
Distributed Storage of Replicated Beliefs to Facilitate
Recovery of Distributed Intelligent Agents

Arvind K. Bansal* , Kotagiri Ramohanarao✝, and Anand Rao✝✝

*Department of Mathematics and Computer Science
Kent State University, Kent, OH 44242, USA

arvind@mcs.kent.edu

✝Department of Computer Science
University of Melbourne , Parkville, Victoria 3052, Australia

rao@cs.mu.oz.au

✝✝Australian Artificial Intelligence Institute
Level 6, 171 La Trobe Street, Melbourne, Victoria 3000, Australia

anand@aaii.oz.au

Abstract

We address the problem of recovering the state of an agent after a hardware/software failure of
the system. We address the replication and reincarnation sub-problems of agent recovery under
certain assumptions. An algorithm for distributed storage of replicated beliefs is provided and
its correctness is proved formally. This algorithm allows the reincarnation of multiple crashed
agents in a system of distributed autonomous intelligent agents. The scheme uses replication
and distributed storage in the immediate neighboring agents, and uses distributed logical clocks
to preserve the causality and to terminate retransmission.

Key-words: Distributed fault tolerance, Multi-agent system, Recovery, Reliability

1 Introduction

The past few years has seen a rapid explosion of systems built using the agent-
oriented paradigm [8, 9, 15]. Increasingly, these systems are being embedded into
safety-critical applications, such as, air-traffic management, telecommunications
network management, and intensive-care monitoring. Agent based systems either
carry out critical tasks autonomously or assist humans in critical decision-making
activity in these applications. In either case, the need for robustness and a quick
recovery from hardware and/or software faults becomes critical. In spite of its
importance, the complexity of the task has meant that the problem has not received
sufficient attention in the agent-oriented research community. This paper redresses
this imbalance by examining in greater detail the problem of agent recovery:
recovering the state of an agent after a major crash or failure.

 Address for correspondence

Although the agent recovery problem shares similarities with other related
problems of database recovery and process recovery in distributed systems, there are
significant differences as well. We explore some of these differences below.

First, the agents continuously sense the external environment and based on
their internal mental state take certain actions that affect the environment. The
effects of these external actions cannot be undone. Also, agents lack a clear notion
of a transaction that can be used to log changes to its internal state onto a permanent
store. In other words, rolling back to a previous state is much harder in agents than
in conventional databases.

Second, the agents themselves are embedded in a continuously changing
environment and often interact with other agents and/or humans to carry out a
variety of tasks. As a result, even if a failed agent was capable of being recovered in
a finite time, the recovered agent would still be out-of-step with the external
environment, as there is a high likelihood that the external environment and the
other agents have changed significantly during this period. These differences
require us to modify existing techniques and adapt it for agent recovery.

Given the complexity of the agent recovery problem it is useful to split the
problem into its constituent sub-problems. The agent recovery problem can be split
into three simpler sub-problems:
1. the replication problem or the problem of replicating the state of an agent at

other nodes in a distributed network, so that the agent can be rebuilt when a
system failure occurs;

2. the reincarnation problem or the problem of building the state of a crashed
agent from the replicated information across the distributed network; and finally

3. the assimilation problem or the problem of the agent “catching-up” with the
external environment, by reaching a state which could be considered a state
where it would have been, had it not crashed.

In this paper, we consider the replication and reincarnation problems.
Although we do not address the assimilation problem, an application developer can
write agent-oriented programs in such a way that goals which are yet to be satisfied
are re-established and tried under the new conditions. Depending on the time-
criticality of the application such a solution may be adequate. However, the problem
of providing fault tolerant recovery in a non-stop real-time system is quite complex.
We believe that the research presented in this paper will certainly help in providing a
practical fault-tolerant systems.

Before we proceed with the solution for the agent recovery problem, we
briefly describe system of agents under consideration, assignment of agents to
machines, and crash or failure of an agent.

The agents we have in mind are Belief-Desire-Intention (BDI) agents. BDI
agents [8] are autonomous software entities that sense a continuously changing
environment and based on their internal mental state take certain actions which
affect their external environment. The primary distinguishing feature of a BDI agent
is its mental state - comprising the mental attitudes of beliefs, desires, and intentions
that represent information, motivational, and deliberative components, respectively.
In addition, these agents are programmed by writing plans that specify how to

achieve desires in certain situations. A practical realization of such BDI agents is
dMARS (distributed Multi-Agent Reasoning System) agent-oriented development
environment that has been used to build a number of practical applications [15].
The multi-agent environment dMARS allows the specification and execution of
multiple BDI agents which cooperate with each other to solve a problem. The
architecture allows multiple agents to be assigned to a single operating system
process, and spawns multiple processes to run on a single machine.

