
Speeding up Q(A)-learning

Marco Wiering and Jiirgen Schmidhuber

IDSIA, Corso Elvezia 36
CH-6900-Lugano, Switzerland

Abstract. Q(A)-learning uses TD()~)-methods to accelerate Q-learning.
The worst case complexity for a single update step of previous online
Q()~) implementations based on lookup-tables is bounded by the size of
the state/action space. Our faster algorithm's worst case complexity is
bounded by the number of actions. The algorithm is based on the obser-
vation that Q-value updates may be postponed until they are needed.

Keywords : R e i n f o r c e m e n t learning, Q-learning, TD(A), onl ine Q(A),
lazy learning

1 I n t r o d u c t i o n

Q(A)-learning (Watkins, 1989; Peng and Williams, 1996) is an important rein-
forcement learning (RL) method. It combines Q-learning (Watkins, 1989; Watkins
and Dayan, 1992) and TD(A) (Sutton, 1988; Tesauro, 1992). Q(A) is widely used
- - it is generally believed to outperform simple one-step Q-learning, since it uses
single experiences to update evaluations of multiple state/action pairs (SAPs)
that have occurred in the past.

Online vs. ofiline. We distinguish online ILL and oI~tine RL. Online RL up-
dates modifiable parameters after each visit of a state. Offiine RL delays updates
until after a trial is finished, that is, until a goal has been found or a time limit
has been reached. Without explicit trial boundaries offline RL does not make
sense at all. But even where applicable, ofliine RL tends to get outperformed by
online RL which uses experience earlier and therefore more efficiently (Rummery
and Niranjan, 1994). Online RL's advantage can be huge. For instance, online
methods that punish actions (to prevent repetitive selection of identical actions)
can discover certain environments' goal states in polynomial time (Koenig and
Simmons, 1996), while oflline RL requires exponential time (Whitehead, 1992).

P r ev ious Q(A) h~p l emen ta t i ons . To speed up Q-learning, Watkins (1989)
suggested combining it with TD(A) learning. Typical online Q(A) implementa-
tions (Peng and Williams, 1996) based on lookup-tables or other local approx-
imators such as CMACS (Albus 1975; Sutton, 1996) or self-organizing maps
(Kohonen, 1988), however, are unnecessarily time-consuming. Their update com-
plexity depends on the values of)~ and discount factor % and is proportional to
the number of SAPs (state/action pairs) which occurred. The latter is bounded
by the size of state/action space (and by the trial length which may be propor-
tional to this).

353

Lin's offline Q(A) (1993) creates an action-replay set of experiences after
each trial. Cichosz' semi-online method (1995) combines Lin's offiine method and
online learning. It needs fewer updates than Peng and Williams' online Q(A), but
postpones Q-updates until several subsequent experiences are available. Hence
actions executed before the next Q-update are less informed than they could be.
This may result in performance loss. For instance, suppose that the same state
is visited twice in a row. If some hazardous action's Q-value does not reflect
negative experience collected after the first visit then it may get selected again
with higher probability than wanted.

T h e novel m e t h o d . Previous methods either are not truly online and thus
require more experiences, or their updates are less efficient than they could be
and thus require more computation time. Our Q(A) variant is truly online and
more efficient than others because its update complexity does not depend on the
number of states 1. It uses "lazy learning" (introduced in memory-based learning,
e.g., Atkeson, Moore and Schaal 1996) to postpone updates until they are needed.

Out l ine . Section 2 reviews Q(A) and describes Peng and William's Q(A)-
algorithm (PW). Section 3 presents our more efficient algorithm. Section 4
presents a practical comparison on 100 x 100 mazes. Section 5 concludes.

2 Q(,k)-Learning

We consider discrete Markov decision processes, using time steps t = 1, 2, 3 , . . . ,
a discrete set of states S = {$1, $2, $3 , . . . , Sn} and a discrete set of actions A.
st denotes the state at time t, and as = H (s t) the action, where /7 represents
the learner's policy mapping states to actions. The transition function P with
elements P~ = P(s t+l = j l s t = i, at = a) for i , j E S and a E A defines the
transition probability to the next state st+l given st and at. A reward function R
defines the scalar reward signal R(i , a, j) E ~ for making the transition to state
j given state i and action a. rt denotes the reward at time t. A discount factor

E [0, 1] discounts later against immediate rewards. The controller's goal is to
select actions which maximize the expected long-term cumulative discounted re-
inforcement, given an initial state selected according to a probability distribution
over possible initial states.

