
Predicate Invention and
Learning from Positive Examples Only

Henrik BostrSm

Dept. of Computer and Systems Sciences
Stockholm University

Electrum 230, 164 40 Kista, Sweden
henke~dsv.su.se

Tel: +46-8-16 16 16
Fax: +46-8-703 90 25

Abstract . Previous bias shift approaches to predicate invention are not
applicable to learning from positive examples only, if a complete hypoth-
esis can be found in the given language, as negative examples are required
to determine whether new predicates should be invented or not. One ap-
proach to this problem is presented, MERLIN 2.0, which is a successor
of a system in which predicate invention is guided by sequences of input
clauses in SLD-refutations of positive and negative examples w.r.t, an
overly general theory. In contrast to its predecessor which searches for
the minimal finite-state automaton that can generate all positive and no
negative sequences, MERLIN 2.0 uses a technique for inducing Hidden
Markov Models from positive sequences only. This enables the system
to invent new predicates without being triggered by negative examples.
Another advantage of using this induction technique is that it allows
for incremental learning. Experimental results are presented comparing
MERLIN 2.0 with the positive only learning framework of Progol 4.2
and comparing the original induction technique with a new version that
produces deterministic Hidden Markov Models. The results show that
predicate invention may indeed be both necessary and possible when
learning from positive examples only as well as it can be beneficial to
keep the induced model deterministic.

1 I n t r o d u c t i o n

Bias shift approaches to predicate invention (e.g. [15, 6, 8, 1, 16]) introduce new
predicates whenever the learning method fails to produce a consistent hypothesis
in the given language [13]. This means tha t as long as it is possible to formulate
a complete hypothesis in the given language (i.e. such tha t all positive examples
are covered), negative examples are necessary for detecting inconsistency, and
thus for inventing new predicates 1.

1 Other approaches to predicate invention according to [13] fall outside the scope
of this work. These are reformulation approaches, which uses predicate invention for
optimising a theory w.r.t, size or compression, and transformation approaches, which
base their decision on introducing new predicates on the operationality or efficiency
of the induced hypothesis.

227

In this work we present one approach to this problem, the system MERLIN
2.0 2. The system is a successor of MERLIN 1.0 [5], which uses an overly gen-
eral theory to find SLD-refutations s of positive and negative examples, and then
searches for the minimal finite-state automaton that can generate all sequences
of input clauses in the SLD-refutations of the positive examples and none of the
sequences in the SLD-refutations of the negative examples. For example, assume
that we are given the following overly general theory T:

(cl) p([]) .
(c2) p([alL]):- p(L).
(c3) p([blL]):- p(L).

together with the positive examples E + = {p ([a, a, a, b, b]), p ([a, a, b, b, b, b]) }
and the negative examples E - = {p ([a]), p ([a ,b , a]) }. The corresponding
positive sequences are {c2c2c2c3c3cl, c2c2c3c3c3c3cl} and the negative sequences
are {c2cl, c2c3c2cl}. The minimal automaton found by MERLIN 1.0 that is con-
sistent with these sequences are:

This automaton is used together with the overly general hypothesis to con-
struct the folllowing hypothesis:

p ([a l A]) : - p(A).
p(EblA1) : - p_ l (h) .
p _ l ([]) .
p_l([b[A]) :- p_I(A).

Note that without the invention of a new predicate (in this case p_l), it is
not possible to formulate the hypothesis that the argument of p should be a list
in which all a's are followed by one or more b's.

Clearly, if MERLIN 1.0 is given positive examples only, there is nothing that
prevents the system from reducing the automaton to a one-state automaton that
accepts all strings consisting of symbols that appear in the positive sequences.
In the above example, this would result in a hypothesis identical to the overly
general theory. In order to overcome this problem, MERLIN 2.0 uses a technique
for inducing Hidden Markov Models from positive sequences only [14], that in-
stead of minimising the size of the resulting automaton maximises the posterior
probability. This enables MERLIN 2.0 to invent new predicates without being
triggered by negative examples. In the next section, we present the technique
for inducing Hidden Markov Models as well as a new extension which makes the
induced Hidden Markov Model deterministic. In section three it is shown how

2 The system can be obtained from h t t p : / / ~ . d s v , su. se/ML/MERLIN.ht,.1
s Familiarity with logic programming terminology is assumed [9].