Given a generic agent architecture which allows multiple agents to run
simultaneously on a single machine, one can envisage at least three different types of
crashes or system failures (see Figure 1): single agent crash, multiple non-neighbor
crashes, multiple neighbor crashes.

Single agent crash implies that a reincarnated agent fully recovers before
another agent crashes. After the crash of an agent, its belief and vaults (needed to
store the beliefs of the neighboring agents) are lost. To facilitate the recovery, the
agent’s beliefs are distributed in the vaults of the neighbors and the secondary
storage of the neighbors. To recover the vaults, fault tolerance and check-pointing
are needed during the storage of beliefs. After the full recovery, there is no loss in
the belief system.

Multiple non-neighbor crash is treated as multiple isolated single agent
crashes. Since none of the crashed agent store the beliefs of other crashed agents in
their vaults, each one of them can be recovered fully in a concurrent manner.

Multiple neighbors crashes suffer from the problem of information loss
since the neighbors share mutually part of the each other's beliefs. To avoid
information loss, belief replication has to ensure that multiple neighboring vaults are
sent the same belief.

Single agent crash
Active agent

 1a: Single agent 1b: Multiple isolated 1c: M ultiple
 crash crashes neighbors’ crash

Fig. 1. Different types of crashes

In this paper, we consider single agent and multiple non-neighbor crashes.
With such a crash the loss of an agent results in a temporary loss of some of the
functionality of the overall system. As long as the situation does not deteriorate to a
state where multiple neighboring agents are failing at the same time, the agents can
be reincarnated at other nodes, and can be integrated with the rest of the system to
facilitate the reliable execution of the overall system. After reincarnation, an agent
has no knowledge of the tasks (or intentions) that were being executed at the time of
crash, has no knowledge of the neighboring agents which initiated new tasks, and
has no knowledge of the agents with whom it had to communicate. In addition, the
state of agents would have changed between the time of crash and time of recovery:
beliefs would have altered, and some of the tasks being executed at the time of crash

would not be needed. Under these restrictions, we examine the solutions for the
problem of agent recovery.

A naive solution of periodically sending messages to neighboring agents
informing them of one’s own belief state will not provide the desired behavior. For
example, assume that an agent A sent a message at Time 1 to its neighboring agent
B that A’s position is (10, 10) on an X-Y axis, and the agent A sent another message
at Time 3 to the agent B that A’s position is (11, 10). Depending on how the agent
B processes the messages one might end-up with different results. To avoid this
problem one can insist that the agent B updates based on its local clock, i.e., process
the messages in the order that they arrive.

However, this solution is also inadequate since order of processing based on
arrival does not preserve the order of events. Consider the situation where there are
three neighboring agents A, B, and C, each sending their belief state (which includes
the position of itself and other agents) to their neighbors. In such a situation it is
possible that an agent, say B, receives a message from A that its new position is (11,
10) followed by another message from C that A’s position is (10, 10). Processing
these messages according to its local clock can result in agent B incorrectly
recording that agent A’s position is (10, 10).

To overcome these problems each agent needs to maintain a distributed
logical clock [7] and update the beliefs based on their causal ordering, not just their
local clock. In this paper, we discuss the distributed storage of replicated beliefs of a
crashed agent to facilitate recovery. Beliefs are time-stamped and are replicated at
the neighboring agents. In addition, to reduce the overhead of communication
between agents, the time-stamped beliefs are piggybacked on existing messages. The
scheme assumes that replicated beliefs are check-pointed periodically to facilitate
fast recovery by the agents.

The major contributions of this paper are twofold. First, to the best of our
knowledge, this is the first time that causality and replication used in the recovery of
distributed transaction processing and fault tolerant computing systems [2] have
been applied for the recovery of distributed intelligent agents. Compared to direct
acknowledgment based schemes, this mechanism provides fault tolerance in the case
of signal loss. Second, the agent recovery mechanism proposed here allows for
reincarnation of an agent on any node in the network independent of the crash of a
node. Third, we also use the messages at the application level for transmitting the
belief updates, and use time-stamp comparison of the messages at application level to
ascertain the storage of the belief updates in the neighbors.

2 Background

In this section, we describe distributed logical clocks and their application
to ensure causality, and introduce the notations and definitions.