R e i n f o r c e m e n t Learn ing . To achieve this goal an action evaluation func-
tion or Q-function is learned. The optimal Q-value of SAP (i, a) satisfies

Q'(i,a) =) -] p (R(i, a, j) +
J

(1)

where V*(j) = maxa Q*(j ,a) . To learn this Q-function, RL algorithms repeat-
edly do: (1) Select action at given state st. (2) Collect reward rt and observe
successor state st+l. (3) Update the Q-function using the latest experience
(st, at, rt, st+l).

1 The method can also be used for speeding up tabular TD(A).

354

Q-learning. Given (st,at,rt, st+l), standard one-step Q-learning updates
just a single Q-value Q(st, at) as follows (Watkins, 1989):

Q(st, at) ~- Q(st, at) + ~k(st, a,)e;,

where e~ is the temporal difference or TD(0)-error given by:

e~ = (rt + ~/V(st+l) - Q(st, at)),

where the value function V(s) is defined as V(s) = maxa Q(s, a) (evaluated at
time-step t), and o~k(st, at) is the learning rate for the k th update of SAP (st, at).

Learning ra te adap ta t ion . The learning rate ak(s,a) for the k th update
of SAP (s, a) should decrease over time to satisfy two conditions for stochastic
iterative algorithms (Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996):

1. oo oo 2 ~k=l c~k(s,a) = oo, and 2. ~-~k=l ak(s,a) < oo.

They hold for c~k(s,a) = 1 k-~r, where ½ < ~ g 1.
Q(A)-learning. Q(A) uses TD(A)-methods (Sutton, 1988) to accelerate Q-

learning. First note that Q-learning's update at time t + 1 may change V(st+l)
in the definition of e~. Following (Peng and Williams, 1996) we define the TD(0)-
error of V(St+l) as

et+~ = (rt+l + "/V(s~+2) - V(s t+ l))

Q(A) uses a factor A E [0, 1] to discount TD-errors of future time steps:

Q(s~, a t) , - Q(s~, at) + ~(st , at)eL
where the TD(A)-error et ~ is defined as

oo

i = 1

Eligibil i ty t races . The updates above cannot be made as long as TD errors
of future time steps are not known. We can compute them incrementally, how-
ever, by using eligibility traces (Barto et al., 1983; Sutton 1988). In what follows,
~lt(s, a) will denote the indicator function which returns 1 if (s, a) occurred at
time t, and 0 otherwise. Omitting the learning rate for simplicity, the increment
of Q(s, a) for the complete trial is:

k

AQ(s,a) = lim ~"e~t~lt(s,a)
t = l

k k

k--~ oo/====#
t:l i=t+l

k t-1

= lim ~--~[e;~f(s, a) + ~--~(TA)'-'etniCs, a)]
k--~oo

~=I i=l

k t-1

~--'--1 / = 1

(2)

355

To simplify this we use an eligibility trace lt(s, a) for each SAP (s, a):

t--1

lt(s, a) = E(7A)t-i~?i(s, a) = 7A(l t - l (s , a) + yt- l(s , a))
i=1

Then the online update at time t becomes:

V(s,a) e S x A do: Q(s,a) ~ Q(s ,a) + a~(st,at)[e~?t(s,a) + etlt(s,a)]

Online Q()0" We will focus on Peng and Williams' algorithm (PW) (1996),
although there are other possible variants, e.g, (Rummery and Niranjan, 1994).
PW uses a list H of SAPs that have occurred at least once. SAPs with eligibility
traces below e > 0 are removed from H. Boolean variables visited(s, a) are used
to make sure no two SAPs in H are identical.