228

this technique is incorporated in MERLIN 2.0. In section four, we present exper-
imental results comparing the system with positive only learning in Progol 4.2
[10, 11] as well as comparing the deterministic and non-deterministic versions of
the technique for induction of Hidden Markov Models. Finally, in section five we
give concluding remarks and point out directions for future research.

2 Induction of Hidden Markov Models

We first give a definition of Hidden Markov Models adopted from [14] and then
briefly present the technique for inducing Hidden Markov Models that was in-
troduced in [14].

2.1 H i d d e n M a r k o v M o d e l s

Hidden Markov Models (HMMs) can be viewed as a stochastic generalisation
of the non-deterministic finite automata (NFAs) [7]. As NFAs, HMMs accept
(or generate) strings over the alphabet by non-deterministic walks between the
initial and final states. In addition, HMMs also assign probabilities to the strings
they generate, computed from the probabilities of individual transitions and
emissions. These concepts are defined formally below.

D e f i n i t i o n 1. A Hidden Markov Model is a quintuple H M M = (Q, 27, ql, qF, P)
where Q is a set of states, • is an output alphabet, ql is the initial state, qF
is the final state and P is a set of probability parameters, consisting of transi-
tion probabilities p(q --~ q~) specifying the probability that state q~ follows q, for
all q, qt E Q and emission probabilities p(q ~ ¢) specifying the probability that
symbol a is emitted while in state q for all q E Q and a E 27. It is assumed that
p(q --* ql) = p(ql~ --* q) = 0 for all q E Q and p(ql t ¢) = P(qF J" a) -- 0 for all
a E ~ .

Defini t ion2. An HMM is said to generate a string x = ala2 .--al E 27* if
and only if there is a state sequence, or path, qIqlq2"'" qlqF E Q* with non-zero
probability, such that qt outputs a~ with non-zero probability for t = 1, . . . ,1.
The probability of a path is the product of all transition and emission probabilities
along it.

D e f i n i t i o n 3. The structure or topology of an HMM consists of its states Q, its
outputs 27, a subset of its transitions q -~ q~ with p(q -~ q~) = 0 and a subset of
its emissions with p(q t a) = O.

D e f i n i t i o n 4. The conditional probability P(xlM) of a string x = al ".. at given
an HMM M is computed as the sum of the probabilities of all paths that generate
x "

P(xIM) = ~ P(ql -+ ql)P(ql t al)p(ql -~ q2)...P(qt ~ at)P(ql -~ qF)
ql ...qt E:Q l

229

2.2 I n d u c t i o n o f H i d d e n M a r k o v M o d e l s

Traditional HMM estimation is based on the Baum-Welch algorithm [3], which
assumes a certain topology and adjusts the parameters so as to maximise the
model likelihood on the given samples. However, as we are primarily interested
in finding the topology, and not the parameters, the technique in [14] is more
appropriate than the former, as it in contrast to the former can be used for
finding the HMM with maximimal posterior probability of the structure 4. We
first introduce the concept of posterior probability of an HMM structure accord-
ing to [14] and then present their Best-first merging algorithm for finding an
HMM with maximal posterior probability. Finally, we present an extension to
the algorithm that forces the induced HMM to be deterministic.

Poster ior p r o b a b i l i t y fo r H M M s t r u c t u r e s We assume tha t there exists
a distribution P(M) independent of the da ta tha t assigns each model M an a
priori probability, i.e. a bias. A model M can he decomposed into its s tructure
par t Ms and its parameter part 9M, and the prior P(M) can therefore be written
a s :

P(M) = P(Ms)P(OM[Ms) (1)

Given some data X, the problem is to find a model s tructure tha t maximises
the posterior probability P(Ms[X). Bayes' Law expresses the posterior as:

P(Ms[X) = P(Ms)P(X[Ms)
P(X) (2)

Since the data X is fixed, this amounts to finding a model tha t maximises
P(Ms)P(X[Ms). Using the Dirichlet distribution as a parameter prior and a de-
scription length prior for the structure together with the Viterbi approximation 5
and the assumption that the Viterbi paths do not change a s 0 M varies, the
expression to be maximised, P(Ms)P(XIMs), can now be written:

