Skip to main content

Rich ω-words and monadic second-order arithmetic

  • Conference paper
  • First Online:
Computer Science Logic (CSL 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1414))

Included in the following conference series:

Abstract

Rich ω-words are one-sided infinite strings which have every finite word as a subword (infix). Infix-regular w-words are one-sided infinite strings for which the infix set of a suffix is a regular language. We show that for a regular ω-language F (a set of predicates definable in Büchi's restricted monadic second order arithmetic) the following conditions are equivalent:

  1. 1.

    F contains a rich ω-word.

  2. 2.

    F is of second Baire category in the Cantor space of ω-words.

  3. 3.

    F is a non-nullset for a class of measures (including the natural Lebesgue measure on Cantor space).

  4. 4.

    F has maximum Hausdorff dimension.

This shows that, although we cannot fully translate Compton's result (Theorem 1 below) on rich ℤ-words (in the MSO theory of the integers) 2 to MSO arithmetic on naturals, a set definable in MSO arithmetic and containing a rich w-word is large in several respects simultaneously. Moreover, we show under the assumption of an exchanging property for ‘distinguishing’ prefixes that two regular w-words not necessarily being rich but having the same sets of infixes occurring infinitely often are indistinguishable by MSO formulas or, equivalently, by finite automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Büchi, On a decision method in restricted second order arithmetic. Proc. 1960 Int. Congr. for Logic, Stanford Univ. Press, Stanford 1962, 1–11.

    Google Scholar 

  2. K. Compton, On rich words, in: Combinatorics on Words. (L.J. Cummings ed.), Academic Press, Toronto 1983, 39–61.

    Google Scholar 

  3. S. Eilenberg, Automata, Languages and Machines. Vol. A, Academic Press, New York 1974.

    Google Scholar 

  4. G.A. Edgar, Measure, Topology, and Fractal Geometry. Springer-Verlag, New York 1990.

    Google Scholar 

  5. K.J. Falconer, Fractal Geometry. Wiley, Chichester 1990.

    Google Scholar 

  6. H. Jürgensen, H.-J. Shyr and G. Thierrin, Disjunctive ω-languages, Elektron. Informationsverarb. Kybernetik EIK Vol. 19 (1983) No. 6, 267–278.

    Google Scholar 

  7. K. Kuratowski, Topology I. Academic Press, New York 1966.

    Google Scholar 

  8. W. Kuich, On the entropy of context-free languages, Inform. Control Vol. 16 (1970) No. 2, 173–200.

    Article  Google Scholar 

  9. W. Merzenich and L. Staiger, Fractals, dimension, and formal languages. RAIRO-Inform. Théor., Vol. 28 (1994), No. 3–4, 361–386.

    Google Scholar 

  10. J.C. Oxtoby, Measure and Category. Springer-Verlag, Berlin 1971.

    Google Scholar 

  11. D. Perrin and P.E. Schupp, Automata on the integers, recurrence distinguishability, and the equivalence and decidability of monadic theories, in: Proc. 1st Symp. Logic in Computer Science, IEEE Press, 1986, 301–304

    Google Scholar 

  12. A. Semenov, Decidability of monadic theories, in: Math. Found. of Comput. Sci. (M. Chytil and V. Koubek eds.) Lect. Notes Comput. Sci. 176, SpringerVerlag, Berlin 1984, 162–175.

    Google Scholar 

  13. L. Staiger, Measure and category in X ω, in: Topology and Measure II (J. Flachsmeyer, Z. Frolik and F. Terpe, eds.), Part 2, Wiss. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald, 1980, 129–136.

    Google Scholar 

  14. L. Staiger, Kolmogorov Complexity and Hausdorff Dimension, Inform. and Comput. Vol. 102 (1993), No. 2, 159–194.

    Article  Google Scholar 

  15. L. Staiger, ω-Languages, in: Handbook of Formal Languages, G. Rozenberg and A. Salomaa (Eds.), Vol. 3, 339–387, Springer-Verlag, Berlin 1997.

    Google Scholar 

  16. L. Staiger and K. Wagner, Automatentheoretische and automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarb. Kybernetik EIK Vol. 10 (1974) No. 7, 379–392.

    Google Scholar 

  17. W. Thomas, Automata on Infinite Objects, in: Handbook of Theoretical Computer Science, J. Van Leeuwen (Ed.), Vol. B, 133–191, Elsevier, Amsterdam, 1990.

    Google Scholar 

  18. W. Thomas, Languages, automata, and logic, in: Handbook of Formal Languages, G. Rozenberg and A. Salomaa (Eds.), Vol. 3, 389–455, SpringerVerlag, Berlin 1997.

    Google Scholar 

  19. K. Wagner, On w-regular sets. Inform. and Control Vol. 43 (1979), 123–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mogens Nielsen Wolfgang Thomas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Staiger, L. (1998). Rich ω-words and monadic second-order arithmetic. In: Nielsen, M., Thomas, W. (eds) Computer Science Logic. CSL 1997. Lecture Notes in Computer Science, vol 1414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028032

Download citation

  • DOI: https://doi.org/10.1007/BFb0028032

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64570-2

  • Online ISBN: 978-3-540-69353-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics