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5. NON-STANDARD LOGICS 



I N F E R E N C E  I N  P O S S I B I L I S T I C  H Y P E R G R A P H S  

Did ier  D U B O I S  - Henr i  P R A D E  

Institut de Recherche en Informatique de Toulouse 
Universit~ Paul Sabatier, H8 route de Narbonne 

31062 TOULOUSE Cedex (FRANCE) 

Abstract 
In order to obviate soundness problems in the local treatment of uncertainty in knowledge-based 

systems, it has been recently proposed to represent dependencies by means of hypergraphs and Markov 
trees. It has been shown that a unified algorithmic treatment of uncertainties via local propagation is 

possible on such structures, both for belief functions and Bayesian probabilities, while preserving the 
soundness and the completeness of the obtained results. This paper points out that the same analysis applies 
to approximate reasoning based on possibility theory, and discusses the usefulness of the idempotence 
property for combining possibility distributions, a property not satisfied in probabilistie reasoning. The 
second part analyze s a previously proposed technique for handling dependencies, by relating it to the 

hypergraph approach. 
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1. INTRODUCTION 

Starting with a knowledge base made of pieces of information which may be pervaded with uncertainty 
or vagueness, an ideal inference mechanism should be able to provide the user with conclusions which are 
i) sound, ii) as certain and precise as it is possible, iii) obtained by a computation procedure which is as 
efficient as possible. Obviously, this aim may be more or less easily reached, depending on the modeling of 
uncertainty which is used and the format of the pieces of  knowledge allowed in the framework of this 

modeling. We may distinguish between local and global computation methods (e.g. Dubois and Prade, 
1987). A typical local approach to the treatment of uncertainty is the one used in rule-based expert systems 
where rules are evaluated and triggered one after the other according to the control procedure of the 

inference engine. The procedure in that case is computationally efficient but no guarantee exists usually 

about the optimality in terms of Certainty and precision of  the conclusion and even in some cases its 
soundness may be questioned. This is mainly due to problems raised b)~ the necessity of combining partial 
uncertain conclusions pertaining to the same matter, without being able to take into account implicit 
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dependencies or redundancies in the knowledge base. The probabilistic reasoning method advocated by 

Nilsson (1986) is an example of global approach where the best lower and upper bounds on the probability 

of a conclusion are obtained by solving a (linear) programming problem whose constraints are directly 

obtained from the available bounds on the probability of the different granules in the whole knowledge 

base. In that case the soundness and the optimality of the conclusion can be guaranteed, but the 
computational cost may be heavy in practice and moreover it is then difficult to provide such an inference 
system with explanation capabilities. 

Local propagation methods have been recently proposed in Bayesian networks (Pearl, 1986), and 
Markov networks (Lauritzen and Spielgelhalter, 1988). This kind of approach assigns precise probability 
values to any proposition in a given context, making an extensive use of conditional independence 
assumptions. Then the soundness and optimality issues coincide in the sense that in these approaches one is 
interested in getting estimations of the probability values which are as close as possible to the actual values. 

Both Bayesian and Markov networks aim at representing conditional independence assumptions using 

oriented graphs and non- oriented graphs respectively. Similarly, Shafer et al.(1987) have proposed to use 
hypergraphs and Markov trees for representing dependence relations between variables, the uncertainty 
being modelled in terms of belief functions (Shafer, 1976) and have developed local propagation methods. 
In a more general framework Shafer and Shenoy (1988, 1990) have studied axioms which propagation and 
combination operations should satisfy to ensure that local algorithms correctly work in hypergraph 
representations ; see also (Williams, 1990). 

