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Abstract. Q(A)-learning uses TD()~)-methods to accelerate Q-learning. 
The worst case complexity for a single update step of previous online 
Q()~) implementations based on lookup-tables is bounded by the size of 
the state/action space. Our faster algorithm's worst case complexity is 
bounded by the number of actions. The algorithm is based on the obser- 
vation that Q-value updates may be postponed until they are needed. 
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1 I n t r o d u c t i o n  

Q(A)-learning (Watkins, 1989; Peng and Williams, 1996) is an important rein- 
forcement learning (RL) method. It combines Q-learning (Watkins, 1989; Watkins 
and Dayan, 1992) and TD(A) (Sutton, 1988; Tesauro, 1992). Q(A) is widely used 
- -  it is generally believed to outperform simple one-step Q-learning, since it uses 
single experiences to update evaluations of multiple state/action pairs (SAPs) 
that have occurred in the past. 

Online vs. ofiline. We distinguish online ILL and oI~tine RL. Online RL up- 
dates modifiable parameters after each visit of a state. Offiine RL delays updates 
until after a trial is finished, that is, until a goal has been found or a time limit 
has been reached. Without explicit trial boundaries offline RL does not make 
sense at all. But even where applicable, ofliine RL tends to get outperformed by 
online RL which uses experience earlier and therefore more efficiently (Rummery 
and Niranjan, 1994). Online RL's advantage can be huge. For instance, online 
methods that punish actions (to prevent repetitive selection of identical actions) 
can discover certain environments' goal states in polynomial time (Koenig and 
Simmons, 1996), while oflline RL requires exponential time (Whitehead, 1992). 

P r ev ious  Q(A) h~p l emen ta t i ons .  To speed up Q-learning, Watkins (1989) 
suggested combining it with TD(A) learning. Typical online Q(A) implementa- 
tions (Peng and Williams, 1996) based on lookup-tables or other local approx- 
imators such as CMACS (Albus 1975; Sutton, 1996) or self-organizing maps 
(Kohonen, 1988), however, are unnecessarily time-consuming. Their update com- 
plexity depends on the values of )~ and discount factor % and is proportional to 
the number of SAPs (state/action pairs) which occurred. The latter is bounded 
by the size of state/action space (and by the trial length which may be propor- 
tional to this). 
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Lin's offline Q(A) (1993) creates an action-replay set of experiences after 
each trial. Cichosz' semi-online method (1995) combines Lin's offiine method and 
online learning. It needs fewer updates than Peng and Williams' online Q(A), but 
postpones Q-updates until several subsequent experiences are available. Hence 
actions executed before the next Q-update are less informed than they could be. 
This may result in performance loss. For instance, suppose that the same state 
is visited twice in a row. If some hazardous action's Q-value does not reflect 
negative experience collected after the first visit then it may get selected again 
with higher probability than wanted. 

T h e  novel  m e t h o d .  Previous methods either are not truly online and thus 
require more experiences, or their updates are less efficient than they could be 
and thus require more computation time. Our Q(A) variant is truly online and 
more efficient than others because its update complexity does not depend on the 
number of states 1. It uses "lazy learning" (introduced in memory-based learning, 
e.g., Atkeson, Moore and Schaal 1996) to postpone updates until they are needed. 

Out l ine .  Section 2 reviews Q(A) and describes Peng and William's Q(A)- 
algorithm (PW). Section 3 presents our more efficient algorithm. Section 4 
presents a practical comparison on 100 x 100 mazes. Section 5 concludes. 

2 Q(,k)-Learning 

We consider discrete Markov decision processes, using time steps t = 1, 2, 3 , . . . ,  
a discrete set of states S = {$1, $2, $3 , . . . ,  Sn} and a discrete set of actions A. 
st denotes the state at time t, and as = H ( s t )  the action, where /7  represents 
the learner's policy mapping states to actions. The transition function P with 
elements P~ = P(s t+l  = j l s t  = i, at = a) for i , j  E S and a E A defines the 
transition probability to the next state st+l given st and at. A reward function R 
defines the scalar reward signal R(i ,  a, j )  E ~ for making the transition to state 
j given state i and action a. rt denotes the reward at time t. A discount factor 

E [0, 1] discounts later against immediate rewards. The controller's goal is to 
select actions which maximize the expected long-term cumulative discounted re- 
inforcement, given an initial state selected according to a probability distribution 
over possible initial states. 

