
Building up and Making Use of Corporate Knowledge Repositories

Gian Piero Zarri

Centre National de la Recherche Scientifique
54, boulevard Raspail

75270 Paris Cedex 06, France
zarri@cams.msh-paris.fr

Abstract
In this paper, we present a methodology for the construction
and use of corporate knowledge repositories. We consider
here only the "textual component" of corporate knowledge
-- i.e., all sort of economically valuable, natural language
(NL) documents like news stories, telex reports, internal
documentation, normative texts, intelligence messages, etc.
In this case, we suggest that the construction of effectively
usable corporate knowledge repositories can be achieved
with the translation of the original documents into some type
of conceptual format. The "metadocuments" obtained in this
way can then be stored into a knowledge repository
(knowledge base) and, given their role of advanced
document models, all the traditional functions of
information retrieval, (searching, retrieving and producing
an answer) can be directly executed on them. We illustrate
here the architecture of a prototypical, implemented system
used to exploit a knowledge repository of metadocuments.

Introduction
Until now, the problem of dealing with the dispersed know-
how that exists in a corporation ("corporate memory") has
been normally dealt with as a problem of "modelling", see
KADS (Breuker & Wielinga 1989), (Akkermans et
1993), EM (Bubenko 1993), (Kirikova & Bubenko 1994),
etc. In this very sophisticated, cyclical and structured
approach to KBS development, one of the main hypothesis
-- that which justifies the use of this sort of methodologies
as practical, industrial tools -- concerns the possibility of
detecting, within the global, "expert" behaviour of a
corporation, a set of elementary tasks, independent from a
particular application domain. Once the tasks discovered
and formalised, they can be used to set up libraries of basic
building blocks, to be reused for the description of a large
number of intellectual processes in a company. This
endeavour is really very ambitious -- which explains why
so many studies in this domain limit themselves to a purely
theoretical approach -- and meets all sort of practical
problems, ranging from the difficulties in defining the
building blocks in a really general way to the ambiguities
concerning which aspects (the model or the code) of the
blocks can really be reused.

In this paper, we suggest that a more modest, but less
fuzzy and immediately useful approach to the practical use

of corporate memory which should not be neglected can be
found in the (at least partially automated) construction and
use of corporate knowledge repositories. They can be
defined as on-line, computer-based storehouses of
expertise, knowledge, experience and documentation about
particular aspects of a given corporation. We will consider
here only the "textual component" of corporate knowledge
-- i.e., all sort of economically valuable, natural language
(NL) documents like news stories, telex reports, internal
documentation (memos, policy statements, reports and
minutes), normative texts, intelligence messages, etc.

In this case, we suggest that the construction of
effectively usable corporate repositories can be achieved
with the translation of the original documents into some
type of advanced conceptual representation, e.g., semantic
nets (Lehmann 1992), frames (Bobrow & Winograd
1977), conceptual graphs (Sowa 1984), etc.
"metadocuments" obtained in this way can then be stored
into a knowledge repository (knowledge base) and, given
their role of advanced document models, all the traditional
functions of information retrieval, e.g., searching,
retrieving and producing an answer (and other functions
like the intelligent navigation inside the repository) can be
directly executed on them. We remember here that, in
information retrieval, a document model (Boolean models,
vector models, probabilistic models ...) is assumed to
represent, in some way, the semantic or informational
content of the documents under consideration. For
example, in the traditional Boolean model, the content of
the document is represented simply as a set of keywords ; a
"correspondence function" will try then to find a match
between this set and a query expressed, in turn, by
keywords grouped into some form of Boolean combination
(i.e., making use of the usual and, or, not.., operators).

In the following, we describe the main features of a
prototypical system, devoted to exploit a knowledge
repository of metadocuments, that we have (partially) built
up thanks to the aid of the European Commission (Esprit
project NOMOS, P5330 and LRE project COBALT,
P61011) and of the French National Centre for Scientific
Research (CNRS). After having outlined the architecture
of the prototype, we will introduce NKRL (Narrative
Knowledge Representation Language), the conceptual
language we use for the production of metadocuments. We
will then examine in some detail the interrogation sub-

171

From: AAAI Technical Report SS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

system of the prototype, which takes advantage of the
canonical format of the metadocuments to implement some
sort of advanced search and retrieval applications.

