), cleartop(x) -~ puttable(x); ADD cleartop(y)
DEL on(x,y).

Our planner builds a tree starting with the goal as root node. A left branch is
introduced for the case that the goal is already fulfilled and a right branch for the
case that it is not. The right branch is labelled with that operation which is given
at the righthand side of a production rule containing the desired predicate in the
ADD-list. Predicates given in the condition part of this rule and not occuring in
the DEL-list are introduced as new subgoals. That is, our planner works with a
backward chaining algorithm. Variables occuring in the goal predicate are used
to instantiate the selected production rules. If there remain unbound variables
these are instantiated by a lookup in the set of initial states.

223

In our example we start with cleartop(C) as the root. In the left successor,
no subgoal is left. Here we terminate with a leaf s which represents a situation
variable. In the right branch we introduce the operator puttable(z). Variable y in
the production rule is instantiated with C and we find situations sl and s2 in our
set of initial states so that on(z, C) can be unified with on(B, C) and variable z
in the production rule is instantiated accordingly. A new subgoal, cleartop(B)
is introduced as right successor-node. The resulting plan is given in figure 3.

j deartop(C) Initial States:
~.~.uttable(B)

s / cleadop(B)
J ~p.uttable(A)

s / cleadop(A)

s

sO: cleartop(A), cleartop(B), cleartop(C)
st: on(B,C), cleartop(B), cleadop(C)

s2: on(A,B), on(B,C), cleartop(A)

Fig. 3. Plan for dealing with the clearblock-problem

The plan can be reformulated with help of the background knowledge on(x, y)
- topof(y) = x. Thereby we gain the initial program which is than used in
program synthesis.

5 .2 P r o g r a m m i n g by Analogy

If an RPS was succesfully generated from an initial tree, we store it in memory.
These RPSs enlarge the set of predefined functions available to IPAL and they
can be used for analogical programming. Analogical programming can be seen
as a special case of analogical problem solving which is described by four subpro-
cesses in cognitive science literature [15]: (1) Retrieval of an example problem
already solved which is structural similar to the current problem; (2) mapping
the structures of example and goal problem; (3) adapt the example solution to
the goal problem; and (4) generalize over the structure of example and goal
problem.

In the case of our programming problems, we assume, that a programmer/the
system has already constructed an initial program and now wants to fold it to
an RPS. The RPSs stored in memory can be expanded to initial programs of
a given depth by the rewrite rule given in definition 6. We compare (map) the
current initial program for which the RPS is unknown with initial programs ex-
panded from RPSs stored in memory. Comparision of initial programs is done by
a transformation algorithm: The current initial tree is tried to be made identical
to an initial tree belonging to an RPS expanded from memory by substitution,
deletion and insertion of nodes (i.e. symbols contained in the initial program
term). This method is implemented as a special version of the tree-to-tree dis-
tance algorithm proposed by [12]. If the transformation can be performed by
unique subsitutions of symbols only, the structures of the example and goal tree
are isomorphic. The new RPS can than be gained by subsituting symbols of
the example RPS according to the mapping function. We can show that this

224

is less expensive than performing inductive program synthesis if the memory is
effectively organized.

Currently we are employing this method of analogical problem solving for iso-
morphic structures only. But we are working on an extension to non-isomorphic
cases, modifying example RPSs by deletion and insertion rules.

6 Conclusions and Future Research
We believe that segmenting inductive program synthesis in two parts - building
initial programs by planning and folding initial programs to RPSs by a generic
algorithm - may be a fruitful approach. Starting with an initial program as in-
put makes program synthesis itself a not too difficult task and we can deal with
complex recursive structures. The problem of inductive program synthesis from
examples of course remains with all its well known difficulties. We only shift
the greater part of the burden to the subproblem of generating initial programs
from examples. But here we see possibilities to overcome some limitations in
employing planning methodologies using heuristic techniques proposed in arti-
ficial intelligence. Additionally we look at our approach as a potential model
for human skill acquisition in the domain of problem solving. We can describe
skill acquisition by three levels of generalization, all reported in cognitive science
literature: the chuncking of rules in learning by doing (i.e. building initial pro-
grams), descriptive generalization of the problem solving experience to a more
general problem solving strategy (i.e. inductive program synthesis) and making
use of already solved problems in analogical reasoning (i.e. giving an I~PS a new
semantic by interpreting the operation symbols w.r.t, another domain model).