Independently and quite at the same time an approach has been proposed for handling dependencies in 
approximate reasoning by Chatalic, Dubois and Prade (1987). It is applicable to Shafer's belief functions as 

well as to Zadeh's (1978) possibility measures. The purpose of this paper is to give an improved 

presentation of this approach, in the framework of possibility theory, to connect it with the approaches 
mentioned at the end of the preceding paragraph, and also to relate it to recent extensions of the constraint 
propagation paradigm for the handling of fuzzy values (Dubois and Prade, 1989a, b ; Yager, 1989). Indeed 
the updating of the possible ranges of variables linked by a set of constraints has been studied for a long 

time in Artificial Intelligence and the general procedure originally proposed by Waltz has been refined for 
many particular cases corresponding to different kinds of relations between the variables ; see Davis (1987) 
for instance. Let us also mention the work recently developed by Kruse and Schwecke (1988, 1989, 1990) 

in the possibilistic framework for handling dependencies in (causal) networks.They propose a local 
propagation algorithm for rule-based systems where rules are expressed as dependence relations, and show 

that this approach carries over to fuzzy rules following Zadeh(1979). 

2. POSSIBILISTIC REASONING AND HYPERGRAPHS 

In possibility theory (Zadeh, 1978), what is known about the value of variables or about the existing 
relations between variables is represented by means of possibility distributions. Namely, a possibility 
distribution nX attached to the variable X, is a mapping from the domain ~ of X to the interval 

[0,1] ; V x ~ ~ ,  nX(X) reflects to what extent it is possible that X = x according to the available 
information. If two possibility distributions n X and n' X such that n X < n 'X are available from two 
different sources, nX is said to be more restrictive than n'X since each possible value for X receives a 
smaller possibility degree according to nX than according to n'X ; nX then expresses a less uncertain 
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and/or imprecise information. The normalization condition which is usually applied to nX is 3 x~ ~ ,  

nX(X) = 1 which expresses that at least one value in ~ is considered as completely possible for X 

(exhaustiveness of the domain) and which allows that distinct values in ~ be simultaneously regarded as 

completely possible. More generally a possibility distribution nX1 . . . . .  Xn, defined on a Cartesian product 

X 1 x. . .x X n, expresses a dependency relation between the variables X 1 . . . . .  X n ; for instance 

nX1 . . . . .  X_(Xl, • . . . . .  • ) characterizes the fuzzy set of the more or less possible values of the tuple 

(X2,.. . ,Xnl when X 1 = x 1. Normalization of nXl  . . . . .  X guarantees the existence of a completely 

possible interpretation (x 1 .. . . .  Xn) compatible with the piece o~aknowledge expressed by nX1 ' , Xn" 

In this framework a general procedure known as the conjunction/projection method (Zadeh, 1979) can 

be applied to a knowledge base in order to deduce what can be said about the value of a variable of interest, 

or the relationship which jointly constrains a set of variables. Namely, let A 1 . . . . .  A n be the fuzzy sets of 

the possible values of the variables X 1 . . . . .  X n (i.e. ~Xi = ktAi) ; if nothing is known about the value of 

Xi, then I.tAi(Xi) = I, V x i a ~ i .  Let R 1 .... .  R m be the (fuzzy) relations stated in the knowledge base 

between variables. Rj is then defined on the Cartesian product of the domains ~ k ' S  of the variables X k 

involved in the relationship represented by Rj. Then the conjunction/projection method consists in 

i) performing the combination 

n 'X1  . . . . .  Xn = rain(mini=l, n gAi, minj=l, m ~tRj ) (1) 

which is the least restrictive possibility distribution for the tuple (X 1 . . . . .  Xn) compatible with all the 
constraints. 

ii) projecting the result ~*X1 .. . . .  Xn on the domain(s) of the variable(s) we are interested in.For instance 

we get for X i 

~' xi ~ ~ i ,  rCXi(Xi) = SUPxj. j=l,n, j¢i/~*X 1 . . . . .  Xn(Xl . . . . .  Xn) (2) 

~*X1 . . . . .  Xn is generally supposed to be normalized.The lack of normalization of ~*X1 . . . . .  Xn would 

express the inconsistency of the knowledge base ; namely, the quantity 1 - SUPx 1 . . . . .  Xn ~*X1 .. . . .  Xn 
estimates the degree of inconsistency of the knowledge base. The projection preserves the normalization. 