Dealing with textual corporate knowledge

Figure 1 gives a very general overview of the architecture
of the system we propose. Please note that all the blocks
shown in this figure already exist, at least in a prototypical
form ; however, the procedures concerning the selection
and the activation of the high-level inference procedures, at
the bottom, realised in a CNRS context, are still not
integrated with the remaining blocks, realised mainly
in a NOMOS/COBALT context. All the blocks of
Figure 1 have been implemented in COMMON LISP.
In NOMOS/COBALT, we have used as support platform
an object-oriented environment : CRL (Carnegie
Representation Language) in the NOMOS version, QSL
(Quinary Semantic Language) in the COBALT version.

Supposing the integrated system already exists, the
original NL documents, on the left, pass through the NL
processing modules which constitute the core of the
acquisition sub-system. This sub-system executes,
essentially, a conversion of the "meaning" of the original
documents into NKRL format. The results of this
translation activity are stored into the central knowledge
repository (metadocument knowledge repository) ; in very
large environments it should also be possible, of course, to
think in terms of distributed communicating repositories.
Some functions, not shown in Figure 1 for simplicity’s
sake, allow browsing and maintenance operations on the
contents of the repository. Moreover, some possibilities of
immediate display of the resulting NKRL code have been
added recently in a COBALT context.

The boxes on the right-hand side of Figure 1 represent
the query sub-system of the prototype. The user’s queries
are, firstly, translated into search patterns or sequences of
search patterns m search patterns are NKRL data structures
which represent the general framework of information to be
searched for, by filtering or unification ("correspondence
function"), within the metadocument repository. The
metadocuments can i) directly unify the original query
(search pattern) ; ii) unify some new search patterns
obtained by inference from the original one, see below.
After the unification of the patterns with one or more
metadocuments, these are presented to the user. The output
can be shown in two different formats, which can also
coexist : i) in a concise, tabular format (immediate display);
ii) as the original NL messages, if they have been stored
along with the corresponding metadocuments.

A quick glimpse of NKRL

NKRL (Narrative Knowledge Representation Language)
supplies a language-independent description of the
semantic content (the "meaning") of non-trivial natural
language documents, like the textual corporate documents
introduced above.

The basic structures
NKRL is a two layer language.

The lower layer supplies a set of general tools. It consists
of four integrated components

The descriptive component tools are used to set up the
formal NKRL expressions (templates) describing general
classes of narrative events, like "moving a generic object",
"formulate a need", "be present somewhere". Templates
encode, therefore, the standard features of various ordinary
events and human activities. Templates are structured into
a hierarchy, H_TEMP(Iates), which can be equated to
taxonomy (ontology) of events, see (Zarri 1995a).

Templates’ instances (called occurrences), i.e., the
NKRL representations of single, specific events like
"Tomorrow, I will move the wardrobe", "Lucy was looking
for a taxi", "Peter lives in Paris", are in the domain of the
factual component. Templates and occurrences are
characterised by a tripartite format : (Pi (R1 al) (R2 a2)
(Rn an)), where the central piece is a semantic predicate
(like BEHAVE, EXPERIENCE, MOVE, PRODUCE etc.)
which represents a named relation that exists among one or
more arguments ai introduced by means of roles Ri (like
SUBJ(ect), OBJ(ect), SOURCE, etc.). From a formal
of view, a metadocument consists, therefore, of the
association of several templates and/or occurrences, tied up
by particular binding structures, see (Zarri 1994), that
represent the logico-semantic links which can exist
between them (the co-ordination and subordination links,
using a metaphor from the domain of natural language).

The definitional component supplies the
formal representation of all the general notions, like
physical_entity, taxi_, location_, which can be used as
arguments in the two components above. Their
representations in NKRL terms are called concepts
(basically, their data structures can be equated to frames),
and are grouped into a hierarchy, H_CLASS(es)
H_CLASS corresponds well, therefore, to the usual
concept ontologies, see (Zarri 1995a).

The instances of concepts, like lucy_, wardrobe_l,
paris_ are called individuals, and pertain to the enumerative
component. For more details about other important tools
e.g., those allowing the representation of modal or temporal
information -- see (Zarri 1992a), (Zarri 1994).

The upper layer of NKRL includes the standard
conceptual structures built up making use of the general
tools above, and it consists of two parts.