Currently we can synthesize a variety of recursive structures from initial
programs but our approach is restricted to independend variables, that is, we
can not deal with nested loops. Our next goal therefore is, to extend the synthesis
algorithm to finding dependencies in variable substitution. That is, we have to
extend the "find subsitution" part of our algorithm from simple unification to
a second cycle of induction. Another restriction to our approach is, that initial
programs can be generated only for problems with finite data structures and
primitive operations which can be defined by production rules, as blocksworld
or Tower of Hanoi problems. While we are able to fold given initial programs
representing numerical or list problems to RPSs, we are not able to construct
initial programs from examples for these domains. To overcome this limitation
we have to expand our planning algorithm from applying user-defined production
rules only to making use of the operational semantics of already built-in functions
of a given programming language (as plus or tail) and predicates (as eqO or
empty). That is, we have to integrate the eval-apply interpreter of a functional
language (as for example LISP) in plan construction. Last but not least, our
approach can be extended to use not only predefined functions but making use
of already inferred RPSs which makes it possible to infer complex recursive
programs containing subprograms.

Acknowledgemen t s
We thank a number of students participating in our students projects for supporting the
implementation of the IPAL system, especially: Mark Miiller and Martin Miihlpfordt.

225

References

1. J.R. Anderson. Knowledge compilation: A general learning mechanism. In R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning - An AI
Approach, volume 2, pages 289-310. Tioga, 1986.

2. J.R. Anderson, P. Pirolli, and R. Farrell. Learning to program recursive functions.
In M.T.H. Chi, R. Glazer, and M.J. Farr, editors, The Nature o I Expertise, pages
153-183. Lawrence Erlbaum, 1988.

3. A. W. Biermann, G. Guiho, and Y. Kodratoff, editors. Automatic Program Con-
struction Techniques. Comer Macmillan, 1984.

4. G. Le Blanc. BMWk revisited: Generalization and formalization of an algorithm for
detecting recursive relations in term sequences. In F. Bergadano and L. de Raedt,
editors, Machine Learning, Proc. of ECML-94, pages 183-197, 1994.

5. W. W. Cohen. Desiderata for generalzation-to-n algorithms. In Int. Workshop AH
'9~, Dagstuhl Castle, Germany, volume LNAI 642, pages 140-150. Springer, 1992.

6. B. Courcelle and M. Nivat. The algebraic semantics of recursive program schemes.
In Winkowski, editor, Math. Foundations of Computer Science, volume 64 of LNCS,
pages 16-30. Springer, 1978.

7. J. Engelfriet. Simple Program Schemes and Formal Languages. Springer, 1974.
8. A.J. Field and P.G. Harrison. Functional Progamming. Addison-Wesley, 1988.
9. P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: Achieve-

ments and prospects, to appear.
10. M. Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine,

10(4):40-44, 1989.
11. J. P. Jouannaud and Y. Kodratoff. Characterization of a class of functions syn-

thesized from examples by a summers like method using a 'B.M.W.' matching
technique. In IJCAI, pages 440-447, 1979.

12. S. Lu. A tree-to-tree distance and its application to cluster analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-l(2):219-224, 1979.

13. Z. Manna and R. Waldinger. How to clear a block: a theory of plans. Journal of
Automated Reasoning, 3(4):343-378, 1987.

14. S. Muggieton. Learning from positive data. In S. Muggleton, editor, Proc. of the
6th Int. Workshop on Inductive Logic Programming, pages 225-244. Stockholm
University, Royal Institute of Technology, 1996.

15. L. R. Novick and K. J. Holyoak. Mathematical problem solving by analogy. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 14:510-520, 1991.

16. U. Schmid and F. Wysotzki. Skill acquisition can be regarded as program synthesis.
In U. Schmid, J. Krems, and F. Wysotzki, editors, Proc. of the First European
Workshop on Cognitive Modelling (TU Berlin), pages 39-45, 1996.

17. M.J. Schoppers. Universal plans for reactive robots in unpredictable environments.
In IJCAI '87, pages 1039-1046, 1987.

18. P. D. Summers. A methodology for LISP program construction from examples.
Journal ACM, 24(1):162-175, 1977.

19. M. Veloso, J. Carbonell, M. A. P~rez, D. Borrajo, E. Fink, and J. Blythe. Inte-
grating planning and learning: The prodigy architecture. J. of Experimental and
Theoretical A I, 7(1):81-120, 1995.

20. F. Wysotzki. Representation and induction of infinite concepts and recursive action
sequences. In Proc. of the 8th IJCAL Karlsruhe, 1983.

21. F. Wysotzki. Program synthesis by hierarchical planning. In P. Jorrand and
V. Sgurev, editors, Artificial Intelligence: Methodology, Systems, Applications,
pages 3-11. Elsevier Science, Amsterdam, 1987.