In a heterogeneous network different machines have different physical
clocks. These clocks have different values at the same absolute instance. As a result
communication delay causes the same event to be recorded at different times and the

causality of events can not be guaranteed. Logical clocks [5] are needed to maintain
the order of distributed events. The schemes are based upon associating a logical
clock - count of events - associated with each agent and transmitting a vector of
logical clocks [7] among agents. The vector of clocks are piggybacked with every
message from one agent to the another. Upon the receipt of a vector clock instance
from another agent, the local vector clock is updated by taking the least upper bound
of the common logical clocks from two vector-clock instances. Events are time
stamped by the current value of the vector clock in an agent. Causality between the
events is established by using partial order between the time-stamps. A vector clock
instance precedes another vector clock instance if all the logical clocks in the first
instance precede or equal the corresponding logical clocks in the second instance,
and there exists at least one logical clock in the first instance which precedes the
corresponding logical clock in the second instance. Two events are concurrent in the
absence of partial ordering between the corresponding vector clock instances.

In this paper, we denote vector clock as a sequence of integers within
angular brackets < … >. An unknown logical clock instance (or a vector clock
instance) is denoted by the bottom symbol “⊥”. We define two important notions:
least upper bound of tuples (lub), and greatest lower bound of tuples (glb), which we
use throughout this paper to update the value of vector clocks. The definition of lub
and glb are as follows:

lub(<a1, …, an>, <b1, …, bn>) = <max(a1, b1), …, max(an, bn)> (1)
lub(<a1, …, an>, ⊥) = <a1, …, an>
lub(⊥, <a1, …, an>) = <a 1, …, an>

glb(<a1, …, an>, <b1, …, bn>) = <min(a1, b1), …, min(an, bn)> (2)
glb(<a1, …, ai, …, an>, ⊥) = <a1, …, ai, …, an>
glb(⊥, <a1, …, ai, …, an>) = <a 1, …, ai, …, an>

max(a, ⊥) = a; max(⊥, b) = b; max(a, b) = a if a > b otherwise b (3)

min(a, ⊥) = a; min(⊥, b) = b; min(a, b) = a if a < b otherwise b (4)

Example 1

Let us consider Figure 2. There are three communicating agents: A1, A2,
and A3. The belief updates are marked by filled circles, and the transmission of
messages from a agent to another are marked by arrows. The direction of the arrows
is from the originator of a message to the destination of the message. The triples
inside the angular brackets denote the: Ith field in a vector-clock instance represents
the number of preceding belief updates for the agent Ai (0 < I < 4). A message from
the agent A1 increments the vector clock of the agent A2 from <0, 1, 0> to <1, 1, 0>
(least upper bound of <1, 0, 0> and <0, 1, 0>); a message from the agent A3

increments the vector clock of the agent A2 from <1, 1, 0> to <1, 1, 1> (least upper
bound of <1, 1, 0> and <0, 0, 1>); a message from the agent A2 increment the vector

clock of the agent A1 from <2, 0, 0> to <2, 1, 1> (least upper bound of <2, 0, 0> and
<1, 1, 1>); a message from the agent A2 increments the vector clock of the agent A3

from <0, 0, 2> to <1, 1, 2> (least upper bound of <0, 0, 2> and <1, 1, 1>); and a
message from the agent A1 increments the vector clock of the agent A3 from <1, 1,
2> to <2, 1, 2> (least upper bound of <1, 1, 2> and <2, 1, 1>). The partial ordering
of instances of vector clock maintains the causality.

 A 1
< 1 , 0 , 0 > < 2 , 0 , 0 > < 2 , 1 , 1 >

 A 2
 < 0 , 1 , 0 > < 1 , 1 , 0 > < 1 , 1 , 1 >

 A 3
< 0 , 0 , 1 > < 0 , 0 , 2 > < 1 , 1 , 2 > < 2 , 1 , 2 >

Fig. 2. Causality in logical clocks

2.1 Notations

We denote least upper bound by lub; greatest lower bound by glb; for all by
∀; existence by ∃; logical conjunction by ∧, logical disjunction by ∨, composition of
two functions by •; a vector within a pair of angular brackets < … >; a tuple between
a pair of parenthesis (…), and logical clock pair within the curly brackets { … }1, a
logical clock instance by ti; projection of i th sub-field of a tuple by Πi; composition Πi

• Πj by ΠiΠj; agent-ids by italicized upper case English alphabet A, B, C, D; a vector
clock by the capital Greek alphabet Γ, a vector clock of a generic agent D by ΓD; an
instance of a vector clock by ΓI; a logical clock of a generic agent A by ΠA(Γ); Ith

element of vector clock by ΠI(Γ); precedence by the symbol “%”; “precedes or equal
to” by the symbol “%”; and concurrency of two clocks by the symbol “||”. We use
natural language and syntax structure of C like languages to explain the algorithms.

3 Modeling Multi-agents System

In this section, we briefly describe the modeling of agents and the notion of
distributed clocks in a multi-agents based system.