1-I (IQI + 1)-"'(q)(IEI + 1)-n'(q)F(tq,,... ,tq.,(,))F(eq,,... ,tq..(,)) (3)
qEQ

where tq~ and eq~ are the total counts of transitions and emissions, called Viterbi
counts, occurring along the Viterbi paths associated with the samples in X and
the n-dimensional function F (t l , . . . , t ,) is defined as:

F(t l , . . . , tn) = B(tl + 1In,. . . , tn + 1In)
B(1/n, . . . , l/n) (4)

4 The Baum-Welch algorithm can in principle also be used for finding a structure, as it
may set some parameters to zero, but it requires that the maximal number of states
is known and also that initial values are chosen for the model parameters, a choice
of which the outcome of the algorithm is highly dependent.

5 All paths except the most likely one, called the Viterbi path, are assumed to have
zero probabibility.

230

where B(a l , . . . , an) is the n-dimensional Beta function:

B (a l , . . . , a n) = r (a l + - - - + an) (5)

Bes t - f i r s t m e r g i n g Below we present the incremental version of the Best-first
merging algorithm in [14]. It takes as input a sequence of samples, incorporates
them one by one into the current model and after each incorporation uses Hill-
Climbing (with look-ahead) to find a new current model with maximal posterior
probability by merging states. After all samples are processed, the current model
is returned. Since the calculation of the posterior probability uses Viterbi counts,
rather than transition and emission probabilities, such are kept by the algorithm.

The incorporation of a new sample x = a l - ' . az into an existing model M
results in that a set of new states q l , . . . , qt are added to Q and that the Viterbi
counts for the transitions qi -+ qz, qi -+ qi + 1, 1 < i < l - 1, and qt -+ qF and
the emissions qi 1" ai, 1 < i < l, are set to one. When merging two states, the
corresponding Viterbi counts are added and recorded as the counts for the new
state.

funct ion Best-first merging(xz • - - xn, LookAhead)
M := the empty model
fo r i := 1 t o n d o

Incorporate xi into M, L := LookAhead and B := M
r e p e a t

Let C be the set of models obtained from merging two states in B
Let B E C be the model with maximal posterior probability P(BIX)
i f P(B]X) > P(MIX) t h e n M := B, L := LookAhead else L := L - 1

un t i l L = 0 or C = 0
return M

E x a m p l e After having incorporated one sample xl = c2c2c2c3c3c3cl into the
empty model, the resulting model is as follows:

c2 c2 c2 c3 c3 c3 c l

I F

One of the models with highest posterior probability obtained from merging
two states is obtained by merging the last two states tha t emit e3. However,
the posterior probability of this model is less than the initial model, but if look-
ahead is allowed, the merging of the two states emitting e3 in this model gives a
model with higher posterior probability than the initial one. The merging process
continues with the above model, eventually reaching the following model (using

one-step look-ahead): 6

231

c2 c3 cl

Induc ing Determis t ic H M M s Whenever a new sample is to be incorporated
into the current model, a large part (or even all) of it may in fact already be
accepted by the model, requiring little (or no) factual alterations to the model.
The Best-first merging algorithm, however, generates a completely new sub-
model for each sample and relies on the merging process to eventually incorporate
the sample in the best way. In many cases, this is not only inefficient but may also
mislead the Hill-Climbing search, as the chances of making the wrong choices
increases with the number of states. The above approach can be viewed as being
maximally pessimistic regarding the use of the current model for generating the
new sample.

One could also consider a maximally optimistic version, which incorporates
the sample into the existing model as far as possible. Assuming this means
incorporating the longest prefix of the sample for which there is a path in the
current model, this can be done efficiently by keeping the model deterministic,
i.e. no state may have transitions leading to two different states that emit the
same symbol. When incorporating a new sample, determinism is kept by aligning
the sample as far as possible with the current model 7, introducing new states
and transitions only for the suffix of the sample for which there is no path in
the current model. When having merged two states, determinism can be kept
by checking whether the new state has transitions leading to two different states
that emit the same symbol, and if so, merging these two states. In section 4, we
empirically compare the pessimistic with the optimistic approach.

