
A Host-Parasite Genetic Algorithm for
Asymmetr ic Tasks

BjSrn Olsson

Dept. of Computer Science, University of SkSvde, Box 408, 541 28 SkSvde, Sweden
Phone: +46-500-464716, Fax: +46-500-464725, Email: bjorne~}ida.his.se

A b s t r a c t . We present a formalisation of host-parasite coevolution in
Evolutionary Computation [2]. The aim is to gain a better understand-
ing of host-parasite Genetic Algorithms (GAs) [3]. We discuss Rosin's [10]
competetive theory of games, and show how it relates to host-parasite
GAs. We then propose a new host-parasite optimisation algorithm based
on this formalisation. The new algorithm takes into account the asym-
metry of the two tasks: evolving hosts and evolving parasites. By self-
adaptation the algorithm can find a suitable balance between the amount
of resources spent on these two tasks. Our results show that this makes
it possible to evolve optimal solutions by testing fewer candidates.

K e y w o r d s : Evolutionary Computation, Genetic Algorithms, Coevolution.

1 Introduction
A number of authors have investigated the use of coevolution as a method of
improving current methods in Evolutionary Computation. Examples include co-
operative coevolution [8] and competetive coevolution [9] - both of which have
been used to design improved Genetic Algorithms (GAs). This paper focuses on
host-parasite coevolution, which has previously been addressed in [4], [7], and [5].
A host-parasite GA uses two populations - a "host" and a "parasite" population
- to represent candidate solutions and test cases. The central idea is to allow
the test cases to coevolve with the candidate solutions, so that the algorithm
self-adapts the set of test cases to be as challenging as possible at all stages of
the optimisation process. Ideally, this results in a coevolutionary "arms-race" of
continuous improvements in both populations.

The host-parasite relationship has obvious similarities with other coevolu-
tionary relationships, such as predator-prey relationships, which have also been
the subject of research in Evolutionary Computation [1]. In fact, host-parasite
algorithms are often so similar to competetive algorithms, tha t no explicit dis-
tinction is usually made between them in the literature. The algorithms in [9],
for example, share many of the properties of host-parasite algorithms, i.e. they
use two separate populations where individuals from each population are fitness
evaluated by being tested on members of the other population. However, most
of the application examples in Rosin's work are tasks which are largely or com-
pletely symmetrical, i.e. the two populations are facing very similar tasks. In
game playing, for example, the tasks for the two players are either identical or
very similar. This means that the competetive GA is best designed so that both
populations are evolved in a very similar manner.

We argue that a central distinction between competetive and host-parasite
algorithms is that the latter are applied to tasks which are asymmetrical. In the

347

original work on host-parasite algorithms in [4], hosts evolved sorting networks
whereas parasites evolved input sequences to be used as test cases. These two
tasks are very different, and it seems natural to t reat them as two distinct tasks.
In this paper we will develop a host-parasite algorithm which explicitly takes
the asymmetry of the two tasks into account, and we will show tha t this makes
it possible for the algorithm to self-adapt the amount of effort spent on each.

2 Formalization of h o s t - p a r a s i t e c o e v o l u t i o n

In this section we will develop a formalisation of host-parasite coevolution. This
formalisation is based in par t on the competetive theory of games in [10], but is
is adapted and extended to be applied to host-parasite GAs. We will evolve a set
H of host individuals, each representing a candidate solution to a problem. The
population H will represent a subset of the possible candidate solutions 7/. The
exact size of 7-/will depend on the problem (as well as on the chosen representa-
tion for candidate solutions), but for all problems of interest our population of
hosts will just represent a small fraction of 7/.

Simultaneously with evolving H, we will evolve a set P of parasites, which
represent test cases. Again, P will represent a subset of the full set of possible
test cases P . In most cases, P will contain a small fraction of P , but this may
not be a necessary requirement for host-parasite algorithms to be advantageous.
Our only restriction on the size of P is that it contains a finite number of test
cases. We will use the test cases in P for fitness testing, so that the fitness of a
host h E H is equal to the number of test cases in P that it solves. Conversely,
the fitness of a parasite p E P will be equal to the number of candidate solutions
in H that fails to solve p.