P W ' s Q(A)-update(st , at, r t , S t + l) "-

1) e i *- (rt +'yV(st+l) - Q(st ,at))
2) et (rt + V(St+l) - V(s t))
3) For each SAP (s ,a)E H Do :

3a) l(s, a) ~-- ~A/(s,a)
3b) Q(s,a) ~-- Q(s ,a) + ak(s t ,a t)e t l (s ,a)
3c) I f (l(s,a) < e)

3c-1) H ~-- H \ (s, a)
3c-2) visi ted(s ,a) *--- 0

4) Q(st ,a t) ~ Q(st ,at) + ~k(st,at)e~
5) l (s t , a t) ~- l (s t ,a t) + 1
6) I f (visited(st , a t) = O)

6a) visited(st, at) ¢-- 1
6b) H *- H U (st, at)

C o m m e n t s . 1. The SARSA algorithm (Rummery and Niranjan, 1994) re-
places the right hand side in lines (1) and (2) by (rt +'~Q(st+l, a t+ t) -Q(s t , at)).

2. For "replacing eligibility traces" (Singh and Sutton, 1996), step 5 should
be: Va : l(st ,a) ~-- 0; l(st ,at) *-- 1.

3. Representing H by a doubly linked list and using direct pointers from each
SAP to its position in H, the functions operating on H (deleting and adding
elements - - see lines (3c-1) and (6b)) cost O(1).

Complexi ty . Deleting SAPs from H (step 3c-1) once their traces fall below
a certain threshold may significantly speed up the algorithm. If 75 is sufficiently
small, then this will keep the number of updates per time step manageable.
For large 3'~ PW does not work that well: it needs a sweep (sequence of SAP
updates) after each time step, and the update cost for such sweeps grows with
75. Let us consider worst-case behavior, which means that each SAP occurs just
once (if SAPs reoccur then the history list will grow at a slower rate). At the
start of the trial the number of updates increases linearly until at some time step
t some SAPs get deleted from H. This will happen as soon as t > ~ Since

- - l o g (~) ~) "

the number of updates is bounded from above by the number of SAPs, the total
update complexity increases towards O(ISIIAI) per update for ~)~ -* 1.

356

3 F a s t Q (A) - L e a r n i n g

The main contribution of this paper is an efficient, fully online algorithm with
time complexity O(tAI) per update. The algorithm is designed for A 7 > 0 - -
otherwise we use simple Q-learning.

Ma in principle. The algorithm is based on the observation that the only
Q-values needed at any given time are those for the possible actions given the
current state. Hence, using "lazy learning", we can postpone updating Q-values
until they are needed. Suppose some SAP (s, a) occurs at steps tl, t2, t3, Let
us abbreviate 7 5 = 7t(s, a), ¢ = 7A. First we unfold terms of expression (2):

k t--I

V" [tY et z..., =

t = l i = l

t l t - - i t2 1 - 1 ta ~ - 1

+ o, E + E Io,' + E , ' - ' , ' I ÷ E ÷ o, E,'-', , '3 ÷ . .
$=1 / = 1 £ = t l + l i = l f = t 2 + l / = 1

Since 7 5 is 1 only for t = tl, t2, t3 , . . , and 0 otherwise, we can rewrite this as

$2 $3

e 1 $, + 42 + ~ e$¢ H1 + e~ + ~ e$(¢ H ' + ¢$-$2) + . . . =
$ = $ 1 + 1 $ = $ 2 + 1

$ ~ + (N + ~) 7 : e0+ . - -=
tl + e$2 + x $ $=$2+1

$2 $' 1 1~ $3 $2

(p 1 $ = 1 $ = 1 t = l t = l

Defining At =)-~/i=1 ei¢ i, this becomes

, , 1 , (1 1
e$, + % + ~7(/%$2 - ~$~1 + e$3 + ~ 7 + ~ 1 (~ $ ~ - ~$2) + . - - (31

This will allow for constructing an efficient online Q(A) algorithm. We define a

local trace l~(s,a) t ~ a , = ~-'~i=1 and use (3) to write down the total update of
Q(s, a) during a trial:

k

AQ(s, a) = lim E e~Tt(s' a) + l~(s, a)(AS+l - - At) (4)
k--*oo

t = l

To exploit this we introduce a global variable/% keeping track of the cumu-
lative TD(A) error since the start of the trial. As long as SAP (s, a) does not
occur we postpone updating Q(s, a). In the update below we need to subtract
that part of A which has already been used (see equations 3 and 4). We use
for each SAP (s, a) a local variable ~f(s, a) which records the value of Zi at the
moment of the last update, and a local trace variable l'(s, a). Then, once Q(s, a)

357

needs to be known, we update Q(s, a) by adding l'(s, a)(A - 5(s, a)). Figure 1
illustrates that the algorithm substitutes the varying eligibility trace l(s,a) by
multiplying a global trace Ct by the local trace l~(s, a). The value of Ct changes
all the time, but l~(s, a) does not in intervals during which (s, a) does not occur.

I 7--.. I (s,a)
l'(s,a) i "'''""

I I I t - >
t 1 t 2 t 3

Fig. 1. SAP (s,a) occurs at times t l , t~, t3, The standard eligibility trace l(s,a)
equals the product of Ct and ll(s, a).

A l g o r i t h m overview. The algorithm relies on two procedures: the Local
Update procedure calculates exact Q-values once they are required; the Global
Update procedure updates the global variables and the current Q-value. Initially
we set the global variables ¢0 ~__ 1.0 and A ~-- 0. We also initialize the local
variables ~f(s, a) ~ 0 and l'(s, a) ~-- 0 for all SAPs.

Local upda te s . Q-values for all actions possible in a given state are updated
before an action is selected and before a particular V-value is calculated. For each
SAP (s, a) a variable 5(s, a) tracks changes since the last update:

Local U p d a t e (s t , a t) :

1) Q(s,,a~) ~- Q (s . a ,) + ~ k (~ , a ,) (n - ~ (s . a ~)) l ' (s , , a ~)

The global u p d a t e p rocedure . After each executed action we invoke the
procedure Global Update, which consists of three basic steps: (1) To calculate
V(st+l) (which may have changed due to the most recent experience), it calls
Local Update for the possible next SAPs. (2) It updates the global variables Ct
and A. (3) It updates (st, at)'s Q-value and trace variable and stores the current
A value (in Local Update).

358

Global Update(s t , at, rt, 8 t + 1) "

i) V a E A Do

la) Local Update(st+l,a)
2) e~ ~-- (rt + "/V(st+O - Q(st,at))
3) e~ ,-- (rt + "~V(st+~) - V (s t))
4) Ct ,__ ~ACt-1
S) A ~ A + ere t
6) Local Update(st, at)
7) Q(st ,at) *--- Q(st ,at) + ak(st,at)e~
s) l'(st,at) ~ l'(s.at) +

For "replacing eligibility traces" (Singh and Sutton, 1996), step 8 should be
changed as follows: Va : l'(st, a) ~ 0; l'(st, at) ~ ~ .

Machine precision p rob lem and solut ion. Adding ere t to A in line 5
may create a problem due to limited machine precision: for large absolute values
of A and small Ct there may be significant rounding errors. More importantly,
line 8 will quickly overflow any machine for 7A < 1. The following addendum
to the procedure Global Update detects when Ct falls below machine precision
era, updates all SAPs which have occurred (again we make use of a list H), and
removes SAPs with l'(s, a) < era from H. Finally, A and ¢t are reset to their
initial values.

Global U p d a t e : a d d e n d u m

9) I f (vis i ted(st ,a~)=O)
9a) H +-- H U (s t , a t)
9b) visited(st ,at) ~-- 1

I0) I f (¢t <era)
10a) Do V(s,a) EH

10a-l) Local Update(s,a)
10a-2) l '(s,a) +-- l ' (s ,a)¢ t
10a-3) I f (l ' (s ,a)<era)

10a-3-1) H ~- H \ (s, a)
10a-3-2) visi ted(s,a) ~-- 0

10a-4) 6(s,a) *-- 0
lOb) A +-- 0
I0c) ~t +_ 1.0

C o m m e n t s . Recall that Local Update sets 6(s, a) *-- A, and update steps
depend on A -- 6(s, a). Thus, after having updated all SAPs in H, we can set
A , - 0 and 6(s,a) ~ O. Furthermore, we can simply set l '(s,a) ~ l '(s,a)¢ t and
Ct ~_ 1.0 without affecting the expression l'(s, a)¢ t used in future updates - -
this just rescales the variables. Note that if 7A = 1, then no sweeps through the
history list will be necessary.

Complexi ty . The algorithm's most expensive part are the calls of Local
Update, whose total cost is O([AI). This is not bad: even simple Q-learning's

359

action selection procedure costs O(IAI) if, say, the Boltzmann rule (Thrun, 1992;
Caironi and Dorigo, 1994) is used. Concerning the occasional complete sweep
through SAPs still in history list H: during each sweep the traces of SAPs in H
are multiplied by l < era. SAPs are deleted from H once their trace falls below
era. In the worst case one sweep per n time steps updates 2n SAPs and costs
O(1) on average. This means that there is an additional computational burden
at certain time steps, but since this happens infrequently our method's total
average update complexity stays O(IAI).

Compar i son to P W . Figure 2 illustrates the difference between theoretical
worst-case behaviors of both methods for IAI = 5, IsI = 1000, and 7 = 1. We plot
updates per time step for $ E {0.7, 0.9.0.99}. The accuracy parameter e (used in
PW) is set to 10 -6 (in practice less precise values may be used, but this will not
change matters much), em is set to 10 -16. The spikes in the plot for fast Q($)
reflect occasional full sweeps through the history list due to limited machine
precision (the corresponding average number of updates, however, is very close
to the value indicated by the horizontal solid line - - as explained above, the
spikes hardly affect the average). No sweep is necessary in fast Q(0.99)'s plot
during the shown interval. Fast Q needs on average a total of 13 update steps:
5 in choose-action, 5 for calculating V(st+l) , 1 for updating the chosen action,
and 2 for taking into account the full sweeps.

4 0 0

3 5 0

3 0 0

25O

2.20o

150

t 6 0

5 0

Fas t Q l a m b d a = .7 - -
Fas t Q l a m b d a = .9

P W l a m b d a = .7
P W la rabda = .9

P W l a m b d a = .99

t
pt

1 / / /Z

,"i /I
i/*

i,1,1+

4O0

ftme

Fig. 2. Number of updates plotted against time: a worst case analysis for our method
and Peng and Williams' (PW) for different values of)t.

Mult ip le Trials. We have described a single-trial version of our algorithm.
One might be tempted to think that in case of multiple trials all SAPs in the

360

history list need to be updated and all eligibility traces reset after each trial.
This is not necessary - - we may use cross-triai learning as follows:

We introduce A M variables, where index M stands for the M th trial. Let N
denote the current trial number, and let variable visited(s, a) represent the trial
number of the most recent occurrence of SAP (s, a). Now we slightly change
Local Update:

Loca l U p d a t e (s t , a t) :

1) M *- visited(st,at)
2) Q(st, at) *-- Q(s~, at)TOOk(St, at)(AM--~(st, at))l'(st, at)
3) 5(s~,at) ~ A N

4) I f (M < N)
4a) l'(st,at) ~-- 0
4b) visited(st,at) ~-- N

Thus we update Q(s, a) using the value A M of the most recent trial M during
which SAP (s, a) occurred and the corresponding values of/i(st , a~) and l'(st, at)
(computed during the same trial). In case SAP (s, a) has not occurred during
the current trial we reset the eligibility trace and set visited(s, a) to the current
trial number. In Global Update we need to change lines 5 and 10b by adding
trial subscripts to A, and we need to change line 9b in which we have to set
visited(st,at) ~-- N. At trial end we reset Ct to ¢0 = 1.0, increment the trial
counter N, and set A N ~-- 0. This allows for postponing certain updates until
after the current trial's end.

4 E x p e r i m e n t s

To evaluate competing training methods in practice we created a set of 20 dif-
ferent randomly initialized 100 x 100 mazes, each with about 20% blocked fields.
All mazes share a fixed start state (S) and a fixed goal state (G) (we discarded
mazes that could not be solved by Dijkstra's shortest path algorithm). See figure
3 for an example. In each field the agent can select one of the four actions: go
north, go east, go south, go west. Actions that would lead into a blocked field
are not executed. Once the agent finds the goal state it receives a reward of 1000
and is reset to the start state. All steps are punished by a reward of - 1 . The
discount factor "y is set to 0.99. Note that initially the agent has no information
about the environment at all.

E x p e r i m e n t a l s e t -up . To select actions we used the max-random selection
rule, which selects an action with maximal Q-value with probability Pma~ and
a random action with probability 1 - Pmax. A single run on one of the twenty
mazes consisted of 5,000,000 steps. During each run we linearly increased Pma~
from 0.5 (start) until 1.0 (end). Every 10,000 steps the learner's performance was
monitored by computing its cumulative reward so far. The optimal performance
is about 41,500 = 41.5K reward points (this corresponds to 194-step paths).

361

Fig. 3. A 100 x 100 maze used in the experiments. Black states denote blocked field.
The agent's aim is to find the shortest path from start S to goal G.

To show how learning performance depends on A we set up multiple exper-
iments with different values for A and/3 (used for annealing the learning rate).
/3 must theoretically exceed 0.5 but may be lower in practice. If A is large and/3
too small, however, then the Q-function will tend to diverge.

Pa rame te r s . We always chose the lowest beta (and hence the largest learn-
ing rate) such that the Q-function did not diverge. Final parameter choices were:
Q(0) and Q(0.5) with/3 = 0, Q(0.7) with/3 = 0.01, Q(0.9) with/3 = 0.2, Q(0.95)
with/3 = 0.3. Q(0.99) with/3 = 0.4. PW's trace cutoff e was set to 0.001. Larger
values scored less well; lower ones costed more time. Machine precision em was
set to 10 -18. Time costs were computed by measuring cpu-time (including action
selection and almost neglectable simulator time) on a 50 MHz SPARC station.

Resul ts . Learning performance for fast Q()~) is plotted in Figure I(A) (re-
sults with PW's Q(~) are very similar). We observe that larger values of
increase performance much faster than smaller values, although the final per-
formances are best for standard Q-learning and Q(0.95). Figure I(B), how-
ever, shows that fast Q()~) is not much more time-consuming than standard
Q-learning, whereas PW's Q()~) consumes a lot of CPU time for large ,k.

Table 1 shows more detailed results. It shows that Q(0.95) led to the largest
cumulative reward which indicates that its learning speed is fastest. Note that
for this best value A = 0.95, fast Q()0 was more than four times faster than
PW's Q(A).

362

i

4O000

3O00O

2OO0O

10000

0

-10000

Q-learning -
l=ast ~o.~) ~ . - "
Fast Q(0.7) ~::" ..--"~

Fast Q(0,95) ~ ' : ~ T ' d , . " ' / ' ' " . ,." ""

....... - /
..... /

! i I I
l e+06 2e+06 3e+06 4e+06 5e+06

i
.S

3500 , , , , .
I Q.learning - .."" I
L Fast Q(0.7) ,.." /
I- Fast Q(O.9) /]
l Fast Q(0.99) /" I

2500 I- pwQ<o.7) q
[PW Q(0.9) " |

2ooo t Pw Q(0.99),.'" I

1500 [//"/" ..-f'/'"" '

0 le-v06 2e+06 3e+06 4e+06 5e+06

Nr steps Nr steps

Fig. 4. (A) Learning performance of Q(A)-learning with different values for A. (B)
CPU time plotted against the number of learning steps.

P W ' s cut-off method works only when traces decay, which they did due to
the chosen A and 3' parameters . For A7 = 1 (worst case), however, P W would
consume about 100(!) hours whereas our method needs around 11 minutes.

5 C o n c l u s i o n

While other Q(),) approaches are either offiine, inexact, or may suffer from av-
erage update complexity depending on the size of the s ta te /ac t ion space, ours
is fully online Q(A) with average update complexity linear in the number of
actions. Efficiently dealing with eligibility traces makes fast Q(A) applicable to
larger scale RL problems.

A c k n o w l e d g m e n t s

Thanks for helpful comments to Nic Schraudolph and an anonymous reviewer.

Table 1. Average results for different online Q(A) methods on twenty 100 x 100 mazes.
Final performance is the cumulative reward during the final ~0,000 steps. Total perfor-
mance is the cumulative reward during a simulation. Time is measured in cpu seconds.