R e i n f o r c e m e n t  Learn ing .  To achieve this goal an action evaluation func- 
tion or Q-function is learned. The optimal Q-value of SAP (i, a) satisfies 

Q'(i,a) = ) - ]  p (R(i, a, j) + 
J 

(1) 

where V*( j )  = maxa Q*( j ,a ) .  To learn this Q-function, RL algorithms repeat- 
edly do: (1) Select action at given state st. (2) Collect reward rt and observe 
successor state st+l. (3) Update the Q-function using the latest experience 
(st, at, rt, st+l).  

1 The method can also be used for speeding up tabular TD(A). 
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Q-learning.  Given (st,at,rt, st+l), standard one-step Q-learning updates 
just a single Q-value Q(st, at) as follows (Watkins, 1989): 

Q(st, at) ~- Q(st, at) + ~k(st, a,)e;, 

where e~ is the temporal difference or TD(0)-error given by: 

e~ = (rt + ~/V(st+l) - Q(st, at)), 

where the value function V(s) is defined as V(s) = maxa Q(s, a) (evaluated at 
time-step t), and o~k(st, at) is the learning rate for the k th update of SAP (st, at). 

Learning  ra te  adap ta t ion .  The learning rate ak(s,a) for the k th update 
of SAP (s, a) should decrease over time to satisfy two conditions for stochastic 
iterative algorithms (Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996): 

1. oo oo 2 ~k=l c~k(s,a) = oo, and 2. ~-~k=l ak(s,a) < oo. 

They hold for c~k(s,a) = 1 k-~r, where ½ < ~ g 1. 
Q(A)-learning.  Q(A) uses TD(A)-methods (Sutton, 1988) to accelerate Q- 

learning. First note that Q-learning's update at time t + 1 may change V(st+l) 
in the definition of e~. Following (Peng and Williams, 1996) we define the TD(0)- 
error of V(St+l) as 

et+~ = (rt+l + "/V(s~+2) - V(s t+ l ) )  

Q(A) uses a factor A E [0, 1] to discount TD-errors of future time steps: 

Q(s~, a t )  , -  Q(s~, at) + ~(st ,  at)eL 
where the TD(A)-error et ~ is defined as 

oo 

i = 1  

Eligibil i ty t races .  The updates above cannot be made as long as TD errors 
of future time steps are not known. We can compute them incrementally, how- 
ever, by using eligibility traces (Barto et al., 1983; Sutton 1988). In what follows, 
~lt(s, a) will denote the indicator function which returns 1 if (s, a) occurred at 
time t, and 0 otherwise. Omitting the learning rate for simplicity, the increment 
of Q(s, a) for the complete trial is: 

k 

AQ(s,a) = lim ~"e~t~lt(s,a) 
t = l  

k k 

k--~ oo/====# 
t:l i=t+l 

k t-1 

= lim ~--~[e;~f(s, a) + ~--~(TA)'-'etniCs, a)] 
k--~oo 

~=I i=l 

k t-1 

~--'--1 / = 1  

(2) 
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To simplify this we use an eligibility trace lt(s, a) for each SAP (s, a): 

t--1 

lt(s, a) = E(7A)t-i~?i(s, a) = 7A(l t - l (s ,  a) + yt- l(s ,  a)) 
i=1 

Then the online update at time t becomes: 

V(s,a) e S x A do: Q(s,a)  ~ Q(s ,a)  + a~(st,at)[e~?t(s,a) + etlt(s,a)] 

Online Q()0" We will focus on Peng and Williams' algorithm (PW) (1996), 
although there are other possible variants, e.g, (Rummery and Niranjan, 1994). 
PW uses a list H of SAPs that have occurred at least once. SAPs with eligibility 
traces below e > 0 are removed from H. Boolean variables visited(s,  a) are used 
to make sure no two SAPs in H are identical. 

P W ' s  Q(A)-update(st ,  at, r t ,  S t + l )  "- 

1) e i *- (rt +'yV(st+l)  - Q(st ,at))  
2) et (rt +  V(St+l) - V( s t ) )  
3) For each SAP (s ,a )E H Do : 

3a) l(s, a) ~-- ~A/(s,a) 
3b) Q(s,a)  ~-- Q(s ,a)  + ak(s t ,a t )e t l ( s ,a)  
3c) I f  (l(s,a) < e) 

3c-1) H ~-- H \ (s, a) 
3c-2) visi ted(s ,a)  *--- 0 

4) Q(st ,a t )  ~ Q(st ,at)  + ~k(st,at)e~ 
5)  l ( s t , a t )  ~-  l ( s t ,a t )  + 1 
6) I f  (visited(st ,  a t ) =  O) 

6a) visited(st,  at) ¢-- 1 
6b) H *- H U (st, at) 

C o m m e n t s .  1. The SARSA algorithm (Rummery and Niranjan, 1994) re- 
places the right hand side in lines (1) and (2) by (rt +'~Q(st+l, a t+ t ) -Q(s t ,  at)). 

2. For "replacing eligibility traces" (Singh and Sutton, 1996), step 5 should 
be: Va : l(st ,a) ~-- 0; l(st ,at)  *-- 1. 

3. Representing H by a doubly linked list and using direct pointers from each 
SAP to its position in H, the functions operating on H (deleting and adding 
elements - -  see lines (3c-1) and (6b)) cost O(1). 

Complexi ty .  Deleting SAPs from H (step 3c-1) once their traces fall below 
a certain threshold may significantly speed up the algorithm. If 75 is sufficiently 
small, then this will keep the number of updates per time step manageable. 
For large 3'~ PW does not work that well: it needs a sweep (sequence of SAP 
updates) after each time step, and the update cost for such sweeps grows with 
75. Let us consider worst-case behavior, which means that each SAP occurs just 
once (if SAPs reoccur then the history list will grow at a slower rate). At the 
start of the trial the number of updates increases linearly until at some time step 
t some SAPs get deleted from H. This will happen as soon as t > ~ Since 

- -  l o g ( ~ ) ~ )  " 

the number of updates is bounded from above by the number of SAPs, the total 
update complexity increases towards O(ISIIAI) per update for ~)~ -* 1. 



356 

3 F a s t  Q ( A ) - L e a r n i n g  

The main contribution of this paper is an efficient, fully online algorithm with 
time complexity O(tAI) per update. The algorithm is designed for A 7 > 0 - -  
otherwise we use simple Q-learning. 

Ma in  principle.  The algorithm is based on the observation that the only 
Q-values needed at any given time are those for the possible actions given the 
current state. Hence, using "lazy learning", we can postpone updating Q-values 
until they are needed. Suppose some SAP (s, a) occurs at steps tl,  t2, t3, . . . .  Let 
us abbreviate 7 5 = 7t(s, a), ¢ = 7A. First we unfold terms of expression (2): 

k t--I 

V" [ tY et z..., = 

t = l  i = l  

t l  t - - i  t2 1 - 1  ta ~ - 1  

+ o, E + E Io,' + E , ' - ' , ' I  ÷ E ÷ o, E,'-', , '3 ÷ . .  
$=1 / = 1  £ = t l + l  i = l  f = t 2 + l  / = 1  

Since 7 5 is 1 only for t = tl, t2, t3 , . . ,  and 0 otherwise, we can rewrite this as 

$2 $3 

e 1 $, + 42 + ~ e$¢ H1 + e~ + ~ e$(¢ H '  + ¢$-$2) + . . .  = 
$ = $ 1 + 1  $ = $ 2 + 1  

$ ~ + ( N + ~ )  7 :  e$0$+ . - -= 
tl + e$2 + x $ $=$2+1 

$2 $' 1 1~ $3 $2 

(p 1 $ = 1  $ = 1  t = l  t = l  

Defining At = )-~/i=1 ei¢ i, this becomes 

, , 1 , ( 1  1 
e$, + % + ~7(/%$2 - ~$~1 + e$3 + ~ 7  + ~ 1 ( ~ $ ~  - ~$2) + . - -  (31 

This will allow for constructing an efficient online Q(A) algorithm. We define a 

local trace l~(s,a) t ~ a  , = ~-'~i=1 and use (3) to write down the total update of 
Q(s, a) during a trial: 

k 

AQ(s, a) = lim E e~Tt(s' a) + l~(s, a)(AS+l - -  At) (4) 
k--*oo 

t = l  

To exploit this we introduce a global variable/% keeping track of the cumu- 
lative TD(A) error since the start of the trial. As long as SAP (s, a) does not 
occur we postpone updating Q(s, a). In the update below we need to subtract 
that part of A which has already been used (see equations 3 and 4). We use 
for each SAP (s, a) a local variable ~f(s, a) which records the value of Zi at the 
moment of the last update, and a local trace variable l'(s, a). Then, once Q(s, a) 



357 

needs to be known, we update Q(s, a) by adding l'(s, a)(A - 5(s, a)). Figure 1 
illustrates that the algorithm substitutes the varying eligibility trace l(s,a) by 
multiplying a global trace Ct by the local trace l~(s, a). The value of Ct changes 
all the time, but l~(s, a) does not in intervals during which (s, a) does not occur. 

I 7--.. I (s,a) 
l'(s,a) .... . .... i "'''"" ....... 

I I I t - >  
t 1 t 2 t 3 

Fig. 1. SAP (s,a) occurs at times t l , t~, t3, . . . .  The standard eligibility trace l(s,a) 
equals the product of Ct and ll(s, a). 

A l g o r i t h m  overview.  The algorithm relies on two procedures: the Local 
Update procedure calculates exact Q-values once they are required; the Global 
Update procedure updates the global variables and the current Q-value. Initially 
we set the global variables ¢0 ~__ 1.0 and A ~-- 0. We also initialize the local 
variables ~f(s, a) ~ 0 and l'(s, a) ~-- 0 for all SAPs. 

Local upda te s .  Q-values for all actions possible in a given state are updated 
before an action is selected and before a particular V-value is calculated. For each 
SAP (s, a) a variable 5(s, a) tracks changes since the last update: 

Local U p d a t e ( s t , a t )  : 

1) Q(s,,a~) ~- Q ( s . a , )  + ~ k ( ~ , a , ) ( n  - ~ ( s . a ~ ) ) l ' ( s , , a ~ )  

The  global  u p d a t e  p rocedure .  After each executed action we invoke the 
procedure Global Update, which consists of three basic steps: (1) To calculate 
V(st+l)  (which may have changed due to the most recent experience), it calls 
Local Update for the possible next SAPs. (2) It updates the global variables Ct 
and A. (3) It updates (st, at)'s Q-value and trace variable and stores the current 
A value (in Local Update). 
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Global  Update(s t ,  at, rt,  8 t + 1 )  " 

i) V a E A  Do 

la) Local Update(st+l,a) 
2) e~ ~-- (rt + "/V(st+O - Q(st,at))  
3)  e~ ,-- (rt + "~V(st+~) - V ( s t ) )  
4)  Ct ,__ ~ACt-1 
S) A ~ A + ere t 
6) Local Update(st, at) 
7) Q(st ,at)  *--- Q(st ,at)  + ak(st,at)e~ 
s) l'(st,at) ~ l'(s.at) + 

For "replacing eligibility traces" (Singh and Sutton, 1996), step 8 should be 
changed as follows: Va : l'(st, a) ~ 0; l'(st, at) ~ ~ .  

Machine  precision p rob lem and solut ion.  Adding ere t to A in line 5 
may create a problem due to limited machine precision: for large absolute values 
of A and small Ct there may be significant rounding errors. More importantly, 
line 8 will quickly overflow any machine for 7A < 1. The following addendum 
to the procedure Global Update detects when Ct falls below machine precision 
era, updates all SAPs which have occurred (again we make use of a list H), and 
removes SAPs with l'(s, a) < era from H. Finally, A and ¢t are reset to their 
initial values. 

Global  U p d a t e  : a d d e n d u m  

9) I f  (vis i ted(st ,a~)=O) 
9a) H +-- H U ( s t , a t )  
9b) visited(st ,at)  ~-- 1 

I0) I f  (¢t <era) 
10a) Do V(s,a) EH 

10a-l) Local Update(s,a) 
10a-2) l '(s,a) +-- l ' (s ,a)¢ t 
10a-3) I f  ( l ' ( s ,a)<era)  

10a-3-1) H ~- H \ (s, a) 
10a-3-2) visi ted(s,a) ~-- 0 

10a-4) 6(s,a) *-- 0 
lOb) A +-- 0 
I0c) ~t +_ 1.0 

C o m m e n t s .  Recall that Local Update sets 6(s, a) *-- A, and update steps 
depend on A -- 6(s, a). Thus, after having updated all SAPs in H, we can set 
A , -  0 and 6(s,a) ~ O. Furthermore, we can simply set l '(s,a) ~ l '(s,a)¢ t and 
Ct ~_ 1.0 without affecting the expression l'(s, a)¢ t used in future updates - -  
this just rescales the variables. Note that if 7A = 1, then no sweeps through the 
history list will be necessary. 

Complexi ty .  The algorithm's most expensive part are the calls of Local 
Update, whose total cost is O([AI). This is not bad: even simple Q-learning's 
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action selection procedure costs O(IAI) if, say, the Boltzmann rule (Thrun, 1992; 
Caironi and Dorigo, 1994) is used. Concerning the occasional complete sweep 
through SAPs still in history list H: during each sweep the traces of SAPs in H 
are multiplied by l < era. SAPs are deleted from H once their trace falls below 
era. In the worst case one sweep per n time steps updates 2n SAPs and costs 
O(1) on average. This means that there is an additional computational burden 
at certain time steps, but since this happens infrequently our method's total 
average update complexity stays O(IAI). 

Compar i son  to  P W .  Figure 2 illustrates the difference between theoretical 
worst-case behaviors of both methods for IAI = 5, IsI = 1000, and 7 = 1. We plot 
updates per time step for $ E {0.7, 0.9.0.99}. The accuracy parameter e (used in 
PW) is set to 10 -6 (in practice less precise values may be used, but this will not 
change matters much), em is set to 10 -16. The spikes in the plot for fast Q($) 
reflect occasional full sweeps through the history list due to limited machine 
precision (the corresponding average number of updates, however, is very close 
to the value indicated by the horizontal solid line - -  as explained above, the 
spikes hardly affect the average). No sweep is necessary in fast Q(0.99)'s plot 
during the shown interval. Fast Q needs on average a total of 13 update steps: 
5 in choose-action, 5 for calculating V(st+l) ,  1 for updating the chosen action, 
and 2 for taking into account the full sweeps. 

4 0 0  

3 5 0  

3 0 0  

25O 

2.20o 

150 

t 6 0  

5 0  

Fas t  Q l a m b d a  = .7 - -  
Fas t  Q l a m b d a  = .9 . . . . . . . . .  

P W  l a m b d a  = .7 . . . . . . . . . .  
P W  la rabda  = .9 . . . . . .  

P W  l a m b d a  = .99 . . . . .  

t 
pt  

1 / /  /Z ... . . . . . . .  

,"i /I  
i/* 

i,1,1+ 

4O0 

ftme 

Fig. 2. Number of updates plotted against time: a worst case analysis for our method 
and Peng and Williams' (PW) for different values of )t. 