So, there always exists an interpretation fully compatible with any conclusion obtained by the 

combination/projection approach when the knowledge base is consistent. 

Figure 1 

An example of knowledge base is illustrated by the hypergraph on Fig. 1, where variables are nodes and 

relations are pictured by hyperedges ; an hyperedge, denoted S, corresponds to a subset of variables 

(nodes) ; however there may be several hyperedges between the same subset of nodes. Then for instance, 
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computing the possibility distribution attached to X 3 from the knowledge of A 2 and A 3 (the other A i' s 

being such that A i = ~)~i) leads tothe expression, V x 3 E ~ 3  

xX3(X 3) = SuPxl,x2,x4,x 5 min(lXRl(Xl,X2), ~tR2(Xl,X2,X3), ~tR3(X3,X4), ~tR4(X3,X4), ~R5(X4,X5), 
~tA2(X2), ktA3(X3)). 

Here the hypergraph visualises the decomposition of a possibility distribution into non-interactive 
components; this feature make approximate reasoning similar to Bayesian networks (decomposition of a 

joint probability into a product of marginals or conditional probabilities) and belief function techniques 
(decomposition of a belief function into independent pieces of evidence). From the point of view of 
constraint propagation, the updating of the variable Xi, from A i to A'i, is expressed in this framework by 

Vi,Vx i, gA, i(xi) = SUPxj rain(mink=l, m ~tRk(X 1 ..... Xn), minj=l, n ~tAj(Xj)) (3) 
j=l,n ; j~ 

<(min(IxAi(Xi),mink=l,m[ SUPx j min(ktRk(X 1 ..... Xn) , min ~tAj(Xj))] ) (4) 
j=l,n ; j#i j=l,n ; j#i 

The inequality (4) expresses that ff we take into account each R k separately in the updating process, we are 
not sure, even if we iterate the procedure as in the Waltz algorithm, of obtaining the most restrictive 
possibility distribution for X i ; however the result provided by the right-hand part of (4) is more easy to 
compute in general and obviously sound (in the sense that what is obtained is not as restrictive and 
informative as what could be obtained, but, as such, cannot be arbitrarily restrictive). Note that in case o'f 

binary relations, it can be shown that the Waltz procedure (i.e. the separate processing of the Rk'S ) yields 
the most accurate result given by (3), provided there is at most one relation R k between any pair of 
variables and that there is no cycle in the non-oriented graph whose nodes correspond to variables and 
edges to binary relations. 

More generally, it is not surprizing that the general procedure which consists first in performing the 

general combination of all the representations of the pieces of information in the knowledge base and then 
projecting the result, is generally compntationally untractable in practice:- Then it is natural to try to take 

advantage of the fact that each relation usually relates only a (small) subset of the variables and to exploit the 
structural properties enjoyed by the combination and projection operations. Indeed it can be easily checked 
that the four axioms which are at the basis of the local computation scheme proposed by Shafer and Shenoy 
(1988a) (see also Williams, 1990), are satisfied in the possibilistic framework. Namely let I c { 1 . . . . .  n}, 

R be defined on the Cartesian product of ~ i ' s  where i E I, we have 

A0 ("Identity") SUPxi, i~I txR( .... xi . . . .  ) = btR (assimilating ~t R with its cylindrical 

extension on ~)~1 x... x ~ n ) '  
A1 ("Consonance of marginalization") Let K ~. J ft,. I, then 

SUPxi, i~ K l'tR( .... xi"" ") = SUPxi, i~ K (SUPxi, i~ J t'tR( .... xi . . . .  )) 

A2 Commutativity and associativity of the combination (obvious with 'rain') 
A3 ("Distributivity of marginalization over combination") Let S be a relation defined on the 
Cartesian product of ~)~i's where i e L c { 1 . . . . .  n}, then 

SUPxi, i~ I min(gR, gS) = min(~R, SUPxi~ Ic'tL lxS) 
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(for instance, let R and R' be defined on X 1 x X 2 and X 2 x X 3 respectively, then 

SUPx3 min(IXR(Xl,X2), ~t R,(x2,x3)) = min(~tR(Xl,X2), SUPx 3 tXR'(X2,X3))) 

A2 and A3 also hold with conjunctive operations other than min (e.g. product, which is used in the 

Bayesian setting and in evidence theory). These properties ensure that the local treatment of uncertainty is 

equivalent to the global treamaent, provided that the hypergraph can be translated into a Markov tree. A 

Markov tree is a tree G = (¢h~,g~) such that its nodes correspond to hyperedges of the hypergraph, or 

unions thereof ; there is an edge (S,S') ~ ~ .  whenever S n S' ;~ O, and moreover if  S, S' are any two 

nodes, S c~ S' is contained in all nodes on the (unique) path from S to S' (Markov property). When the 

Markov tree conditions are fulfilled, cA P is called an hypertree. Given a general hypergraph, it is possible to 

cover it with a hypertree by merging suitable hyperedges. The bigger the hyperedges, the greater the spaces 

in which global combination projection operations must be done. Hence the problem is to cover 

hypergraphs with hypertrees having as small hyperedges as possible (see Shafer et al., 1987 ; Sharer and 

Shenoy, t990). 

In the possibilistic framework the combination is also idempotent. An interesting question is then : how 

does this property simplify a local treatment of uncertainty ? First, it must be noticed that in possibilistic 

reasoning the projection operation is the same as for general belief functions. Now, as a consequence of the 

idempotence of rain, performing local inference on a possibilistic hypergraph will never produce wrong 

results. The reason why this is not so with belief functions is that Dempster rule used on related pieces of 

evidence can take into account twice the same information, thus leading to arbitrary reinforcement effects. 

Nothing of the like occurs in possibilistic reasoning. The tree structure turns out to be useful for 

possibilistic reasoning because a local treatment of cyclic structures usually leads to a loss of information 

through projection steps. 

3. AN HYPERTREE GENERATION AND QUESTION ANSWERING PROCEDURE 

A procedure for simultaneous treatment of dependencies and question answering has already been 

proposed by Chatalic, Dubois and Prude (1987) and Chatalic (1986). The procedure makes use of two 

basic transformations which are to be applied the dependency hypergraph, namely 

Th~ (hyper~edge fusion 
It aims at merging dependence relations pertaining to the same variables, so that combination may take place 

before any projection step. A simple example is on Figure 2 : knowing :¢X = ~tA 1, if we want to compute 

~X2 we cannot "propagate along" R 1 and R 2 separately and combine the results afterwards, without 

loosing information, as a consequence of (4) (see Dubois, Martin-Cloualre and Prude, 1988) ; namely : 

SUPx I min(gtAl(Xl), lttRl(Xl,X2), gtR2(Xl,X2)) 
< min(suPx 1 min(gA(Xl), gtRl(Xl,X2)), SUPx 1 min(gtA(Xl), gtR2(Xl,X2)) 

(which is a particular case of (3)-(4)). This operation also applies to any family of hyperedges such that one 

of them contains the other ones. 
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Fimare 2 

The variable fusion 

It aims at destroying cyclic structures by considering two or more variables jointly as a vector-valued 

variable. It resuks in the fusion of hyperedges in the original hypergraph and eventually produces a Markov 

tree structure. A simple example of this operation is on Figure 3. If we want to evaluate X 1, we must 

evaluate X 2 and X 3 due to R 2 and R 3 ; in turn evaluating X2 requires the evaluation of X 3 and evaluating 