For any problem that we apply our approach to, we will assume that there is
at least one perfect host individual in 7/, i.e. a host which is able to solve every
test case in P . The goal for our optimisation algorithm will be to find such an
individual by evolving the two populations H and P. It is important to realize
tha t under the assumption that 7/contains a perfect host, the corresponding will
not be true of P , i.e. there will not be any test case which is not solvable by any
host. Thus, the tasks of evolving H and P are done under different conditions,
and this must be taken into consideration in the design of the algorithm. Unlike
in many game playing tasks, the learning tasks we apply our algorithms to can
be described as asymmetrical.

For formalisation purposes, we now introduce the following definitions, which
will later be useful for describing and discussing our algorithms. We let h ~- p
denote the fact tha t the host h solves the test case p. Similarly, we use H ~- p to
denote tha t the set H of hosts solves the test case p, i.e. 3h((h E H) A (h ~- p)).
We will use h ~- P to denote tha t h solves every test case in P , i.e. Vp((p E
P) -~ (h ~- p)). Given these definitions, the interpretation of H ~- P , will be
3h((h e H) A Vp((p e P) -~ (h ~- p))).

Given this formal language, we observe that the fact tha t a perfect host exists
in the space of possible hosts, can be denoted 7/~- :P. We also note tha t the goal
for our optimisation algorithm is to evolve the populations until H ~- 7).

In order to understand the host-parasite GAs, we first describe an abstract
optimisation process where a perfect host is found in a number of steps. This
process starts with two empty sets of host and parasite individuals H = P -- {}.
We then alternately apply some search algorithm to H and P. In each step we
add a host to H which solves all test cases in the current P , so that H contains
a host tha t is perfect w . r . t .P . We then add a parasite to P , so that H no longer
contains any host that is perfect w . r . t .P . This can be implemented by using the
following algorithm:

348

let t = 0
let Ht = Pt = {}
repeat

find a host ht, such that he ~- Pt
let H~+I = H~ U ht
find a parasite p~, such that pt ~- H~+I
let Pt+l = Pt Upt
let t = t + l

until (H ~- ~)

Note that this algorithm is guaranteed to find a perfect host in a finite number
of steps. For every iteration, we add a host that solves every test case found so
far. We then add a new parasite, such that every host fails to solve at least one
of the members of the new set of parasites. This new parasite must have found a
flaw in the most recently added host. When, in the next iteration, we add another
host which solves the full set of current test cases, this new host will necessarily
be an improvement on the previously added host. In other words, this algorithm
is guaranteed to make continuous improvements, and by a bootstrap process will
reach H ~- P in a finite number of steps. The process forms a transitive chain of
host and parasite pairs leading ultimately to an optimal host. The length of this
chain can be referred to as I. We will later be concerned with the expected value
of l, when discussing the time complexity of our algorithms. Of great interest,
of course, is the relationship between 1 and the size of 7{.

In order to develop host-parasite GAs, we need to consider in detail the
method to be used in order to find ht and Pt in each iteration. In our case, we
use a GA to evolve these individuals. This raises a number of issues which will
be addressed in the following sections.

3 A n " a s y m m e t r i c " h o s t - p a r a s i t e G e n e t i c A l g o r i t h m

In order to guarantee that the algorithm will find H >- P , it is crucial tha t no
individual is ever lost or deleted from H or P. More formally, the algorithm
must ensure that

Vh((h ^ (j > i) - , (h e Ha)) (1)
and that the same condition holds for P. This is problematic since a GA

does not guarantee that an individual which has been found in one generation
will remain in all subsequent generations of the run. This is also true of the
host-parasite algorithms studied in [4], [5] and [6]. To solve this problem, we will
first design an algorithm where Condition 1 is guaranteed. We then relax this
requirement in an algorithm where Condition 1 is likely to hold, but not guar-
anteed. In exchange for this uncertainty, we will improve the time complexity.