The first is a catalogue, where we can find a description
of the formal characteristics and the modalities of use of
the well-formed, "basic" templates (like "moving a generic
object" mentioned above) associated with the language
presently, about 150, pertaining mainly to a (very
general) socio-economico-political context where the main
characters are human beings or social bodies (e.g.,
company). By means of proper specialisation operations, it
is then possible to obtain from the basic templates the
(specific) "derived" templates that could be needed in the
context of an application -- e.g., "move an industrial

172

f
NL lexicon,
conceptual
dictionaries

~iKrn~artent
L data

structures

do~ translation

NL into con- I
ceptual
(NKRL)
format

immediate display
of the "NI_/NKRL
translation" results

acquisition sub-system

query sub-system

I
met adoctraent

r ole2.. U

:role,t./

central repository

?
original

or inference
produced search

patterns

#

selective
activation,

in case, of the
high-level
inference

procedures

automatic
generation

of new search
patterns

Figure 1 - Architecture of the prototype.

"conceptual"
answer and/or.
selectionof
the ccrres-
ponding NL
original items

,/

u,.r
query

translation
of the query
into a search

pattern[pattern

f

inference
(transform.
ete.) rules

base

J

process" -- and the corresponding occurrences. In NKRL,
the set of legal, basic templates included in the catalogue
can be considered as fixed. This means that : i) a system-
builder does not have to create himself the knowledge
needed to describe the events proper to a large class of NL
documents ; ii) it becomes easier to secure the reproduction
and the sharing of previous results.

The second part is made up of the general concepts
which pertain to the upper levels of H_CLASS and which
form a sort of standard, invariable ontology.

An example

We supply now, see Figure 2, a simple example of NKRL
code (a metadocument consisting only of occurrences).
translates a small fragment of news in the COBALT’s

style: "Milan, October 15, 1993. The financial daily I1 Sole
24 Ore reported Mediobanca had called a special board
meeting concerning plans for capital increase".

In Fig. 2, cl and c2 are the symbolic names of two
occurrences, instances of NKRL basic and derived
templates. MOVE and PRODUCE are predicates ; SUB J,
OBJ, TOPIC (the theme, "~t propos of...", of the event(s)
or situation(s) represented in the occurrence) are roles.
With respect now to the arguments, sole_24_ore, milan_,
mediobanca_ (an Italian merchant bank), summoning_l,
etc. are individuals ;financial_daily, special_, cardinality_
(which pertains to the property_ sub-tree of H_CLASS)
and several_ (belonging, like some , all etc., to the
logical_quantifier sub-tree of H_CLASS)-are concepts.
The attributive operator, SPECIF(ication), is one of the
four NKRL operators used to build up structured arguments

173

(or "expansions"), see below and (Zarri 1994), (Zarri
Gilardoni 1996) ; the SPECIF lists are used to represent
some properties of the first element of the list. several is
used within a cardinality_ SPECIF list as a standard way of
representing the plural number mark, see c2.

cl) MOVE

c2) PRODUCE

SUBJ (SPECIF sole 24 ore
financial_daily): (milan_)

OBJ #c2
date-l: 15_october_93
date-2:

SUBJ rnediobanca_
OBJ (SPECIF summoning_l (SPECIF

board_meeting_l
mediobanea_, special_))

TOPIC (SPECIF plan_l (SPECIF
cardinality_ several._)
capital_increase_l)

date-l: circa_l 5_october_93
date-2:

Figure 2 - An example of NKRL coding.

The arguments, and the templates/occurrences as a
whole, may be characterised by the addition of determiners
(attributes). In particular, the location attributes (lists)
associated with the arguments by using the colon, ":",
operator, see occurrence c l. For a recent paper on the
NKRL representation of the temporal determiners,
date-1 and date-2, see (Zarri 1992a).

Please note that the MOVE basic template at the origin
of the occurrence cl is necessarily used to translate any
event concerning the transmission of an information ("The
financial daily I1 Sole 24 Ore reported ..."). It makes use of
what is called a "completive construction". Accordingly,
the filler of the OBJ(ect) slot in the occurrences (here,
which instantiates the transmission template is always a
symbolic label (here, #c2) which refers to another
predicative occurrence, i.e., the occurrence bearing the
informational content to be spread out ("...Mediobanca had
called a meeting..."). For other sorts of NKRL structures
(binding structures) allowing to build up second order
objects from templates and occurrences, see, e.g., (Zarri
1994). See (Zarri 1995a) for some additional information
about NKRL’s "ontologies", ontology of events
(H_TEMP) and ontology of concepts (H_CLASS)

The querying and inferencing procedures

Generalities
Each of the four components of NKRL is characterised by
the association with a class of proper inference procedures.