3 M E R L I N 2 .0

Having induced an HMM that shows what sequences of input clauses are allowed
in SLD-refutations of a given theory, MERLIN 2.0 produces a new theory that
allows only those sequences that are allowed by both the original theory and the
induced HMM. This is done by first converting the HMM into an NFA and by
representing the set of sequences allowed by the given theory as a context-free
grammar, and then deriving the intersection of the NFA and the first grammar.
Finally, the intersection is used to produce the resulting hypothesis.

3.1 C o n v e r t i n g a n H M M i n t o a n N F A

The construction of an NFA from the structure of an HMM can be done in
two ways: for each state, either the transitions leading from the state or the

6 It should be noted that the term P(XIMs) prevents the HMM to be further reduced
as the conditional probability of the sample would decrease.

7 This includes updating the Viterbi counts.

232

transitions leading to the state are labeled with the symbols emitted by the
state. We have chosen the latter option, since it avoids introducing transitions
labeled with the empty string. Furthermore, all states with transitions leading
to the final state in the HMM will become final states in the NFA.

Example The final HMM in the last example is converted into the following
NFA:

3.2 Represen t ing t he T h e o r y as a Con tex t -F ree G r a m m a r

The set of possible sequences of input clauses in SLD-refutations of any instance
of a goal G for a given program P can be represented by a context-free grammar,
referred to as a proof grammar, (S,R), where S is the start symbol and R is a
set of rules, where each rule is on the form L --~ C R 1 . . . P~, where n > 0,
L, R1 . . . P ~ are non-terminal symbols and C is a terminal symbol. Below, we
show how to produce such a grammar by an example (for algorithmic details see
[5]).

Example Given the goal { : - p(L)} together with the program in section 1,
the above procedure produces the following proof grammar (p/ l , R), where R is
the following set of rules:

p/1 --+ cl
p/1 - , c2 p/1
p/1 - , c3 p/1

3.3 Der iv ing the In te r sec t ion

The intersection of a context-free language and a regular language is a context-
free language [2]. In [5], a derivation of the algorithm in [2] is presented, which
finds a context-free grammar that represents the intersection of a proof grammar
and an NFA.

Example Given the NFA and the proof grammar in the previous examples, the
following rules are produced by the procedure mentioned above, together with
the start symbol (p/1,qo, e)s:

s Dead rules have been removed.

(p/l, qo, ~) -+ c2 (p/l, ql, ~)
(p/l, ql, e) -+ e2 (p/l, ql, e)
e,/l, q,, ~) --~ c3 (p/l, q,, ~)
(p/l, q~, ~) -+ ~I
0,/I , q,, ~) --~ c~ (p/l, q~, ~)

233

3.4 Producing the Final Program

Having derived the intersection of the learned automaton and the original proof
grammar, MERLIN 2.0 produces the final hypothesis in the form of a logic
program, in which there is one clause for each rule in the intersection, and where
each predicate symbol corresponds to a non-terminal symbol. This is achieved
using the procedure presented in [5].

E x a m p l e Given the context-free grammar in the previous example, together
with the predicate symbol p/l , the above procedure produces the following pro-
gram:

p ([a l A]) : - p_ l (A) .
p _ l ([a] A]) : - p_ l (A) .
p _ l ([b l A]) : - p_2(A).
p _ 2 ([]) .
p_2 ([b I A]) :- p_2 (A).

4 Empirical Evaluation

In this section we present an empirical evaluation of the performance of MERLIN
2.0 both with the original Best-first merging algorithm and with the extension
tha t forces the algorithm to produce deterministic HMMs 9. MERLIN 2.0 is also
compared to Progol 4.2, which is able to learn from positive examples only, but
not to invent new predicates 1°. We first present the theories and example sets
tha t were used in the experiments and then the experimental results.

