
Recursive Lazy Learning for Modeling and Control 

Gianluca Bontempi, Mauro Birattari,  and Hugues Bersini 

Iridia - CP 194/6 
Universit~ Libre de Bruxelles 

50, av. Franklin Roosevelt 
1050 Bruxelles - Belgium 

emaih {gbonte,mbiro,bersini}~ulb.ac.be 
http://iridia.ulb.ac.be 

Abst rac t .  This paper presents a local method for modeling and control 
of non-linear dynamical systems from input-output data. The proposed 
methodology couples a local model identification inspired by the lazy 
learning technique, with a control strategy based on linear optimal con- 
trol theory. The local modeling procedure uses a query-based approach 
to select the best model configuration by assessing and comparing differ- 
ent alternatives. A new recursive technique for local model identification 
and validation is presented, together with an enhanced statistical method 
for model selection. The control method combines the linearization pro- 
vided by the local learning techniques with optimal linear control theory, 
to control non-linear systems in configurations which are far from equilib- 
rium. Simulations of the identification of a non-linear benchmark model 
and of the control of a complex non-linear system (the bioreactor) are 
presented. The experimental results show that the approach can obtain 
better performance than neural networks in identification and control, 
even using smaller training data sets. 

1 I n t r o d u c t i o n  

In this paper we present a local method to model and control an unknown 
dynamical system from input-output data. The idea of local approximators as 
alternative to global models originated in non-parametric statistics [13,11] to be 
later rediscovered and developed in the machine learning field [1,8]. Recent work 
on lazy learning (also known as memory-based or instance-based learning) gave 
a new impetus to the adoption of local techniques for modeling [3] and control 
problem [4]. 

Our approach extends the idea of local learning in several directions. First, 
we propose a model identification methodology based on the use of an iterative 
optimization procedure to select the best local model among a set of different 
candidates. Modeling a non-linear mapping using observations, requires the data  
analyst to make several choices involving the set of relevant variables and obser- 
vations, the model structure, the learning algorithm, and the validation protocol. 
Our method defers all of these decisions until a prediction or a local description 
is requested (query-based approach). In classical methods the many options of a 
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local model are designed according to heuristic criteria and a priori assumptions. 
Here we propose an automatic procedure which searches for the optimal local 
model configuration, by returning for each candidate model its parameters and 
a statistical description of its generalization properties. As a result, a different 
model tuning is performed locally for each query. This idea is already presented 
as local tuning in Atkeson et al. [3] but no reference to any existing application 
is given. To the authors' knowledge, this is the first work where this approach is 
used to this larger extent. 

The second contribution of the paper is the introduction of a new algorithm to 
estimate in a recursive way the model performance in cross-validation. Myers [21] 
introduced the PRESS statistic which is a simple, well-founded, and economical 
way to perform leave-one-out cross validation [12] and to assess the performance 
in generalization of local linear models. Here we propose a technique based on 
recursive least squares methods to compute the PRESS in an incremental way. 
Moreover, a powerful and well-founded statistical test is used to compare the 
performance of two alternative candidates on the basis of their cross-validation 
error sampling distributions. 

The third contribution of the paper is a non-linear control design technique, 
which extensively uses analysis and design tools imported from linear control. 
The idea of employing linear techniques in a non-linear setting is not new in 
the control literature but recently had a renewed popularity thanks to methods 
for combining multiple estimators and controllers in different operating regimes 
of the system [20]. Gain scheduling [23], fuzzy inference systems [26], and local 
model networks [17] are well-known examples of control techniques for non-linear 
systems inspired by linear control. However, two strong assumptions underlie lin- 
earization control methods: an analytical description of the locus of equilibrium 
points is available, and the system is supposed to evolve in a sufficiently restricted 
neighborhood of the desired regime. Here we propose an indirect control method 
for performing finite-time horizon control which requires only input-output data 
from the observed system behavior. The approach is an example of differential 
dynamic programming algorithm [16,2] where the gradient computation is per- 
formed by the lazy algorithm. The controller is designed with optimal control 
techniques parameterized with the values returned by the linear local estimator. 
We show that a combination of a local estimator with a time varying optimal 
control can take into account the non-linearity of a system over a wider range 
than conventional linearized quadratic regulators (LQR). 