For example, the specialised query language for dealing
with the definitional and enumerative component data
structures fulfils the following minimal requirements :
¯ it must be possible to specify a query to match a specific
concept/individual ;

¯ it must be possible to specify a query to match a set of
individuals characterised by being offsprings of a (set of)
specific H_CLASS concepts (e.g., all the financial
companies, or all financial companies excepting the French
ones), and, if necessary, characterised by a set of attribute-
slots with specific values (e.g., all companies whose
"capital" slot holds a value > 2,000,000).
¯ it must be possible to introduce variables to be bound to
specific parts of the matched concept/individuals.

From the above, it is now evident that the main inference
mechanism associated with the definitional and
enumerative components must be the usual taxonomic
inheritance mechanism which proceeds over IsA and
InstanceOf relations. At least part of the basic building
blocks for this mechanism are offered for free by the
knowledge representation tools which support the NKRL’s
implementations : this is the case for both CRL, used in the
NOMOS project, and QSL, used in COBALT. The
subtyping relations to be used for the inheritance operations
are directly encoded, in NKRL, in the H_CLASS hierarchy
supporting the definitional component.

With respect now to the factual component, the key
inference mechanism for this component (and the basic
inference tool of NKRL) is the Filtering and Unification
Module (FUM). The primary data structures handled
FUM are the search patterns that, as already stated,
represent (in NKRL terms) the general properties of
information to be searched for, by filtering or unification,
within a metadocument knowledge repository -- a search
pattern can be considered an NKRL equivalent of a natural
language query, see Figure 1. For clarity’s sake, we
reproduce in Figure 3 the search pattern corresponding to
the question : "Which was the theme of the recent board
meeting called out by Mediobanca ?" that, obviously, unify
with occurrence c2 in Figure 2. In this figure, we have
voluntarily enlarged the scope of the question, by adding
more constraints on the OBJ(ect) variable (x). The
dates of Figure 3 constitute the "search interval" associated
with the search pattern ̄ this interval is used to limit the
search for unification to the slice of time which it is
considered appropriate to explore, see (Zarri 1992a).

((?w IS-OCCURRENCE
:predicate PRODUCE
:SUBJ mediobanca_
:OBJ (SPECIF ?x (SPECIF ? y mediobanca_))
:TOPIC ?z)
(1_october 93, 20_october_93)
((? IS-A 0OR assembly_ adjournment_ dissolution))
(?y IS-A boardmeeting)
(?z IS-A planning_activity)))

Figure 3 - A simple search pattern.

A generalisation of the FUM module is used for
matching the templates of the descriptive component. A
specific inference mechanism, based on FUM and proper to

174

this last component, is a join procedure (Sowa 1984)
allowing for the merge of (two or more) basic or derived
templates. Information on these particular merge
procedures can be found, e.g., in (Zarri 1995b).

The AECS sub-language
In Figures 2 and 3, the arguments made up of a SPECIF list
are examples of structured arguments (or "expansions").

In NKRL, structured arguments of templates and
occurrences are built up by applying a specialised
sublanguage, AECS, which includes four binding operators
(see Table 1), the disjunctive operator (ALTERNative,
the distributive operator (ENUMeration, E), the collective
operator (COORDination, C), and the attributive operator
(SPECIFication, S). Accordingly, structured arguments are
lists of undefined length, which may include both concepts
and individuals, and labelled using the AECS operators.

Operator

ALTERN

COORD

ENUM

SPECIF

Table 1 -

Mnemonic Description

The "disjunctive operator". It introduces a
set of elements, i.e., concepts, individuals,
or other expansion lists. Only one element
of the set takes part in the particular
relationship with the predicate defined by
the role-slot to be filled ; however, this
element is not known.
The "collective operator" : all the elements
of the set take part (necessarily together)
the relationship with the predicate defined
by the role-slot.
The "distributive operator ": each element
of the set satisfies the relationship, but they
do so separately.
The "attributive operator". It links a series
of attributes with the concept or individual
that constitutes the first element of the
SPECIF list. Each attribute that appears
inside a SPECIF list can be recursively
associated with another SPECIF list.

NKRL operators for structured arguments.

From a formal point of view, we note that, e.g. :
a) (SPECIF el a b) = (SPECIF el b

b) (ENUM el e2) = (el AND e2 AND ---, (COORD el
The first formula says that the order of the properties a,

b associated with en entity el, concept or individual, is
not significant. The second formula enunciates in a more
formal way what already stated in Table 1 : the main
characteristics of the ENUM lists is linked with the fact
that the entities el, e2 take part obligatorily in the
particular relationship between the structured argument and
the predicate expressed by the role which introduces the
arguments, but they satisfy this relationships separately. A
more complete description of the semantics of AECS can
be found, e.g., in (Gilardoni 1993).