X3 requires the evaluation of X 2 due to R1. The way out of this tricky situation is to conjointly evaluate X 2 

and X 3. Then the hyperedges corresponding to R 2 n R 3 and R 1 can be fused if needed. Clearly this still 

applies when there is more than one variable in common between two relations. It is also used when longer 

cycles are present. Consider the example on Figure 4 
X3 

._  iiiii 
X1 

2 

X 1 

Figure 3 : Evaiuatin~ X 1 

Figure 4 

R 2 r-~ R 3 ~  

(x2, x 3) 

R 1 n R 2 R3n 1t4n R5 

Starting with X1, X 2 andX 3 are reached via R 1 and R2, and then X 4 and X 5. The discovery of the 

dependence between X 4 and X 5 leads to fusing X 2 and X 3, and also X 4 and X 5. 

One basic idea of the procedure presented in the following is that the treatment of the "dependency 

hypergraphs", induced by the relationships stated in the knowledge base, can depend on the query which is 

addressed to the inference system. Indeed if we consider the hypergraph in the left part of Fig. 4, in order 

to evaluate X 1 we can perform a variable fusion as explained above, while for instance for computing r~X2 

we can perform another variable fusion (i.e. combining R 1 and R3). The procedure consists in 
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i) starting with variable(s) to evaluate, identifying the relations in which the variable(s) take(s) part, then 
finding out the other variables involved in these relations and then iterating this process until we have 

considered all the dependency relations between variables ; 
ii) reeursively applying the hyperedge fusion and the variable fusion to the dependency graph thus oriented 

at step i). 

An example of this pr~.edure is shown in Fig. 4, starting with the "dependency hypergraph" shown in Fig. 

4.a, the result of step i) is shown in Fig. 4.b and the hypertree finally obtained is in Fig. 4.c. It is easy to 

see that the obtained hypertree is a covering of the original hyperstructure generally. Details can be found in 

(Chatalic, 1986 ; Chatalic, Dubois and Prade, 1987). 

~ X  4 R 3 

-X5 P-4 

(a) 

i ; ~  l i 
! . , ~ , ~  ( ~X6 i R6 ~ °X9) 

l 1 , 

(b) 

,' R3 ! 

t 
i 

t R 4  i 

, ,= 9 x , ,  

9x5 

/ ~ n  ~ _ . _ \  - . _ .  

.x,) 

(c) 
Figure 5 

This procedure produces an hypertree which can be directly exploited in order to obtain a sound, optimal 
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(in the sense that it yields the most restrictive possibility distribution) evaluation of the variable(s) we are 

interested in. Moreover the hypertree shows what are the sequence(s) of computations to be performed and 

what computations can be done separately taking advantage as far as possible of the property expressed by 

axiom A 2. For instance, in Figure 5.c, we see that when looking for evaluation of X 8, we can evaluate X 6 

only on the basis of i) R 6 and X 9 and also of ii) the information we may already have on X 6 (updating 

process) ; we also see that X 3 and X 7 have to be evaluated conjointly, R 1, R2 and R 8 have to be used in 

combination for evaluating this pair of variables and so on. Note also that if we have no information on 

some variable (e.g. X4), it is allowed to forget the corresponding branch (here X 1 R 3 X4) in the 

evaluation, provided that the involved relation is normalized (i.e. SUPx 4 IXR3(Xl,X4) = 1, V Xl). The 

procedure puts the different computation steps at a level which is as local as possible if we want to be sure 

to have a result which is both sound and optimal, since in the hyperedge and variable fusions, and thus in 

the proposed procedure, we are only taking advantage of the properties AO-A3 (but not of idempotence). 