We now introduce a distinction between the evolvable populations H e, pe
and the static populations H *, ps . Our GA will apply reproduction to evolvable
populations, while static populations will serve only as fitness tests. More specif-
ically, we will evolve H e using the members of pe and p s as fitness cases, until
H e >.. p e U p s , i.e. until H e contains at least one host h tha t solves all current
test cases. We will add h to the current H s, and then evolve p e using H e and
H 8 as fitness cases. Evolution of pe will continue until every host in H e and H 8
fails to solve at least one of the test cases in R e . We will then find the parasite
p E pe which h (i.e. the most recent addition to H 8) fails to solve, and add it to
ps . The process of alternately evolving H e and p e will continue until H e ~- :P.

349

The following algorithm implements these ideas:

let $ = 0
initialize random H~ and PZ
Ht = P t --{}
while (-,(H~A ~- P)) do

repeat
evaluate and reproduce H~ using P~ U P~" as fitness cases.

until (3h~((ht e H~) A (ht ~ (Pet U P~'))))
repeat

evaluate and reproduce P~ using H~ U H~ as fitness cases.
until (-~((g~ U H~) ~- Pt))
find p~, such that ((p te P~) A -~(h~ ~- p~))
let Ht+l = HI U h~
let P~+ I = P~ U pt
let H~+I = H~
let P~+I = P~
let t = t + l

done

For implementation purposes we must address the question of the populat ion
sizes of H" and P ' . As noted earlier, the algorithm will form a transitive chain
leading from the first host in H" to the final perfect host. The sum of the
population sizes of H" and p s in the final t ime step will be equal to I. Since
H 8 and P" are used in fitness testing, it is crucial tha t we either reduce the
expected value of I or the population sizes of H" and P ' , while still ensuring
that the algorithm will find a transitive chain to h ~- 7/. Unfortunately, it is
generally not possible to delete any individual from H ' or P ' without running
a risk of losing the transitivity property. To see this, consider the extreme case
of limiting population sizes of H ' and ps to 1. In this case, every new member
that we add to H ' replaces the previous member. It is easy to see that problems
may arise given two hosts hs,h2 and two parasites pl,P2, such that hi ~ pj
i ff i = j . The algorithm may alternate between hi and h2 as members of H 8
(while alternating between p~ and Pl as members of P ') . Similar examples can
be found for greater population sizes.

In our implementation we t reat H s and P" as queues where elements are
added to the queue at one end and deleted at the other. We hypothesise tha t
the element tha t has been in the queue for the longest t ime will be the one least
crucial for maintaining the transitivity property.

4 R e s u l t s

For ease of reference we will call our new algorithm AHPGA, for "Asymmetr ic
Host-Parasite GA". AHPGA takes into account the asymmetry of the two tasks
of evolving hosts and parasites, effectively treat ing these as two separate tasks.
If one of the tasks proves more difficult than the other, AHPGA may be able to
self-adapt the amount of effort spent on each task, so that a suitable balance is
found. We will compare AHPGA with the Simple Host-Parasite GA, SHPGA,
which was shown in [6] to give improved results over "s tandard" GAs.

In the first runs we used the 6 and 7-input sorting networks tasks, for ease
of comparison with previous results in [6]. In table 1 and figure 1 we compare
the results of AHPGA and SHPGA. For all runs, we used a population size of

350

30 for both the host and parasite populations. For AHPGA this means that the
population sizes of H e and pe were fixed at 30 individuals. The static popu-
lations H s and ps were initially empty, and limited to contain a maximum of
30 individuals. In none of the runs was this upper limit of 30 reached, i.e. no
individual was ever discarded from H 8 or PL All runs were terminated when
3 * 105 (6-input) or 3 * 106 (7-input) individuals had been evaluated. It is impor-
tant to realize that SHPGA evaluates and reproduces both populations in each
generation, whereas one of the populations is static in AHPGA. This means that
SHPGA evaluates up to twice as many individuals per generation as AHPGA.

l Converged runs Evaluated solutions
[(i-inPut 17-input I (i-input [7-input

SHPGA l 48 6.9.104 10.0.10 a

Table 1. Statistics of likelihood and speed of convergence.