Because of their recursive nature, the AECS operators
could give rise to very complex expressions, difficult to
interpret and disentangle (unify). Therefore, to build
well-formed NKRL expansions, the definitions of Table 1
are used in association with the so-called "priority rule",
which can be visualised by using the following expression:

(ALTERN (ENUM (COORD (SPECIF)))).
This is to be interpreted as follows : it is forbidden to use
inside the scope of a list introduced by the binding operator
B, a list labelled in terms of one of the binding operators
appearing on the left of B in the priority expression above
-- e.g., it is impossible to use a list ALTERN inside the
scope of a list COORD. An example of utilisation of this
rule can be found, e.g., in (Zarri 1994).

A query language for structured arguments
We have seen above that the AECS language allows us to
describe complex relations among concepts and
individuals. While, sometimes, a query about an AECS
structure must be able to exploit completely the
information carried by this structure, the situation in which
only part of this information is really useful is relatively
frequent. For example, faced with an AECS expression like
"(COORD john_ paul__)", which tells us that both John and
Paul take part in a particular event in a co-ordinated
manner, it is often the case that the information we want to
obtain is simply if John (or Paul) takes part in the event.

Therefore, a query language operating on the AECS
structures must be able to express a wide range of query
modalities, and to obtain constantly the correct results.
Keeping in mind that it is always possible to express the
AECS structures (the AECS lists) in term of trees, the basic
requirements for the AECS-query language (which is part
of the FUM module) are
1) It must be possible to specify a "perfect match",
defined as a match that succeeds if and only if the query,
and the target (matched) AECS expression, have the same
identical structure (apart from variables), i.e., if the tree
representations of the query and of the target expression are
strictly identical. As an example, we can say that the query
(ENUM ?x ?y) succeeds against the target AECS
expression (ENUM credit_lyonnais mediobanca__), but fails
against (COORD credit_lyonnais (SPECIF mediobanca_
merchant_bank)) or against (ENUM credit_lyonnais
mediobanca_ chase_manhattan).
2) It must be possible to specify a perfect match apart
from "cardinality", i.e., a match that succeeds if and only if
the query, and the target AECS expression, have the same
identical structure -- apart from variables and, chiefly,
without taking into account the cardinality of the AECS
lists. In this case, (ENUM ?x ?y) succeeds against (ENUM
credit_lyonnais mediobanca_) and against (ENUM
credit_lyonnais mediobanca_ chase_manhattan), but fails,
obviously, against (COORD credit_lyonnais
mediobanca...).3) It must be possible to specify
"subsumed" match, i.e., a match that succeeds if and only if
the query, and the target AECS expression, carry an

175

information which can be considered as globally congruent
from a semantic point of view. For example, we admit here
the presence, in the target (matched) expression,
additional SPECIF lists (additional lists of attributes).
According to this paradigm, (COORD ?x ?y) succeeds
against (COORD credit_lyonnais mediobanca_), against
(COORD credit_lyonnais (SPECIF mediobanca_
merchant bank)), and (COORD credit_lyonnais
mediobanca_ chase_manhattan).
4) It must be obviously possible to mix the above kind of
queries, in such a way that, for example, perfect match is
required for the top level structure of the query and target
trees but not for the underlying parts, see also the examples
of Figure 4 below. In this way, e.g., (ALTERN ?x ?y) can
match against (ALTERN chase_manhattan (COORD
credit lyonnais mediobanca._)).

We can now define a query language for AECS
structures. For clafity’s sake, the query language is based
on the logical structures of the original AECS sub-
language, augmented to allow a) the use of variables, and
b) the correct specification of the kind of match required by
the query. The AECS query language is therefore defined
in the following way : take the AECS descriptive language
as the basis, but allow :
¯ The use of variables (?x), possibly with constraints,
instead of concepts or individuals.
¯ The use of the special construct STRICT-
SUBSUMPTION, taking as argument an NKRL entity
(variable, concept or individual), or a complex AECS
structure. Bearing in mind the priority rule introduced in
the previous sub-Section, these complex AECS structures,
expressed as trees, may consist of : a simple list COORD
(coord-list) ; a coord-tree, subsuming as "branches" at least
two coord-lists ; an enum-tree, subsuming one or more
coord-tree (or coord-list) ; an altern-tree, subsuming any
the previous tree-structures.
¯ The use of the special construct STRICT-
CARDINALITY, taking as argument an NKRL element, or
one of the AECS structures listed above.