2 L o c a l  m o d e l i n g  as  a n  o p t i m i z a t i o n  p r o b l e m  

Modeling from data involves integrating human insight with learning techniques. 
In many real cases, the analyst faces a situation where a set of data is available, 
and an accurate prediction is required. Often, information about the order, the 
structure, or the set of relevant variables is missing or not reliable. The process of 
learning consists of a trial and error procedure during which the model is properly 
tuned on the available data. In the lazy learning approach, the estimation of 
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the value of the unknown function is solved giving the whole attention to the 
region surrounding the point where the estimation is required. The classical 
non-adaptive memory-based procedure essentially consists of these steps: 
1. for each query point Xq, define a set of neighbors, each weighted according 

to some relevance criterion (e.g. the distance) 
2. choose a regression function f in a restricted family of parametric functions 
3. compute the regression value f(xq). 

The data analyst who adopts a local regression approach, has to make a set of 
decisions related to the model (e.g. the number of neighbors, the weight func- 
tion, the parametric family, the fitting criterion to estimate the parameters). 
We extend the classical approach with a method that automatically selects the 
adequate configuration. To do this, we simply import tools and techniques from 
the field of linear statistical analysis. The most important of these tools is the 
PRESS statistic [21], which is a simple, well-founded and economical way to 
perform leave-one.out cross-validation [12] and therefore to assess the general- 
ization performance of local linear models. Due to its short computation time 
which allows its intensive use, it is the key element of our approach to modeling 
data. In fact, if PRESS can assign a quantitative performance to each linear 
model, alternative models with different configurations can be tested and com- 
pared in order to select the best one. This same selection strategy is used to 
select the training subset among the neighbors, as well as various structural as- 
pects like the features to consider and the degree of the polynomial used as a 
local approximator [6]. The general ideas of the approach can be summarized in 
the following way. 
1. The task of learning an input-output mapping is decomposed in a series of 

linear estimation problems 
2. Each single estimation is treated as an optimization problem in the space of 

alternative model configurations 
3. The estimation ability of each alternative model is assessed by the cross- 

validation performance computed using the PRESS statistic. 
The core operation of the algorithm consists in assessing and comparing local 
models having different configurations. Each assessment requires the PRESS 
computation and a comparison with the other candidate models. In order to 
make these operations more effective we propose two innovative algorithms in 
the lazy learning method: 
1. a recursive algorithm for the parametric estimation and the cross-validation 

of each local model. This method avoids having to restart each model eval- 
uation from scratch and noticeably decreases the computational cost 

2. a more rigorous statistical test to compare the performance of two alternative 
candidate models. The test does not consider only the average values of the 
cross-validation errors but also their sampling distributions. 

2.1 T h e  P R E S S  stat is t ic  and the  recursive m e t h o d  

To illustrate the local regression procedure, we will first define some notation. 
Let us consider an unknown input-output mapping f :  ]R d --* ]R of which we are 
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given a set of N samples { ( X l ,  Yl) ,  (X2, Y2) . . . .  , (XN,  YN)}. These examples can 
be collected in an input matrix X of dimensionality [N x d], and in an output 
vector y of dimensionality [N x 1]. 

Given a specific query point Xq, the prediction of the value yq = f(Xq) is 
computed as follows. First, for each sample (xi, Yi), a weight wi is computed 
as a function of the distance d(xi, xq) from the query point xq to the point xi. 
Each row" of X and y is then multiplied by the corresponding weight creating 
the variables Z = W X  and v = Wy,  with W diagonal matrix having diagonal 
elements Wii --- wi. Finally, a local model is fitted solving the equation ( z T z ) f l  = 
ZTv  and the prediction of the value f (xq) is obtained by evaluating the model 
at the query point ~lq = X T q ( Z T Z ) - I Z T v .  