SYstem Final performance Total performance Time

Q-learning 41.5K 4- 0.5K 4.5M 4- 0.3M 390 4- 20
Fast Q(0.5) 41.2K 4- 0.7K 8.9M 4- 0.2M 660 4 - 33
Fast Q(0.7) 39.6K =t= 1.4K 7.9M 4- 0.3M 660 4- 29
Fast Q(0.9) 40.9K 4- 1.0K 9.2M 4- 0.3M 640 4- 32
Fast Q(0.95) 41.5K 4- 0.5K 9.8M 4- 0.2M 610 4 - 3 2
Fast Q(0.99) 40.0K 4- 1.1K 8.3M 4- 0.4M 630 4- 39
PW Q(0.5) 41.3K 4- 0.SK 8.9M 4- 0.3M 1300 4- 57
PW Q(0.7) 40.0K 4- 0.TK 7.9M 4- 0.3M 1330 4- 38
PW Q(0.9) 41.2K 4- 0.7K 9.4M 4- 0.3M 2030 4- 130
PW Q(0.95) 41.2K 4- 0.gK 9.7M 4- 0.3M 2700 4- 94
PW Q(0.99) 39.8K 4- 1.4K 8.2M 4- 0.4M 3810 4- 140

363

References

[Albus, 1975] Albus, J. S. (1975). A new approach to manipulator control: The cere-
bellar model articulation controller (CMAC). Dynamic Systems, Measurement and
Control, pages 220-227.

[Atkeson et al., 1997] Atkeson, C. G., Schaal, S., and Moore, A. W. (1997). Locally
weighted learning. Artificial Intelligence Review, 11:11-73.

[Baxto et al., 1983] Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neu-
ronlike adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13:834-846.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-
dynamic Programming. Athena Scientific, Belmont, MA.

[Caironi and Dorigo, 1994] Caironi, P. V. C. and Dorigo, M. (1994). Training Q-
agents. Technical Report IRIDIA-94-14, Universit~ Libre de BruxeUes.

[Cichosz, 1995] Cichosz, P. (1995). Truncating temporal differences: On the efficient
implementation of TD(A) for reinforcement learning. Journal on Artificial Intelli-
gence, 2:287-318.

[Koenig and Simmons, 1996] Koenig, S. and Simmons, R. G. (1996). The effect of rep-
resentation and knowledge on goal-directed exploration with reinforcement learning
algorithms. Machine Learning, 22:228-250.

[Kohonen, 1988] Kohonen, T. (1988). Self-Organization and Associative Memory.
Springer, second edition.

[Lin, 1993] Lin, L. (1993). Reinforcement Learning for Robots Using Neural Networks.
PhD thesis, Carnegie Mellon University, Pittsburgh.

[Peng and Williams, 1996] Peng, J. and Williams, R. (1996). Incremental multi-step
Q-learning. Machine Learning, 22:283-290.

[Rummery and Niranjan, 1994] Rummery, G. and Niranjan, M. (1994). On-line Q-
learning using connectionist sytems. Technical Report CUED/F-INFENG-TR 166,
Cambridge University, UK.

[Singh and Sutton, 1996] Singh, S. and Sutton, R. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning, 22:123-158.

[Sutton, 1988] Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning, 3:9-44.

[Sutton, 1996] Sutton, R. S. (1996). Generalization in reinforcement learning: Success-
ful examples using sparse coarse coding. In D. S. Touretzky, M. C. M. and Hasselmo,
M. E., editors, Advances in Neural Information Processing Systems 8, pages 1038-
1045. MIT Press, Cambridge MA.

[Tesauro, 1992] Tesauro, G. (1992). Practical issues in temporal difference learning.
In Lippman, D. S., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems 3, pages 259-266. San Mateo, CA: Morgan Kauf-
m a n n .

[Thrun, 1992] Thrun, S. (1992). Efficient exploration in reinforcement learning. Tech-
nical Report CMU-CS-92-102, Carnegie-Mellon University.

[Watkins, 1989] Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD
thesis, University of Cambridge, England.

[Watkins and Dayan, 1992] Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279-292.

[Whitehead, 1992] Whitehead, S. (1992). Reinforcemen~ Learning for the adaptive
control of perception and action. PhD thesis, University of Rochester.