The operational meaning of STRICT-CARDINALITY
and STRICT-SUBSUMPTION is the following :
¯ the presence of a STRICT-SUBSUMPTION operator
forces the interpretation of the argument according to a
"no-subsumption" rule, thus requiring a perfect match, see
point 1 before, on the type (NKRL entity, coord-branch,
coord-tree, enum-tree, altern-tree)) of the argument
¯ the presence of a STRICT-CARDINALITY operator
forces the interpretation of the argument according to a
"fixed-cardinality" rule, thus requiring a perfect match, see
point 2 before, on the cardinality of the argument ;
¯ the absence of any of the two special operators implies
the "subsuming" rule, see point 3 before, thus producing a
successful match if the semantics of the query construct is
subsumed by the semantics of the matched construct.

The unification algorithms for the AECS-query language
are described, e.g., in (Zarri & Gilardoni 1996).

To illustrate intuitively what expressed above, we give in
Figure 4 some examples which are relative to different
modalities of matching the target AECS structure : (ENUM
chase_manhattan (COORD credit_lyonnais (SPECIF
mediobanca_ merchant_bank) city_bank)).

¯ The query : (ENUM ?x (STRICT-SUBSUMPTION
(COORD credit_lyonnais mediobanca_ city_bank)))
succeeds, binding x to chasemanhattan. Please note that
the STRICT-SUBSUMPTION operator concerns only
the general structure of the coord-trees, and not the
structure of the single coord-branches.
¯ The query : (ENUM ?x (COORD credit_lyonnais
(STRICT-SUBSUMPTION mediobanca__) city_bank))
fails, given that the STRICT-SUBSUMPTION restriction
prevents mediobanca_ from matching a coord-branch.
¯ The query : (ENUM ?x (STRICT-CARDINALITY
(COORD credit_lyonnais mediobanca__))) fails, because
of the STRICT-CARDINALITY restriction.
¯ The query : (STRICT-SUBSUMPTION (ENUM ?x
(COORD credit_lyonnais mediobanca_))) succeeds,
binding x to chasemanhattan. The STRICT-
SUBSUMPTION restriction only concerns the top-level
structure of the enum-trees.
¯ The query : (ENUM ?x credit_.lyonnais) succeeds,
binding x to chase_manhattan.
¯ The query : (STRICT-SUBSUMPTION (ENUM ?x
(STRICT-SUBSUMPTION credit_lyonnais))) fails,
see the (STRICT-SUBSUMPTION credit_lyonnais)
restriction.
¯ The query : (STRICT-SUBSUMPTION (COORD
credit_lyonnais mediobanca__)) fails.
¯ The query : (COORD credit_lyonnais mediobanca__)
succeeds.

Figure 4 - Examples of AECS unifications

An example of high-level inference procedures
The basic querying and inference mechanisms outlined

above are used as basic building blocks for implementing
all sort of high level inference procedures like, e.g., the
transformation rules, see (Zarri 1986), (Ogonowski 1987).

NKRL "transformations" deal, with the problem of
obtaining a plausible answer from a database of factual
occurrences also in the absence of the explicitly requested
information, by searching semantic affinities between what
is requested and what is really present in the repository.
The fundamental principle employed is then to transform
the original query into one or more different queries which
-- unlike the "transformed" queries in a database context

are not strictly "equivalent" but only "semantically
close" to the original one.

To give a very simple example, suppose that, working in
the context of an hypothetical metadocument database
about university professors, we should want to ask a
question like : "’Who has lived in the United States", even

176

without an explicit representation of this fact in the base. If
this last contains some information about the degrees
obtained by the professors, we can tell the user that,
although we do not explicitly know who lived in the States,
we can nevertheless look for people having an American
degree. This last piece of information, obtained by
transformation of the original query, would indeed
normally imply that some time was spent by the professors
in the country, the United States, which issued their degree.

Transformation rules are made up of a left hand side
formulation in NKRL (search pattern) format of the
linguistic expression which is to be transformed -- and one
or more right hand sides -- NKRL representations of one
or more linguistic expressions that must be substituted for
the given one. A transformation rule can, therefore, be
expressed as : A (left hand side) ~ B (right hand side).
The "transformation arrow", "~", has a double meaning :
¯ operationally speaking, the arrow indicates the direction
of the transformation : the left hand side A (the original
search pattern) is removed and replaced by the right hand
side B (one or more new search patterns)
¯ the standard logical meaning of the arrow is that the
information obtained through B implies the information we
should have obtained from A.