Mult ip le  Trials. We have described a single-trial version of our algorithm. 
One might be tempted to think that in case of multiple trials all SAPs in the 
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history list need to be updated and all eligibility traces reset after each trial. 
This is not necessary - -  we may use cross-triai learning as follows: 

We introduce A M variables, where index M stands for the M th trial. Let N 
denote the current trial number, and let variable visited(s, a) represent the trial 
number of the most recent occurrence of SAP (s, a). Now we slightly change 
Local Update: 

Loca l  U p d a t e ( s t , a t )  : 

1) M *- visited(st,at) 
2) Q(st, at) *-- Q(s~, at)TOOk(St, at)( AM--~(st, at))l'(st, at) 
3) 5(s~,at) ~ A N 

4) I f  ( M  < N)  
4a) l'(st,at) ~-- 0 
4b) visited(st,at) ~-- N 

Thus we update Q(s, a) using the value A M of the most recent trial M during 
which SAP (s, a) occurred and the corresponding values of/i(st ,  a~) and l'(st, at) 
(computed during the same trial). In case SAP (s, a) has not occurred during 
the current trial we reset the eligibility trace and set visited(s, a) to the current 
trial number. In Global Update we need to change lines 5 and 10b by adding 
trial subscripts to A, and we need to change line 9b in which we have to set 
visited(st,at) ~-- N. At trial end we reset Ct to ¢0 = 1.0, increment the trial 
counter N,  and set A N ~-- 0. This allows for postponing certain updates until 
after the current trial's end. 

4 E x p e r i m e n t s  

To evaluate competing training methods in practice we created a set of 20 dif- 
ferent randomly initialized 100 x 100 mazes, each with about 20% blocked fields. 
All mazes share a fixed start  state (S) and a fixed goal state (G) (we discarded 
mazes that  could not be solved by Dijkstra's shortest path algorithm). See figure 
3 for an example. In each field the agent can select one of the four actions: go 
north, go east, go south, go west. Actions that  would lead into a blocked field 
are not executed. Once the agent finds the goal state it receives a reward of 1000 
and is reset to the start  state. All steps are punished by a reward of - 1 .  The  
discount factor "y is set to 0.99. Note that  initially the agent has no information 
about  the environment at all. 

E x p e r i m e n t a l  s e t -up .  To select actions we used the max-random selection 
rule, which selects an action with maximal Q-value with probability Pma~ and 
a random action with probability 1 - Pmax. A single run on one of the twenty 
mazes consisted of 5,000,000 steps. During each run we linearly increased Pma~ 
from 0.5 (start) until 1.0 (end). Every 10,000 steps the learner's performance was 
monitored by computing its cumulative reward so far. The  optimal performance 
is about  41,500 = 41.5K reward points (this corresponds to 194-step paths). 
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Fig. 3. A 100 x 100 maze used in the experiments. Black states denote blocked field. 
The agent's aim is to find the shortest path from start S to goal G. 

To show how learning performance depends on A we set up multiple exper- 
iments with different values for A and/3 (used for annealing the learning rate). 
/3 must theoretically exceed 0.5 but may be lower in practice. If A is large and/3 
too small, however, then the Q-function will tend to diverge. 

Pa rame te r s .  We always chose the lowest beta (and hence the largest learn- 
ing rate) such that the Q-function did not diverge. Final parameter choices were: 
Q(0) and Q(0.5) with/3 = 0, Q(0.7) with/3 = 0.01, Q(0.9) with/3 = 0.2, Q(0.95) 
with/3 = 0.3. Q(0.99) with/3 = 0.4. PW's trace cutoff e was set to 0.001. Larger 
values scored less well; lower ones costed more time. Machine precision em was 
set to 10 -18. Time costs were computed by measuring cpu-time (including action 
selection and almost neglectable simulator time) on a 50 MHz SPARC station. 