An important aspect of local learning is that along with the prediction and 
with the model parameters, an assessment of the performance can be easily com- 
puted. We will focus on the leave-one-out cross-validation procedure [12], which 
returns a reliable estimation of the prediction error in Xq. We define the i-th leave- 
one-out error eCV(i) as the difference between Yi and the prediction given by the 
local model centered at xq and fitted using all the examples available except the 
i-th. Hence, an estimation of the prediction error in Xq is given by the average 
of the errors eCV(i) each weighted according to the respective distance d(xi, Xq). 
When considering a local linear model, the leave-one-out cross-validation can 
be performed without recalculating the regression parameter for each excluded 
example thanks to the local version of the PRESS statistic [3]: 

1 
MSEC~(xq) = ~ E (wie~v(i)) 2" 

z-~i i i 
(I) 

In our modeling procedure the performance of a model in cross-validation is 
the criterion adopted to choose the best local model configuration. One of the 
most important parameters to be tuned in a local model configuration is the 
size of the region surrounding xq in which the function f can be conveniently 
approximated by a linear local model. Such a parameter can be defined by the 
number of training examples which fall into the region of linearity. Consequently 
the task of identifying the region of linearity can be reduced to the task of finding, 
among the examples available, the number n of neighbors of xq to be used in the 
local regression fit. Thus, we consider different models, each fitted on a different 
number of examples, and we use the leave-one-out cross-validation to compare 
them and to select the one for which the predicted error is smaller. 

To make the procedure faster, and to avoid repeating for each model the pa- 
rameter and the PRESS computation, we adopt an incremental approach based 
on recursive linear techniques. Recursive algorithms have been developed for 
model identification and adaptive control [15] to identify a linear model when 
data are not available from the beginning but are observed sequentially. Here we 
employ these methods to obtain the parameters of the model fitted on n nearest 
neighbors by updating the parameters of the model with n - 1 examples. Also, 
the leave-one-out errors eCV(i) are obtained exploiting partial results from the 
least square method and do not require additional computational overload. Once 
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adopted as the weighting kernel the indicator function which assigns wi = 1 to 
the examples used to fit the model, the recursive lazy algorithm is described by 
the following equations: 

p.  P(n)x(n + 1)x(n ÷ 1)Tp(n) 
/n + 1) = P ( n ) -  

7(n + 1) = P(n + 1)x(n + 1) 
e(n + 1) = y(n + 1) - x(n + 1)T/3(n) (2) 
/3(n + 1) =/3(n) + -y(n + 1)e(n + 1) 

y(i) - x(i)Tf3(n ÷ 1) 
e  +l(O = 1 + x(i)Tp(  + 1)x(i) 

where, (x(n ÷ 1), y(n ÷ 1)) is the n ÷ 1-th nearest neighbor of the query point, 
P(n) is the recursive approximation of the matrix ( zTz )  -1, ~(n) denotes the 
optimal least squares parameters of the model fitted on the n nearest neighbors, 
and eCnV(i), with 1 < i < n, is the vector E~ v of leave-one-out errors. Once this 
vector is available, the formula (1) is easily computed. This value is a weighted 
average of the cross-validated errors and is the simplest statistic that can be 
used to describe the performance of the model defined by n neighbors. However, 
the problem of assessing the right dimension of the linearity region using a 
finite number of samples affected by noise requires a more powerful statistical 
procedure. In the following section, we will discuss in detail the method used in 
our model selection procedure. 

2.2 T h e  stat is t ical  t es t  for m o d e l  se lect ion  

The recursive method described in the previous section returns for each size n 
of the neighborhood a vector E cv of leave-one-out errors. In order to select the 
best model, our procedure consists in increasing the number of neighbors consid- 
ered when identifying the local model, until the model performance deteriorates 
and a departure from the region of local linearity is detected. This requires a 
statistical test to evaluate when the enlarged model is significantly worse than 
those already considered. In terms of hypothesis testing, we formulate the null 
hypothesis H0 that E cv and EC~_l belong to the same distribution. To evaluate 
this hypothesis we use a permutation test [24] which does not require any as- 
sumptions about normality, homogeneity of variance, or about the shape of the 
underlying distribution. We adopt a paired version of the permutation algorithm 
because of the correlation between the two error vectors. 