In reality, the "always true" implications (noted as
A, where we assume that the symbol "~" represents, as
usual, the implication arrow) are not very frequent. Most
transformations found in real world applications represent
"modalised implications". We will note them as 0(B ~ A),
which means "it is possible that B implies A". "0" is the
usual modal operator for "possibility", which satisfies then
the relation 0p = ~ ̄ ~p with respect to the second modal
operator, "¯ = necessity". An example of modalised
transformation is given by the transformation tl in Fig. 5,
which allows us to deal -- by using an inference engine
based on the FUM module, see (Zarri 1986) for some
details ~ with the informal example above about
"university professors" ; as we can see, the antecedent and
consequent of tl are formed by search patterns, slightly
simplified here for clarity’s sake. Transformation tl says :
"If someone (x) receives a title from an official authority
means of an official document, then it is possible that he
has been physically present at that moment in the place (k)
where the authority is located". This rule, for example, is
not always valid in the case of an university degree (it
could be obtained in a correspondence school, etc.).
Nevertheless, it is possible to see that, in this case, the
semantic distance between an "always true" implication
and a "modalised" one is not too important, as it is
becomes possible, at least in principle, to change tl into a
true transformation by the addition of a few constraints
on the variable p , for instance the constraint: p
<obtainable by_correspondencedegree>. More examples,
and a complete "theory" of transformations, can be found
in, e.g., (Zarri 1986).

Coming back to the general architecture of the prototype
in Figure I above, we can see that a search pattern may be
generated from outside the system when it directly

represents the NKRL translation of a query issued by the
user -- this corresponds to the basic mode of functioning
of the query sub-system of the prototype. But, in some
cases, it may be also generated automatically from inside
the system when executing the inference procedures.

tl) EXIST SUBJ x : [/] ~ RECEIVE SUBJ

x = <human_being>
y = <title >
w = <authority_>
z = <o~cial_document>
l = <location >

OBJ y
SOURCE w : [l]
MODAL z

Figure 5 - A simple example of "transformation" rule.

Let us consider, in fact, what will happen to a search
pattern corresponding directly to a user’s NL query when,
having used this search pattern in order to ask the
knowledge base, we obtain no answer, or when, having
recovered some information, we would like to know more.
In such cases we can consider, as a first hypothesis, to be in
a situation where the NKRL image of the information
which could supply a plausible answer effectively exists in
the central knowledge base, but it may be difficult to
retrieve and recognise. Under this hypothesis, we will ask
the query system to automatically transform the initial
search pattern by substituting it with another ""semantically
equivalent" pattern, see above. Unfortunately, the problems
associated with the practical utilisation of this type of
(implemented) approach are not only technical
(construction of appropriate inference engines), but
concern mainly the way of i) discovering the common
sense rules which constitute the real foundation of the
transformation procedures, and ii) formalising them so that
we can obtain a sufficient degree of generality. These two
activities can be executed a priori only to some extent,
because the knowledge engineers find difficulty in
predicting all the possible practical situations. Concretely,
the transformation rules are established often a posteriori,
by abstracting and formalising some procedures
empirically found in order to solve particular "cases". This
is why we plan to introduce, in a more complete version of
the prototype, the possibility of having recourse to Case-
Based Reasoning techniques, see (Kolodner 1992), (Wess,
Althoff & Richter 1994), etc. Given that the "rules", when
they exist, are normally considered of a more economic use
than "cases", we would like to use the CBR procedures not
only for providing the users with a sophisticated and up-to-
date problem-solving modality, but also, at the same time,
for blazing a trail toward the creation of a practical set of
transformation rules to be stored in the rule base, and
which will subsume all the different concrete cases used
empirically to set up an useful solution.

177

Conclusion

In this paper, we have suggested that a modest, but
pragmatically useful modality of use of what we have
called the "textual component" of corporate knowledge
could be obtained by translating this component into
conceptual format (metadocuments). In this case,
becomes possible, in fact, to make use of the textual
corporate knowledge according to the specific
characteristics of its proper "meaning". We have then
illustrated the general architecture of a prototypical system,
implemented to a large extent, for setting up and exploiting
a knowledge repository of metadocuments, and we have
supplied more detailed information about some
fundamental building blocks of the prototype.