Chatalic's procedure mixes up the problem of finding an hyperedge cover and the problem of evaluating 

a variable. Namely the hypertree in Figure 5 is obtained assuming that X 8 is to be evaluated. When 

evaluating another variable, another hypertree is produced from 5(a). However it is worth noticing that the 

hypertree on 5(c) can serve for a sound and complete evaluation of any variable. The above procedure can 

produce as many hypertrees as involved variables in the network. The best hypertree is again the one that 

has the smalles t hyperedges. However the above procedure is not optimal in that respect. Figure 6 gives a 

better hypertree cover for the example on Figure 4. 

Fi~,ure 6 

Indeed, the biggest hyperedge of any hypertree cover for the hypergraph, computed via Chatalic's 

procedure will contain four variables, due to obvious symmetry reasons, while on Figure 6, hyperedges 

contain only 3 variables. 

N,B, : Let R be a fuzzy relation defined on ~)~1 x. . .x ~)C k x ~(~k+l x.. .x ~ n  such that Vx 1 ..... 'Vx k, 

3Xk+ 1 ..... 3x n such that tXR(X 1 ..... x k, Xk+ 1 ..... Xn) = 1. X 1 . . . . .  X k are called input variables of R. This 
condition guarantees that whatever the available information on X1 . . . . .  X k is, provided that this information 

is expressed in terms of normalized possibiUty distributions, the result of any projection of the combination 

of R with this information, will be always normalized. In other words any information on X 1 . . . . .  X k will 

be consistent with R. Thus if all the relations obtained in the hyperedge fusion process (e.g., R 3, R 4, R 6, 

R 1 c~ R 2 n R 8, R 5 n R 7 in Fig. 5.c) enjoy this property with respect to their input variables, then 

whatever the available information on the input variables of the hypertree we have built, we are sure to 

obtained a normalized possibility distribution on the variable(s) we are evaluating (i.e. X 8 in the example of 

Fig. 5). When some relations do not satisfy the above condition with respect to their input variables, we are 

in the situation recently considered by Yager and Larsen (1990) of  a potentially inconsistent knowledge 

base. 



258 

4. CONCLUDING REMARKS AND OTHER RELATED ISSUES 

In this paper we have considered that what is available in the knowledge base, are possibility 

distributions restricting tuples of variables. In practice, the expert knowledge is rather given under the form 

of rules from which it is possible to build the associated possibility distributions, taking into account the 

intended meaning of  the rules (see Dubois and Prade, 1989c). So, the procedure described here could be 
applied to fuzzy expert systems, especially the hyperedge fusion for combining parallel rules relating the 
same variables, rather than combining their conclusions. However it can be shown that the most efficient 

way of computing with rules in parallel is not to combine their associated possibility distributions explicitly 
as formally suggested by the procedure we have presented, but generally to consider them jointly and to 

build from them a new rule adapted to each input value to consider. It gives the optimal result directly (see 

Dubois, Martin-Clouaire and Prade, 1988). But this point concerns the local computation within a node of a 

Markov tree representation. It does not question the interest of representing a knowledge base of fuzzy rules 

via a Markov tree structure. 

Based on this framework, it is interesting to investigate computational problems similar to the ones 
addressed by Pearl (1986) in Bayesian networks : updating the value of X i from a new piece of data about 
Xj elsewhere in the network ; re-computing the most possible tuple(s) of values for the variables X 1"" Xn- 
These problems should be solved via local propagation, provided that decomposability assumptions hold 
for the global fuzzy relation relating the set of variables. This achievement wotfld be a significant step ahead 
with regard to current fuzzy logic applications (e.g. in fuzzy control), where only one layer of parallel rules 

is considered. A first attempt has been recently made by Fonck (1990) who proposes a possibilistic 
counterpart of Pearl's local computation approach. It would correspond here to the particular case where all 

the variables take their values on binary universes of discourse. Lastly, another worth-considering issue 

would use the proposed framework for analyzing the consequences of the approximation of complex 

hyperedges by simpler (hyper)edges, by f'Lxing the values of "secondary" variables by means of fuzzy 

default values, as already discussed in (Dubois and Prade, 1988). 
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