In simple words, the procedure consists in computing for each pair of errors 
the difference di = eCV(i) - e cv ~:~ n+l~/, and computing the value D = ~ di which is 
assumed to be an instance of the random variable D*. The sampling distribution 
of D* is found by a randomization procedure [10], a computer-intensive statis- 
tical method to derive the sampling distribution of a statistic by simulating the 
process of sample extraction. In the permutation test, this is done by creating a 
high number of pseudo-samples D b, with b = 1 , . . . ,  B, derived from the actual 
sample D by substituting randomly a difference di with -d~. Once the sampling 
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distribution of D* is generated, a one-tailed test determines whether the null 
hypothesis has to be rejected. 

The randomization test shows one of the main advantage of a local modeling 
procedure: with tow computational effort it is possible to return along with 
the prediction and the linear local parameters also a statistical description of 
the uncertainty affecting these results. This property can result useful both for 
prediction and for control problems. 

3 L a z y  l e a r n i n g  o p t i m a l  c o n t r o l  

Although non-linearity characterizes most real control problems, methods for 
analysis and control design are considerably more powerful and theoretically 
founded for linear systems than for non-linear ones. Here we propose a hybrid 
architecture for the indirect control of non linear discrete time plants from their 
observed input-output behavior. This approach combines the local learning iden- 
tification procedure described in the previous section with control techniques 
borrowed from conventional linear optimal control 

Consider a class of discrete time dynamic systems whose equations of motion 
can be expressed in the form 

y(k) = f ( y ( k  - 1) , . . . ,y (k  - n y ) , u ( k -  d) , . . . , u (k  - d -  nu), 

e(k - 1 ) , . . . , e ( k -  he)) + e(k), (3) 

where y(k) is the system output, u(k) the input, e(k) is a zero-mean distur- 
bance term, d is the relative degree and f(-) is some non linear function. This 
model is known as the NARMAX model [18]. Let us assume we have no physical 
description of the function f but a set of pairs [u(k), y(k)] from the observed 
input-output behavior. Defining the information vector 

1) = [y(k- 1 ) , . . . , y ( k -  ny),u(k- d ) , . . . , u ( k -  d -  nu), 
e(k - 1 ) , . . . , e ( k -  (4) 

the system (3) can be written in the input-output form y(k) = f ( ( p ( k -1 ) )  +e(k). 
Consider the optimal control problem of a non linear system over a finite 

horizon time. Using a quadratic cost function, the solution to an optimal control 
problem is the control sequence U that minimizes 

] 0 3 Mk [y(k)u(k)l (5) 

with Qk, Mk, Rk, Pf  weighting terms designed a priori. While analytic results are 
not available for a generic non linear configuration, optimal control theory [25] 
provides the solution for the linear case. Hence, we will now present the non 
linear problem in a linear time varying setting. 
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Consider the trajectory of the dynamical system once forced by an input 
sequence V -- [u(1), u(2) , . . . ,  u(ti)  ]. Assume that the system can be linearized 
about each state of the trajectory. Neglecting the residual errors due to the first 
order Taylor series approximation, the behavior of the linear system along a 
generic trajectory is the behavior of a linear time varying system whose state 
equations can be written in the form 

y(k + 1) = A(~a(k))y(k) + B(~(k))u(k) + g(~(k)) (6) 

= Aky(k) + Bku(k) + Kk 

with Ak, Bk, Kk parameters of the system linearized about the query point ~(k). 
Kk is an offset term that equals zero in equilibrium points. This term requires 
a slight modification in the linear controller formulation. However, in order to 
simplify the notation, in the following we will neglect the constant term. 

Optimal control theory provides the solution for the linear time varying sys- 
tem (6). At each time step the optimal control action is 

T - 1  T BTpk+lAk)y(k) u(k) = --(Rk + B/¢ Pk+lBk) (M• + (7) 

where Pk is the solution to the backward Riccati equation. 