Although we are primarily interested in BDI agents [8, 9] the solutions
proposed in this paper are generic enough to be applied for autonomous agents that
communicate with each other using messages. The only requirement of these agents
is that they capture the state of the external environment as a set of beliefs. We
assume that agents communicate with each other using four primitive types of
messages: ask, reply, tell, and ack (acknowledgment) messages. A tell message is
unidirectional in nature; ask and reply messages are complementary; and ack

� We use curly brackets instead of pair of parenthesis just for better comprehension. Both
have the same meaning.

message is a receipt of ask, reply, and tell messages. At any point in time, multiple
agents are executing their programs; updating their beliefs; cooperating with each
other through ask-reply message pairs, tell messages, and ack messages; and
interacting with the environment through sensors to collect information and through
actuators to control the environment.

The message connectivity between agents is modeled by an agent
connectivity graph (A-graph). An A-graph is a weighted graph2: Agents are
represented as nodes, and the possibility of a message transfer from one agent to the
other is represented by an edge. The weight of an edge is the number of occurrences
of message commands between two agents. The presence of an implicit ack message
for every ask, reply, and tell implies a symmetrical edge AiAj for every edge AjAi.
The total weight of an edge is given by (occurrences of tell-messages from Ai to Aj +
occurrences of ask-messages from Ai to Aj + occurrences of reply messages from Ai

to Aj + occurrences of tell-messages from Aj to Ai + occurrences of ask messages
from Aj to Ai + occurrences of reply messages from Aj to Ai). An agent is a neighbor
of another agent if there is an edge between the corresponding nodes.

In an agent based system, a logical clock is an incremental count of events
within an agent. An event is either a belief update event or a message event. In a
belief update event, a belief is updated, i.e., added, deleted, or modified. A message
event is either an ask, tell, reply, or ack message. A vector clock Γ is of the form
<γ1, …, γi…, γn> where each γi is a pair of the form (agent-id, logical-clock). Each
logical-clock is a pair of the form {belief update count, message count}. A belief
update count is incremented after each assertion, deletion, or modification of a belief
in an agent. A message count is incremented before each message is sent to a
neighboring agent. We assume that events in the same agent are ordered resulting
into monotonicity in logical clocks. We separate the belief update count from the
message count as they are handled differently at the time of recovery.

We denote the set of logical clocks that have been altered between two
consecutive instances of a vector clock by ∆. We denote the agent-id of the Ith

element in a vector clock instance Γ by ΠI
1(Γ) and the Ith logical clock by ΠI

2(Γ).
From this we denote the belief update count of the logical clock of an agent I by
ΠbΠI

2(Γ) and the message count of the logical clock of an agent I by ΠmΠI
2(Γ). We

denote belief update precedence by the symbol %b, and message precedence by the
symbol %m, “belief count precedes or equals to” by the symbol %b and “message count
precedes or equals to” by the symbol “%m”.

There are two types of precedence relations between instances of the same
logical clock: belief precedence and message precedence. A belief precedence is
based on partial order between the belief update counts and message precedence is
based on partial order between message counts.

� Although, we do not make use of these weights in this paper, they are useful in providing a
probabilistic interpretation of agent failure. This is beyond the scope of this paper�

Given two instances ti and tj of the same logical clock, ti %b tj if Πb(ti) <
Πb(tj), and ti %m tj if Πm(ti) < Πm(tj). For example, {1, 3} %b {2, 3} and {1, 3} %m {1,
4}. An instance of a logical clock precedes another instance of the same clock if ti %b

tj ∧ ti %m tj or ti %m tj ∧ ti %b tj. Due to the monotonicity property in logical clocks, it
is impossible to have two instances ti and tj such that ti %b tj and tj %m ti.

Given two instances Γi and Γj (i ≠ j) of a vector clock, Γi % Γj if ∃k (Πk
2(Γi)

% Πk
2(Γj)) ∧ ∀l(Πl

2(Γi) % Πl
2(Γj)). For example, consider an agent graph where an

agent A is connected to another agent B, and the agent B is connected to the agents
A and C. The vector clock has three fields: one field for every logical clock. For
example, <(A, {1, 1}), (B, {2, 4}), (C, {2, 5})> % <(A, {2, 2}), (B, {2, 4}), (C, {2,
5})> since {1, 1} % {2, 2} in the agent A, and other two logical clocks in the agents
B and C are equal.

Two events are concurrent if the above conditions are not satisfied. For
example, <(A, {4, 6}), (B, {3, 4}), (C, {1, 5}), (E, {4, 3})> || <(A, {3, 5}), (C, {6,
7}), (D, {4, 5}), (E, {10, 3})> since the logical clock instances {4, 6} (in the first
vector) {3, 5} (in the second vector) for the agent A and {1, 5} (in the first vector)
% {6, 7} (in the second vector) for the agent C. This situation violates the condition
that all the logical clock instances of a vector-clock precede or equal (%) the
corresponding logical clocks of the other vector-clock. Similarly, <(A, {4, 6}), (B
{ 3, 4}), (C, {6, 7}), (E, {4, 3})> || <(A, {4, 6}), (C, {6, 7}), (D, {4, 5}), (F, {10,
3})> since no logical clock instance in either of the vector clocks strictly precedes the
corresponding logical clock instance in the other vector clock.

4 Distributed Storage and Recovery

In this section, we describe a scheme to distribute the replicated beliefs in
the neighbors, using causality to control the transmission of replicated beliefs. We
also describe an algorithm for the transmission of replicated beliefs to neighbors.

4.1 Distributed Storage of Replicated Beliefs

Each agent holds a secure vault to store the transmitted beliefs for each of
its neighbors. These vaults are updated dynamically after a message from the
corresponding neighbor is received. A neighboring vault is a set of 5-tuples of the
form (agent-id of origin, birth clock, old-belief, nature of update, new-belief) where
agent-id identifies the neighboring agent requesting the update; birth clock is an
instance (of origination) of the vector clock of the originating agent; and nature of
update specifies the action to take. An update could be assert, retract, or modify.
The vault in an agent is periodically check-pointed. We require that the vault be
check-pointed immediately after a recovery. The advantage of check pointing is that
number of belief updates are reduced during recovery since check-pointing retains
the latest belief updates.

4.2 A Brief Overview of the Belief Recovery Process

If the secondary storage used by the crashed agent is reachable during the
recovery process to reincarnate an agent, then the check-pointed beliefs and the
check-pointed vaults related to the neighbors are restored; the check pointed
replicated beliefs of the crashed agent in the neighbors’ secondary storage are
restored; and the remaining subset of beliefs is restored from the distributed vaults.
In the absence of secondary storage used by the crashed agent, the problem becomes
complex since check pointed beliefs and the vaults in the crashed agent are lost. The
use of fault tolerance to ensure that multiple neighbors get the same replicated beliefs
in their vaults is beyond the scope of this paper.

4.3 Belief Replication and Transmission

A replicated belief update is stored in at least one of the vaults in the
neighboring agents. Belief updates are time-stamped and retransmitted through the
following messages to neighboring agents. Retransmission mechanism uses
piggybacking on one of the implicit messages - ask, reply, tell, or ack - until
piggybacked clock instance on one of the received messages ensures that the
replicated beliefs have been received by one of the neighbors. The sending agent
increments its message-count before sending the message; incrementing the clock
and sending the message constitute an atomic action. Each agent keeps track of the
last clock transmitted to the neighbor and the last clock received from each of its
neighbors. It sends ∆ to reduce the communication overhead [7]. The overall clock
instance is re-built at the destination. The neighboring agent, receives the updated
belief and stores the transmitted belief updates. The agent then increments its vector
clock. We require that storing the belief and updating the vector clock constitute an
atomic action. The value of a vector-clock instance and the notion of causality is
used to control the retransmission of replicated beliefs as described in the following
section.

4.4 Belief Storage and Acknowledgment

The belief updates are sent by any of the four types of messages: ask, reply,
tell and ack which results in sixteen pair combinations for sending the belief updates
and receiving back a vector-clock instance acknowledging the receipt of the update
in the corresponding neighbors. However, the edges in the A-graph limit the use of
different combinations. There are two scenarios for the transmission of belief
updates and the acknowledgment that it has been received by one of the neighbors:

1. The agent Ai ’s neighbor Aj (i ≠ j) which received the belief update sends one of
the four messages to the agent Ai, and the agent Ai receives the message before
receiving any other agent’s message which received a message from Aj after Aj

received Ai ’s message.

2. The agent Ai’s neighbor Aj (i ≠ j), received the belief update, and sends a
message to a neighbor Ak (i ≠ k, j ≠ k). Before Ai receives a message from Aj, Ai

receives a message which succeeds (by causality) the message from Aj to Ak.

The update in the neighboring vault is ascertained by comparing the
received clock instance with a last update acknowledged marker (LUA marker). A
LUA marker is an instance of an agent’s vector clock which marks the birth of the
last belief update which has been stored in one of the neighbors’ vault. Every agent
has its own LUA marker.

4.5 An Algorithm for Retransmission of Belief Updates

As shown in Figure 3, a queue of 5-tuples (birth-time, agent-id, old-belief, update-
type, new belief) is maintained in each agent to retransmit the belief updates. At any
time, all the beliefs updated between the interval of the current LUA marker and the
current value of the agent’s vector clock are transmitted to one of the neighbors (see
Figure 3). A LUA marker is updated to received-clock instance if LUA marker %

received-clock instance, and all the messages with birth-time % the new LUA marker
are removed from the queue.

Example 2

Let us consider a strongly connected A-graph with three agents A, B and C.
Consider a case in the agent A when the PA

2(LUA marker) of the agent A = {1, 1}.
After the assertion of each belief the agent A increments its belief update count by 1.
The boxes in the queue in Figure 3 show the belief updates stored in the outgoing
queue, and the pairs in the bottom line of Figures 3a and 3b and 3c give PA

2(birth-
time) associated with each belief update. Let us assume that the messages are
transmitted to the agent B when the logical clock instance for the agent A is {4, 1}.
Before transmission the message count of the logical clock is incremented by 1, and
the logical clock instance of the agent A gets updated to {4, 2}, and the belief-
updates (in the outgoing queue of the agent A) with PA

2(birth time) {2, 1}, { 3, 1},
{ 4, 1} are transmitted to B. The next re-transmission occurs when the logical clock
instance is {5, 2}, and the agent A sends a message to the agent C. Before re-
transmission the message-count is incremented by 1, the logical clock instance for
the agent A at the time of re-transmission becomes {5, 3}, and the belief updates
with PA

2(birth time) {2, 1}, { 3, 1}, { 4, 1}, { 5, 2} are transmitted to the agent C.
Note that the belief updates with PA

2(birth time) {2, 1} and {3, 1} and {4, 1} are
being re-transmitted to one of the neighbors. Figure 3a shows a snapshot of this
instance.

Figure 3b shows a snapshot after the belief updates with PA
2(birth-time) {2,

1}, { 3, 1}, { 4, 1}, { 5, 2} have been transmitted to the agent C, and the current
logical clock has been updated to {7, 3} after two more belief updates. Figure 3b
also depicts a snapshot when an incoming tell-message is received from the agent B.
The ∆ (received-clock instance) sent from B to A is <(A, {4, 2}), (B, { 3, 2})>. Upon

receipt of the message, the LUA marker of the Agent A has been updated to <(A, {4,
2}), (B, {3, 2})>, and the belief updates (in the agent A) with PA

2(birth time) {2, 1},
{ 3, 1}, { 4, 1} have been deleted from the outgoing messages queue. The snapshot
after the deletion of the messages is shown in Figure 3c.

 Π Α
2(LUA) Current Π Α

2(LUA) Π A(received) Current Π Α
2(LUA) Current

 {1, 1} {4, 2} {1, 1} {4, 2} {7, 3} {4, 2} {7, 3}

 {2,1} {4, 1} {5, 2} {2, 1} {4, 1} {5, 2} {7, 3} {5, 2} {7, 3}

 3a: Message retransmission 3b: Message received 3c: LUA marker update

Fig. 3. Belief re-transmission and LUA marker update

From the above description it should be reasonably straightforward to arrive at an
algorithm for retransmitting updated beliefs. The algorithm is given in Figure 4.

Algorithm Belief-retransmission-and-LUA-update;

Input: 1. A queue Q of replicated beliefs in an agent A;
2. A vector-clock instance Ci for an agent A;
3. The LUA marker for an agent A;

Output: 1. An updated queue Q of the replicated beliefs;
2. The vector clock instance Ci + 1 for the agent A;
3. The modified LUA marker for the agent A;

{1.Receive the next message. Build the full received-clock instance from ∆;
 2.If ((ΠA

2(LUA-marker) %m ΠA
2(received-clock instance)) &&

 (LUA-marker % received-clock instance)) {
3. LUA-marker = received-clock instance;
4. Delete the beliefs from Q with birth-time % LUA-marker;}
5. Agent’s vector-clock Ci+1 = lub(received-clock instance, Ci);}

Fig. 4. An algorithm for retransmission

To prove the correctness of the algorithm, namely, that the belief updates of
an agent A will be stored in at least one of its neighbors we need to prove the
following theorem.

Theorem: The transmitted beliefs between the interval LUA marker and the logical
clock preceding the ΠA

2(received clock instance) of an agent A are stored in at least
one of the neighbors iff (ΠA

2(LUA marker) %m ΠA
2(received-clock instance)) ∧ (LUA

marker % received-clock instance).

Proof: Let us consider an A-graph, without loss of generality, which contains three
agents A, B, and C such that the agents A and B are neighbors, the agents B and C

are neighbors, and there is a path from the agent C to the agent A other than through
the agent B.