Resul ts .  Learning performance for fast Q()~) is plotted in Figure I(A) (re- 
sults with PW's Q(~) are very similar). We observe that larger values of 
increase performance much faster than smaller values, although the final per- 
formances are best for standard Q-learning and Q(0.95). Figure I(B), how- 
ever, shows that fast Q()~) is not much more time-consuming than standard 
Q-learning, whereas PW's Q()~) consumes a lot of CPU time for large ,k. 

Table 1 shows more detailed results. It shows that Q(0.95) led to the largest 
cumulative reward which indicates that its learning speed is fastest. Note that 
for this best value A = 0.95, fast Q()0 was more than four times faster than 
PW's Q(A). 



362 

i 

4O000 

3O00O 

2OO0O 

10000 

0 

-10000 

Q-learning - 
l=ast ~o.~) ........ ~ . - "  
Fast Q(0.7) ......... ~::" ..--"~ 

Fast  Q(0,95) . . . . . . . .  . . ~ ' : ~ T ' d , .  " ' / ' ' "  . ,." "" 

....... - /  
..... / 

! i I I 
l e+06  2e+06 3e+06 4e+06 5e+06 

i 
.S 

3500 , , , , . 
I Q.learning - .."" I 
L Fast Q(0.7) . . . . . . . .  ,.." / 
I- Fast Q(O.9) . . . . . . . . .  / ] 
l Fast  Q(0.99) ...... /" I 

2500 I- pwQ<o.7) ........ ... q 
[ PW Q(0.9) . . . . . . . . . .  " | 

2ooo t Pw Q(0.99) .......... .,.'" I 

1500 [ //"/" ..-f'/'"" ' 

0 le-v06 2e+06 3e+06 4e+06 5e+06 

Nr steps Nr steps 

Fig. 4. (A) Learning performance of Q(A)-learning with different values for A. (B) 
CPU time plotted against the number of learning steps. 

P W ' s  cut-off method works only when traces decay, which they did due to 
the chosen A and 3' parameters .  For A7 = 1 (worst case), however, P W  would 
consume about  100(!) hours whereas our method needs around 11 minutes. 

5 C o n c l u s i o n  

While other Q(),) approaches are either offiine, inexact,  or may suffer from av- 
erage update  complexity depending on the size of the s ta te /ac t ion  space, ours 
is fully online Q(A) with average update  complexity linear in the number  of 
actions. Efficiently dealing with eligibility traces makes fast Q(A) applicable to 
larger scale RL problems. 

A c k n o w l e d g m e n t s  

Thanks  for helpful comments  to Nic Schraudolph and an anonymous reviewer. 

Table  1. Average results for different online Q(A) methods on twenty 100 x 100 mazes. 
Final performance is the cumulative reward during the final ~0,000 steps. Total perfor- 
mance is the cumulative reward during a simulation. Time is measured in cpu seconds. 

SYstem Final performance Total performance Time 

Q-learning 41.5K 4- 0.5K 4.5M 4- 0.3M 390 4- 20 
Fast Q(0.5) 41.2K 4- 0.7K 8.9M 4- 0.2M 660 4 -  33 
Fast Q(0.7) 39.6K =t= 1.4K 7.9M 4- 0.3M 660 4- 29 
Fast Q(0.9) 40.9K 4- 1.0K 9.2M 4- 0.3M 640 4- 32 
Fast Q(0.95) 41.5K 4- 0.5K 9.8M 4- 0.2M 610 4 - 3 2  
Fast Q(0.99) 40.0K 4- 1.1K 8.3M 4- 0.4M 630 4- 39 
PW Q(0.5) 41.3K 4- 0.SK 8.9M 4- 0.3M 1300 4- 57 
PW Q(0.7) 40.0K 4- 0.TK 7.9M 4- 0.3M 1330 4- 38 
PW Q(0.9) 41.2K 4- 0.7K 9.4M 4- 0.3M 2030 4- 130 
PW Q(0.95) 41.2K 4- 0.gK 9.7M 4- 0.3M 2700 4- 94 
PW Q(0.99) 39.8K 4- 1.4K 8.2M 4- 0.4M 3810 4- 140 
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