Pk = Qk + AT pk+IAk 

-- ( i k  + ATpk+IBk)(Rk + BTpk+IBk)-I(M T + BTpk+~Ak) (8) 

having as final condition 

P ( 9 )  = PS (9) 

The piecewise-constant optimal solution is obtained by solving the Euler-Lagran- 
ge equations, the three necessary and sufficient conditions for optimality when 
the final time is fixed. 

aHk T 
+ Ak+~ k 0= ~ =ykMk +uTRk T B (10) 

T A (11) 
Oyk 

A~ = y~Pf (12) 

with Ak = PkYk adjoint term in the augmented cost function (Hamiltonian) 

Hk = J + A~'+I (Aky(k) + Bku(k)) (13) 

The Euler-Lagrange equations do not hold for non linear systems. Anyway, if the 
system can be represented in the form (6), formula (10) can be used to compute 
the derivative of the cost function (5) with respect to a control sequence U. This 
is the idea of differential dynamic programming algorithms [16] which require 
at each time k the matrices Ak, Bk, linearizations of the system dynamics along 
the trajectory forced by the input sequence. 
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As discussed in Section 2, our modeling procedure performs system lineariza- 
tion with minimum effort, no a priori knowledge and only a reduced amount of 
data. Hence, we propose an algorithm for non linear optimal control, formu- 
lated as a gradient based optimization problem and based on the local system 
linearization. 

The algorithm searches for the sequence of input actions 

U °pt= arg n~nJ(U i) (14) 

that minimizes the finite-horizon cost function (5) along the future tf  steps. The 
cost function J(U ~) for a generic sequence U i is computed simulating forward 
for t] steps the model identified by the local learning method. The gradient of 
J(U i) with respect to U i is returned by (10). 

These are the basic operations of the optimization procedure executed each 
time a control action is required: 

1. forward simulation of the lazy model forced by a finite control sequence U i 
of dimension tf 

2. linearization of the simulated system about the resulting trajectory 
3. computation of the resulting finite cost function J(U i) 
4. computation of the gradient of the cost function with respect to simulated 

sequence 
5. updating of the sequence with a gradient based algorithm. 

Once the search algorithm returns the optimal solution U °pt, the first action 
of the sequence is applied to the real system (receding horizon control strat- 
egy [9]). Let us remark how the lazy learning model has a twofold role in the 
algorithm: (i) at step 1 it behaves as an approximator which predicts the be- 
havior of the system once forced with a generic input sequence (ii) at step 2 it 
returns a linear approximation to the system dynamics. 

Atkeson et al. [4] and Tanaka [27] applied infinite-time LQR regulator to non 
linear systems linearized with lazy learning and neuro-fuzzy models. The draw- 
back of these approaches is that an equilibrium point or a reference trajectory 
is required. Also, they make the strong assumption that the state of the system 
will remain indefinitely in a neighborhood of the linearization point. As discussed 
above, the advantage of the proposed approach is that these requirements do not 
need to be satisfied. First, lazy learning is able to linearize a system in points 
far from equilibrium. Secondly, the time varying approach makes possible the 
use of a linear control strategy even though the system operates within different 
linear regimes. 

Remark: we make the assumption that the parameters returned by the lo- 
cal models are a real description of the local behavior (certainty equivalence 
principle). This is a restricting assumption which requires a sufficient degree of 
accuracy in the approximation. However, we see in the optimal control theory 
a possible solution to this limitation. In fact, stochastic optimal control theory 
provides a formal solution to the problem of parameter uncertainty in control 
systems (dual control [14]). Further, our modeling procedure can return at no 
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additional cost a statistical description of the estimated parameters (see Sec- 
tion 2.2). Hence, future work will focus on the extension of the technique to the 
stochastic control case. 

4 E x p e r i m e n t s  

4.1 The  ident if icat ion of  a non-l inear  d iscre te  t ime  s y s t e m  

The approach has been applied to the identification of a complex non-linear 
benchmark proposed by Narendra and Li [22]. The discrete time equations of 
the system are: 

, ix2(k + 1) x2(k) cos + 

[ -b u3(k) (15) 
1 + uS(k) + 0.5 cos ( x l ( k )  + z2(k)) 

y ( k )  = x l ( k )  + x2(k) 
1 + 0.5sin (x2(k)) 1 + 0.5sin (Xl(k)) 

where (xl, x2) is the non observable state and only the input u and the output 
y are accessible. We model the non observable system in the input-output form 
y ( k  + 1) = f ( y ( k ) ,  y ( k  - 1), y ( k  - 2), y ( k  - 3), u ( k ) ) .  We use an initial empty 
database which is updated all along the identification. We perform the identifi- 
cation for 1500 time steps with a test input u ( k )  = sin ( ~ )  + sin (~sk). The 
plot in Fig. la  shows the model and the system output in the last 200 points, 
while the plot in Fig. lb shows the identification error. 