We first prove that if the vault update is done in a neighbor B of an agent A
then the condition is true. After the vault update, the neighbor B updates its vector
clock ΓB to new value lub(current value of ΓB, clock instance received from A). The
neighbor B sends at least one message. The ΠmΠB

2(ΓB) is incremented by 1. If the
message is directly sent back to the agent A then there is no problem since the logical
clock of B has been updated and incremented such that LUA marker of A % vector
clock instance sent by A % value of the current instance of ΓB. If the message is sent
from B to another agent C (C ≠ A) and there is a path from C to A in the A-graph
then all the agents in the path will at least increment the message-count in their
logical clocks by at least one before A gets the acknowledgment.

We now prove that if the condition is true then vault update is done. The
proof is by contradiction. Let us assume that there is a case (ΠA

2(LUA marker) %m

ΠA
2(received-clock instance)) ∧ (LUA marker % received-clock instance) but the

corresponding beliefs with the belief update count ΠbΠA
2(birth-time) �

ΠbΠA
2(received-clock instance) have not been stored in any of the neighboring

vaults. The logical-clock instance ΠA
2(received-clock instance) can only be

incremented by A. Thus, at least one of the neighbor received a later value of the
logical clock of A. A later instance of logical clock of A is only piggybacked in the
messages sent after the LUA marker. Thus at least one of the neighbors got the
message with the time-stamp ΠmΠA

2(received-clock instance). Due to monotonic
property in the logical clock instances, if ΠA

2(birth-time) %m ΠA
2(received-clock

instance) then ΠA
2(birth-time) %b ΠA

2(received-clock instance). Hence, all the
beliefs with the belief update count ΠbΠA

2(birth-time) � ΠbΠA
2(received-clock) have

been received by one of the neighboring agents. The operation of receiving the
message and storing the message in the vault are atomic. Hence the update has been
done. A contradiction.❚ QED

Complexity: Let us say that the size of the message queue is M, the number of
neighboring agents are upper bounded by N. Thus the clock-size of each agent is
bounded by N. The overall complexity is guided by the binary-search of an N-tuple
clock in a message queue of size M, and to delete all messages before the LUA
marker. The overall complexity is O(NlogM + M). We delete the details due to the
space limitation.

4.6 Complexity of Handling Multiple Neighbors Crash

Failure from a multiple neighbors crash is a dynamic property. and a probabilistic
model can be used to estimate the overall loss of information for an agent in a
multiple neighbor crash scenario. The estimated loss is:

(/)m k
m

m r

=

=

∑
0

K

m

n

m

−

1 × p(m + 1) (1 - p) n - m - 1

where m is the number of failure, k is the average number of neighbors of an agent, r
is the maximum number of failed agents at a time, n is the number of agents in the
system, and p is the probability of failure of an agent.

It can be shown in the probabilistic model that providing fault tolerance by
re-transmitting extra number of messages to different neighbors can alleviate the
problem of multiple neighbor crashes. The upper bound on the number of re-
transmissions to different neighbors can be derived for a specific failure rate. The
need for providing fault tolerance increases with the failure rate. The need for extra
fault tolerance increases the re-transmission and message logging overheads on the
agents. However, the probabilistic model is outside the scope of this paper.

5 Related Works

The work on distributed fault tolerant computing, replication of facts for
fault tolerant distributed transaction processing, and the use of vector of distributed
logical clocks has been well researched [1, 2, 6, 7, 13]. However, to the best of our
knowledge, this is the first attempt to apply distributed logical clocks to ensure
reliability in intelligent agents. Indeed, this paper uses the results from distributed
computing and database recovery. However, the problem is more complex in agent-
based systems as the agents are autonomous and interact continuously (in a non-stop
fashion) with a changing environment.

Our scheme of storing the replicated beliefs in immediate neighbors keeps
the overhead low which is necessary to satisfy a realistic time interaction of humans
with agent based systems. The proposed scheme does not use any additional
message (other than implicit ask, reply, tell, and ack messages) between the agents,
and make use of vector clock comparison to ascertain the belief-updates.

Specifically, this work is different from standard distributed operating and
database system due to its use of application level messages: ask, reply, and tell
messages instead of low level acknowledgments. Unlike other schemes, we use clock
comparisons for the acknowledgment of messages; and message can come from any
neighbor if clocks satisfy causality.

Related work is also being done in the application of group communications
to the transaction level processing [10]. Our scheme of establishing reliability by
storing the beliefs in neighbors is different from the scheme of establishing reliability
of group communications. Group communication is at a lower level while our
scheme is at the application level. We use neighborhood as a group and reincarnate
crashed agents to provide reliability, while group communication approaches use
majority scheme [2, 10] and group based integrity to provide fault tolerance. Group
communication schemes have additional communication overhead due to the
distribution of the processes in the same groups on different nodes.