The different versions of the implemented components
have been tested as far as possible, and their performances
seem to be satisfactory. For example, in the COBALT
project, we have used a corpus of about 200 candidate
news items which have then been translated into NKRL
format, and examined through a query system in order to i)
confirm their relevance ; ii) extract their main content
elements (actors, circumstances, locations, dates, amounts
of shares or money, etc.). Of the candidate news, 80% have
been (at least partly) successfully translated; "at least
partly" means that, sometimes, the translation was
incomplete due, e.g., to the difficulty of instantiating
correctly some binding structures. We plan to ask the
European Commission for a financial aid in order to set up
a new, industrial prototype, able to be tested in the
environment of a real, industrial user.

References

Akkermans, H., van Harmelen, F., Schreiber, G., and
Wielinga, B. 1993. A Formalization of Knowledge-Level
Models for Knowledge Acquisition. International Journal
of lntelligent Systems 8: 169-208.

Bobrow, D.G., and Winograd, T. 1977. An Overview of
KRL, a Knowledge Representation Language. Cognitive
Science 1: 3-46.

Breuker, J.A., and Wielinga, B.J. 1989. Model Driven
Knowledge Acquisition. In Topics in the Design of Expert
Systems, Guida, P., and Tasso, G., eds. Amsterdam: North-
Holland.

Bubenko, J.A. 1993. Extending the Scope of Information
Modelling. In Proceedings of the 4th Int. Workshop on the
Deductive Approach to Information Systems and
Databases. Lloret: Universitat Politecnica de Catalunya.

Gilardoni, L. (1993) COBALT Deliverable
Addendum: Interface Between Component Parts,
Report COBALT/QUI/14/93. Milano: Quinary SpA.

Kirikova, M., and Bubenko, J.A. 1994). Entreprise
Modelling: Improving the Quality of Requirements
Specifications. In Proceedings of the 1994 Information
Systems Research Seminar in Scandinavia, IRIS-17. Oulu:
Department of Information Processing Science of the
University.

Kolodner, J.L. 1992. An Introduction to Case-Based
Reasoning. Artificial Intelligence Review 6: 3-34.

Lehmann, F., ed. 1992. Semantic Networks in Artificial
Intelligence. Oxford: Pergamon Press.

Ogonowski, A. 1987. MENTAT: An Intelligent and
Cooperative Natural Language DB Interface. In
Proceedings of the 7th Avignon International Workshop on
Expert Systems and Their Applications. Nanterre: EC2.

Sowa, J.F. 1984. Conceptual Structures: Information
Processing in Mind and Machine. Reading, Mass.:
Addison-Wesley.

Wess, S., Althoff, K.-D., and Richter, M.M., eds. 1994.
Topics in Case-Based Reasoning (Lectures Notes in
Artificial Intelligence 837). Berlin: Springer-Verlag.

Zan-i, G.P. 1986. The Use of Inference Mechanisms
to Improve the Retrieval Facilities from Large Relational
Databases. In Proceedings of the Ninth International ACM
Conference on Research and Development in Information
Retrieval, Rabitti, F., ed. New York: ACM.

Zarri, G.P. 1992. Encoding the Temporal Characteristics
of the Natural Language Descriptions of (Legal) Situations.
In Expert Systems in Law, Martino, A., ed. Amsterdam:
Elsevier Science Publishers.

Zarri, G.P. 1992. The "Descriptive" Component of a
Hybrid Knowledge Representation Language. In Semantic
Networks in Artificial Intelligence, Lehmann, F., ed.
Oxford: Pergamon Press.

Zarri, G.P. 1994. A Glimpse of NKRL, the "Narrative
Knowledge Representation Language". In Knowledge
Representation for Natural Language Processing in
Implemented Systems - Papers from the 1994 Fall
Symposium, Ali, S., ed. Menlo Park, Calif." AAAI Press.

Zarri, G.P. 1995. An Overview of the Structural
Principles Underpinning the Construction of "Ontologies"
in NKRL. In Proceedings of the IJCAI’95 Workshop on
Basic Ontological Issues in Knowledge Sharing. Ottawa:
Department of Computer Science of the University.

Zarri, G.P. 1995. Knowledge Acquisition from Complex
Narrative Texts Using the NKRL Technology. In
Proceedings of the 9th Banff Knowledge Acquisition
for Knowledge-Based Systems Workshop. Calgary:
Department of Computer Science of the University.

Zarri, G.P., and Gilardoni, L. 1996). Structuring and
Retrieval of the Complex Predicate Arguments Proper to
the NKRL Conceptual Language. In Foundations of
Intelligent Systems - Proceedings of 9th International
Symposium on Methodologies for Intelligent Systems,
ISMIS’96. Berlin: Springer-Veflag.

178