9 The lookahead was set to 5 for the non-deterministic version and to 1 for the deter-
ministic version. Following [14], a logarithmic version of Bayes' law was used in the
implementation including a global prior weight A, giving A log P(Ms)+ log P(XIMs)
as the quantity to be maximised. A was set to 0.30 for the non-deterministic version
and to 0.25 for the deterministic version. Furthermore, both versions first work in
an incremental phase, in which states may only be merged if they have identical
emissions and then in a second, non-incremental phase, in which all states may be
merged.

10 The default parameter settings were used in Progol except for the posonly parameter
which was set to ON and the variable depth parameter (i) and the maximum clause
length (c), which were set to 7.

234

4.1 Domains

The first theory that was investigated is the following:

(cl) nnC0).
(e2) nnCsCX)) : - nnCx).

The entire set of examples consisted of the first 40 natural numbers, where the
instances were classified as positive if they were odd, and negative otherwise (i.e.
50% positive examples). A correct definition of the odd numbers can be found
without inventing new predicates, which means that Progol at least in theory is
able to find it.

The second theory that was investigated is the same as presented in section
1, and the set of positive examples consisted of instances of p(L) where L con-
tained up to 7 elements representing the regular expression a+b+a +. A set of
negative examples was generated by randomly replacing one of the elements in
each positive example with the other constant, such that the new instance did
not belong to the set of positive examples. The total number of examples in this
set is 70 (of which 50% are positive). It should be noted that a correct hypothesis
can not be produced for this domain without predicate invention.

The third theory extends the previous with one additional recursive clause,
allowing the constant c to appear in the lists. The set of positive examples
consisted of instances of p(L) where L contained up to 33 elements representing
the regular expression ae*a U bc*b (this target was also used in [14]). The set of
negative examples were generated in the same way as for the previous domain,
resulting in a set of 128 examples in total (of which 50% are positive).

The fourth theory and example set that were investigated were taken from
[5], where the target predicate turing(M) represents a sequence of movements
of a Turing machine, where each move is on the form (Read, Write, Move) and
the positive examples correspond to movements of a Turing machine performing
addition. The total number of examples for this domain was 72 (of which 50%
were positive).

4.2 Exper imen ta l Results

Each set of positive examples and each set of negative examples were randomly
split into two halves. One half of the positive examples together with one half of
the negative examples were used for testing. Subsets of the other half of positive
examples were used for training, and the number of examples in these sets were
varied, where a larger set always included a smaller. The same training and test
sets were used for all three techniques. Each experiment was iterated 50 times
and the mean accuracy on the test examples is presented below.

In Figure 1, the results from the odd number domain are presented. In this
domain, the deterministic version of MERLIN 2.0 clearly outperforms the two
other techniques, which produce overly general hypotheses (the mean number of
clauses produced by Progol is 1.0 for all training sizes).

235

1oo

9o

8o

4O

MERLIN 2.0 (de.t) -4t--
MERUN 2.0 (na~let.)

Progol

I I I I 1 I I

3 4 5 6 7 8 9 1 0

N o , o f t l a i n i n g e x a m p l e .

Fig. 1. Accuracy for the odd number domain.

In Figure 2, Figure 3 and Figure 4, the results from the a+b+a +, ac*aUbc*b
and the Turing machine domains are presented. As for the previous domain,
Progol produces overly general hypotheses in all three domains. That Progol
would not perform well in these domains was expected as predicate invention is
necessary for obtaining correct hypotheses. The deterministic version of MER-
LIN 2.0 outperforms the non-deterministic version in the first two of the three
domains, due to that the non-deterministic version in the first case produces
overly specific hypotheses and in the second case overly general hypotheses. In
the last domain, the deterministic version suffers from producing overly specific
hypotheses.

1 0 0

9O

8O

i +
6O

50

40

MERL/~I 2.0 (det)
MERI+AN 2.0 (noo~et.)

P r o g o l

i i i l I + i

3 4 ~ 6 7 $ 9 1 0

~ + of ~ g a J u ~

Fig. 2. Accuracy for the a+b+a + domain.

236

t 0 0

90

8O

~0

50,

40

l ~ogo l

t i t t r t t
3 4 $ 6 7 8 9 I 0

No. of ~ g ~ F t e ~

Fig. 3. Accuracy for the ac*a U bc*b domain.