Other work to provide message acknowledgment [14] suffer from the
problem of synchronization and loss of acknowledgment due to loss in
communication. Our scheme is free from any problem of synchronization and data
loss since the acknowledgment is based upon clock comparison. Such a clock

comparison provides implicit fault tolerance against any data loss during
communication. However, we believe that reliability will benefit from fault tolerance
and group communication at lower level [10].

The work on social comparison of agents [3] uses comparison of trace of
events of an agent with the trace of similar agents. This scheme is suitable to correct
deviations when there are multiple similar agents, and does not address the issue of
recovery when the agents crash.

The work on customizable coordination system [12] provides a high level
declarative specification of interaction between agents. It will be very interesting to
integrate the low level messages generated in this scheme with our scheme of
distributed logical clock comparison to provide application level fault tolerance.

6 Conclusion and Future Work

In this paper, we have described a scheme for reliable intelligent distributed
agents. The scheme benefits from previous research on fault tolerance distributed
computing and recovery in distributed transaction processing, and the use of
causality based on vector of logical clocks. The scheme uses partial ordering of
clocks, comparison of vector clocks for the acknowledgment of update, piggybacking
on existing messages, and storage of replicated beliefs in immediate neighbors to
reduce the overhead of communication during storage and recovery.

The assumption of mapping one agent per processor will be relaxed in
future. The notion of uniform connectivity will be relaxed using static and dynamic
analysis of the behavior of agents. We aim to address the problem of non-
neighborhood crashes, provide a probabilistic interpretation of failure, and enhance
the scheme to address dynamic message transfer behavior between agents.

Acknowledgments

This first author was supported in part by the Australian Federal
Government funded program of Cooperative Research Center for Intelligent
Decision Systems during his sabbatical to The University of Melbourne. The authors
acknowledge Michael Georgeff, Andrew Worsley, and Andrew Hodgson at the
Australian Artificial Intelligence Institute for useful discussions.

References

[1] D. Agarwal and A. Malpani, “Efficient Dissemination of Information in
Computer Networks,” The Computer Journal, 34:6, 1991, pp. 534 - 541.

[2] P. Jalote, “Fault Tolerant Distributed Computing,” Prentice Hall, 1993.

[3] G. Kalinka and M. Tambe, “Social Comparison for Failure Detection and
Recovery,” In this volume.

[4] D. Kinny, M. Georgeff, J. Bailey, D. B. Kemp, and K. Rammohanarao, “Active
Databases and Agent Systems,” Proceedings of the Second International Rules
in Database Systems Workshop, RIDS95, Athens Greece, 1995.

[5] L. Lamport, “Time, Clock, and the ordering of Events in a Distributed
Systems,” Communications of the ACM, 21:7, 1978, pp. 558 - 565.

[6] H. V. Leong and D. Agrawal, “Using Message Semantics to Reduce Rollback
in Optimistic Message Logging Recovery Schemes,” Proceedings of the 14th

International Conference on Distributed Computing Systems, 1995

[7] M. Ranyal and M. Singhal, “Capturing Causality in Distributed Systems,”
Communications of the ACM, February 1996, pp. 49 - 56.

[8] A. S. Rao and M. P. Georgeff, “Modeling Rational Agents Within a BDI-
Architecture,” Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning, San Mateo, CA, USA,
Morgan Kaufaman publishers, 1991.

[9] A. S. Rao, “AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language,” in Agents Breaking Away, editors, Van de Velde, W. and Perram,
J. W. Lecture Notes in Artificial Intelligence, LNAI 1038, Springer-Verlag,
1996

[10] A. Scheiper and M. Ranyal, “From Group Communications to Transactions in
Distributed Systems,” Communications of the ACM, 39:4, 1996, pp. 84 - 87.

[11] F. B. Schneider, “Implementing Fault Tolerant Services using the State
Machine Approach, a tutorial,” ACM Computing Surveys 22: 4, 1990, pp. 299-
319.

[12] M. P. Singh, “A Customizable Coordination Service for Autonomous Agents,”
In this volume.

[13] J. Wuu and A. J. Bernstein, “Efficient Solutions to the Replicated Log and
Dictionary Problems,” Proceedings of the 3rd ACM Symposium of Principles of
Distributed Computing, ACM Press, New York, 1984, pp. 233 - 242.

[14] A. R. Worsely and A. Hodgson, “dMARS Fault Tolerant Communications,
Reliable Messaging Use Cases,” Internal Report, The Australian AI Institute,
Carlton, Victoria 3053, Australia, February 1995.

[15] M. Wooldridge and N. R. Jennings, “ Intelligent Agents: Theory and Practice,”
The Knowledge Engineering, Publisher: Springer Verlag, Volume 890, 1995