Fig. 1. Non linear system identification results: 
outputs, b) identification error 

X 1 0  4 

a) system (solid) and model (dotted) 

We obtain a good performance in modeling this complex non observable 
system. The experiment reproduces exactly the one proposed in Narendra and 
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Li [22], with the sole difference that in our case we used a data  set of 1500 points 
instead of the 500,000 used in the cited paper. Unfortunately, Narendra and Li 
do not report any quantitative index of the neural network (4-layer feed-forward) 
performance and present only a plot of the results. Anyway, a qualitative com- 
parison between Fig. 11.5 in their article and Fig. 1 of this paper, shows clearly 
how our method outperforms Narendra's neural identification, even using much 
less data. 

4.2 The control of  the bioreactor 

Consider, as second example, the bioreactor system [19], a challenging bench- 
mark in control for its non linearity and because small changes in parameters 
value can cause instability. The bioreactor is a tank containing water, nutrients, 
and biological cells. Nutrients and cells are introduced into the tank where the 
cells mix with the nutrients. The state of this process is characterized by the 
number of cells (cl) and the amount of nutrients (c2). Bioreactor equations of 
motion are the following: 

{ -4~t = - - C l U  + c1(1 - c 2 )  e ~  ( 1 + 9 )  (16) =-c2u+cl(1-c2)e¥ 

with ~ = 0.02 and ~/= 0.48. In our experiment the goal was to stabilize the multi- 
variable system about the unstable state (c~, c~) = (0.2107, 0.726) by performing 
a control action each 0.5 seconds. 

We use the control algorithm described in Section 3. The system is modeled in 
the input-output form (3) having the orders n y  = 2, n u  = 1, n e  = 0, d = 1. Tile 
horizon of the control algorithm is fixed to t f  = 5. The initial state conditions 
are set. by to the random initialization procedure defined in [19]. We initialize 
the lazy learning database with a set of 1000 points collected by preliminarly 
exciting the system with a random uniform input. The database is then updated 
on-line each time a new input-output pairs is returned by the simulated system. 
The plot in Fig. 2a shows the output of the two controlled state variables, while 
the plot in Fig. 2b shows the control action. 

We have better results than Bersini and Gorrini [7] who used an optimal 
neuro-controtler (MLP network with ten neurons in the hidden layer) trained 
with a much higher number of samples (10,000), and applied control actions at 
a higher frequency (each 0.01 seconds). 

Both identification and control examples show that,  by using local techniques, 
it is possible to deal with complex systems on a wide non-linear range, with no a 
priori knowledge about the underlying dynamics and using less data  than global 
estimators. 

5 C o n c l u s i o n s  a n d  f u t u r e  d e v e l o p m e n t s  

Local modeling techniques are a powerful technique for learning from limited 
amount of data by providing at the same time an useful insight on the local 
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Fig. 2. Control results: 
control action. 
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a) controlled variables (solid) and references (dotted), b) 

behavior of the system being modeled. Furthermore, together with the required 
prediction and/or parametric description, they return a statistical distribution 
of the uncertainty affecting this information. We proposed an innovative algo- 
rithm to improve the performance of local modeling techniques which is a based 
on a recursive version of the cross-validation and a statistical model selection. In 
control literature, local controllers have generMly a restricted range of operat- 
ing conditions. Here, we proposed a controller, which although making extensive 
use of local techniques, works on an extended range of operating conditions. 
These characteristics makes of it a promising tool for intelligent control sys- 
tems, inspired to traditional engineering methods but able to deal with complex 
non linear systems. Successful applications of the method to simulated identifi- 
cation and control problems were presented. Future developments will concern 
the combination of the local modeling technique with other certainty equivalence 
controllers (e.g. minimum variance controller, pole placement) and the extension 
of the method to stochastic dual control. 
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