I00

90

80

60

bi~P,l.~ 2.0 (det) --=--
Progol

| i i i i t |

3 4 $ 6 7 g 9 I 0

Fig. 4. Accuracy for the Turing machine domain.

5 C o n c l u d i n g R e m a r k s

We have presented a novel approach to predicate invention when learning from
positive examples only, the system MERLIN 2.0, which uses a technique for
inducing Hidden Markov Models to determine when to invent new predicates.
We have also proposed an extension to the induction technique, which makes
the induced Hidden Markov Model deterministic. The system and the extension
has been evaluated empirically, and the usefulness of predicate invention when
learning from positive examples only was demonstrated as well as it was shown
that it can be beneficial to keep the induced model deterministic.

There are a number of possible directions for future research. One is to ex-
periment with the approach using other techniques for inducing finite-state au-
tomata from positive examples only (e.g. [4]). Another direction is to investigate
extensions to the technique for inducing Hidden Markov Models, including tech-
niques for finding a good global prior weight, using other search techniques than
Hill-climbing and allowing negative examples. A third direction is to actually

237

use the parameters which are set by the induction algorithm in order to induce
stochastic logic programs [12].

A c k n o w l e d g e m e n t s This work has been supported by the European Commu-
nity ESPRIT Long Term Research Project no. 20237 Inductive Logic Program-
ming H and the Swedish Research Council for Engineering Sciences (TFR).

References

1. Bain M. and Muggleton S., "Non-Monotonic Learning", in Muggleton S. (ed.), In-
ductive Logic Programming, Academic Press (1992) 145-161

2. Bar-Hillel Y., Perles M. and Shamir E., "On formal properties of simple phrase
structure grammars", Zeitschrift fiir Phonetik, Sprachwissenschaft und Kommunika-
tionsforschung, 14, 1, Akademie Verlag, Berlin (1961) 143-172

3. Baum L., Petrie T, Soules G. and Weiss N., "A maximization technique occurring
in the statistical analysis of probabilistic functions in Markov chains", The Annals
of Mathematical Statistics 41 (1970) 164-171

4. Biermann A. W. and Feldman J. A., 'On the Synthesis of Finite-State Machines from
Samples of Their Behavior", IEEE Transactions on Computers 21 (1972) 592-597

5. BostrSm H., "Theory-Guided Induction of Logic Programs by Inference of Regu-
lar Languages", Proc. of the 13th International Conference on Machine Learning,
Morgan Kaufmann (1996) 46-53

6. Kijsirikul B., Numao M. and Shimura M., "Discrimination-based constructive in-
duction of logic programs", Proceedings of the lOth National Conference on Artificial
Intelligence, Morgan Kaufmann (1992) 44-49

7. Lewis H. R. and Papadimitriou C. H., Elements of the Theory of Computation,
Prentice-Hall (1981)

8. Lapointe S., Ling, C. and Matwin S., "Constructive Inductive Logic Programming",
Proceedings of the 13th International Joint Conference on Artificial Intelligence, Mor-
gan Kaufmann (1993) 1030-1036

9. Lloyd J. W., Foundations of Logic Programming, (2nd edition), Springer-Verlag
(1987)

10. Muggleton S., "Inverse entailment and Progor', New Generation Computing 13
(1995) 245-286

11. Muggleton S., "Learning from positive data", Proc. of the Sixth International
Workshop on Inductive Logic Programming (1996)

12. Muggleton S., "Stochastic Logic Programs", Advances in Inductive Logic Program-
ming (Ed. L. De Raedt), IOS Press (1996) 254-264

13. Stahl I., "Predicate Invention in Inductive Logic Programming", Advances in In-
ductive Logic Programming (Ed. L. De Raedt), IOS Press (1996) 34-47

14. Stolcke A. and Omohundro S., "Best-first Model Merging for Hidden Markov
Model Induction", TR-94-003, International Computer Science Institute, Berkeley,
CA (1994)

15. Wirth R. and O'Rorke P., "Constraints on Predicate Invention", Proceedings of
the 8th International Workshop on Machine Learning , Morgan Kaufmann (1991)
457-461

16. Wrobel S., "Concept Formation During Interactive Theory Revision", Machine
Learning Journal 14 (1994) 169-192