As table 1 shows, the average number of evaluated individuals before con-
vergence in AHPGA is less than two thirds of the number in SHPGA. We also
found that the fraction of generations during which the parasite population was
evolving in AHPGA was only 0.02 for the 6-input task and 0.03 for the 7-input
task. This illustrates in a striking way the asymmetru of the tasks - it is obviously
very easy to evolve a test case p which the current best host is unable to solve,
but very difficult to evolve a host which solves p, since 97-98% of all generations
were used to evolve hosts. For the 6-input task it took on average less than 4
generations to evolve p, whereas it took on average 218 generations to evolve a
host which solved p. For 7-input, the figures were 10 vs 535 generations.

By taking into account the asymmetry of the two tasks - evolving good
solutions and evolving good test cases - AHPGA seems to find solutions by
spending more time on the harder of the two tasks and less time on the easier
task. Achieving such a balance is impossible in SHPGA, since it does not take
the asymmetry of the tasks into account. Keeping in mind that AHPGA only
spends 2-3% of all generations on evolving parasites, we realise that a very large
proportion of the parasites generated in SHPGA are redundant.

5 Discussion and Conclusions

Our experimental results are quite preliminary since they are only from a sin-
gle example application. The algorithm must be tested on a large number of
examples before definitive conclusions can be made. It should also be kept in
mind that there are both observed and potential problems with AHPGA in its
current form. While the number of evaluated individuals before convergence is
lower in AHPGA than in SHPGA, the number of applications of the fitness func-
tion is larger. While AHPGA evaluates 30 individuals per generation (with the
population sizes we used) it uses at least as many calls of the fitness function
as SHPGA (which evaluates 60 individuals per generations). The reason is that
every call of the fitness function in SHPGA gives information on two individuals
- one host and one parasite - whereas a fitness function call in AHPGA only
gives information about the individual from the currently evolving population.

351

1

0,8

p.°
~0,4

0,2

1

0.8

~o.e
~0,4

0.2

."-S - : --- :

Individuals x 10 s IrldMdu~ds x 10 6

Fig. 1. Average accuracy for best host so far versus number of evaluated in-
dividuals for 50 runs on the 6 and 7-input sorting networks design task using
AHPGA (solid line) and SHPGA (dashed line).

This work gives us more insight into the dynamics of a host-parasite opti-
misation process. It shows that the two populations face tasks tha t are very
different, and may best be treated as two separate optimisation tasks. It ex-
poses the often hidden assumption of symmetry behind competetive algorithms
and shows that it may be unfortunate to apply this assumption when attacking
tasks tha t are largely asymmetric. We may not yet have found the ideal way
of taking asymmetry into account, but AHPGA shows that there are potential
advantages of doing so. In other words, we see AHPGA as a start ing point for
improved host-parasite GAs, better suited to solve inherently asymmetric tasks.

References

I. D. Cliff and G.F. Miller. Co-evolution of pursuit and evasion ii: Simulation meth-
ods and results. In Prom Animals to Animats J: Proc. of the ~th Intern. Conf. on
Simulation of Adaptive Behavior (SAB96), 1996.

2. D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, 1995.

3. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

4. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. In Proceedings of the 2nd Conf. on Artificial Life, 1992.

5. B. Olsson. Optimization using a host-parasite model with variable-size distributed
populations. In Proceedings of the 1996 1EEE 3rd International Conference on
Evolutionary Computation. IEEE Press, 1996.

6. B. Olsson. Evaluation of a simple host-parasite genetic algorithm. In Proc. of the
7th Annual Conf. on Evolutionary Programming, 1997.

7. J. Paredis. Steps towards co-evolutionary classification networks. In Proc. the 4th
Conference on Artifical Life, 1994.

8. M.A. Potter. The Design and Analysis of a Computational Model of Cooperative
Coevolution. PhD thesis, George Mason University, 1997.

9. C.D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of
California, San Diego, 1997.

10. C.D. Rosin and R.K. Belew. A competetive approach to game learning. In Proc.
of the 9th Annual ACM Conf. on Computational Learning Theory, 1996.

