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Recovering Incidence Functions

Weiru Liu Alan Bundy Dave Robertson
Dept� of AI� Univ� of Edinburgh� Edinburgh EH� �HN

Abstract� In incidence calculus� inferences usually are made by cal�
culating incidence sets and probabilities of formulae based on a given
incidence function in an incidence calculus theory� However it is still the
case that numerical values are assigned on some formulae directly with�
out giving the incidence function� This paper discusses how to recover
incidence functions in these cases� The result can be used to calculate
mass functions from belief functions in the Dempster�Shafer theory of ev�
idence �or DS theory� and de�ne probability spaces from inner measures
�or lower bounds� of probabilities on the relevant propositional language
set�

� Introduction

Incidence calculus ��� �� as an alternative approach to dealing with uncertainty
has a special feature i�e�� the indirect association of numerical uncertain assign�
ment on formulae through a set of possible worlds� In this theory� uncertainties
are associated with sets of possible worlds and these sets are� in turn� associated
with some formulae� This gives incidence calculus the features of both symbolic
and numerical reasoning methods� If we take incidence calculus as a symbolic
inference technique� it has strong similarity with the ATMS ����� If we use in�
cidence calculus to make numerical uncertain inference� it can deal with cases
for which Dempster�Shafer theory is adequate or inadequate to cope with �	�

�� The crucial point in carrying out the above reasoning procedures relies on a
special kind of function� called the incidence function� Without the existence of
this function� many of the features in incidence calculus will be lost� However�
in practice numerical values may be required to be assigned on some formulae
directly without giving the corresponding incidence function� Therefore it is
necessary both theoretically and practically to recover the incidence function in
this circumstance� In ��� ��� a preliminary procedure has been described using
the Monte Carlo method� This approach has further been developed in ����� In
this paper� we discuss this problem from a di�erent perspective� An alterna�
tive approach to dening incidence functions from probability distributions is
explored� The result gives a new way to check whether an numerical assignment
on a set is a belief function and then calculate its mass functions when it is true
in DS theory ���� �	� and to construct probability spaces from inner measures
�or lower bounds� of probabilities on the relevant propositional language sets ����

The paper is organized as follows� In section �� a brief introduction to inci�
dence calculus is given� The key features of incidence functions are discussed�
Following this� an algorithm for calculating an incidence function based on nu�
merical assignments is described in section �� The application of the result to
DS theory is introcuded in section 	� Section � contains a short conclusion�



� Incidence Calculus

Incidence calculus is a logic for probabilistic reasoning� In incidence calculus�
probabilities are not directly associated with formulae� rather sets of possible
worlds are directly associated with formulae and probabilities �or lower and
upper bounds of probabilities� of formulae are calculated from these sets�

��� Generalized Incidence Calculus

In generalized incidence calculus ���� a piece of evidence is described in a quintu�
ple called an incidence calculus theory� An incidence calculus theory is normally
in the form of�W� �� P�A� i � where� W is a nite set of possible worlds� For all
w � W� ��w� is the probability of w and wp�W� � �� where wp�I� � �w�I��w��
P is a nite set of propositions� At is the basic element set of P � If P is
fp�� ���� pmg� then At is dened as for each � � At� � � �p�i �i��� ���� m� where
p�i � pi or p�i � �pi� L�P � contains all elements produced from P using connec�
tors �������� A is a distinguished set of formulae in L�P � called the axioms
of the theory� i is a function from the axioms A to �W � the set of subsets of W�
i��� is to be thought of as the set of possible worlds in W in which � is true�
i�e� i��� � fw � Wj w j� �g� i��� is called the incidence of �� An incidence
function i satises the conditions i��� � fg and i�T � �W�

Here � stands for False and T means True� For any two formulae �� � in
A� it is easy to prove that i�� � �� � i��� � i��� if � � � is in A based on
the denition of i� If we use ��A� to denote the language set which contains
A and all the possible conjunctions of its elements� then this function can be
generated to any formula in this set by dening i���j� � �ji��j� if �j�j is not
given initially� Therefore the set of axioms A can always be extended to a set in
which the function i is closed under operator ��

Since whenever we have a set of axioms A with a function i dened on it�
where i suits the basic denition of incidences� this set of axioms can always
be extended to another set which is closed under the operator � on i� In the
following� we always assume that the set of axioms we name is already extended
and is closed under �� that is A is closed under �� For any two elements in A�
we have

i��� � ��� � i���� � i���� ���

In particular� if i��j�j� � fg it doesn�t matter whether this formula is in ��A�
as this formula has no e�ect on further inferences� However if �j�j ��� then
i��j�j� � �ji��j� must be empty otherwise the information for constructing the
function i is contradictory�

It is not usually possible to infer the incidences of all the formulae in L�P ��
What we can do is to dene both the upper and lower bounds of the incidence
using the functions i� and i� respectively� For all � � L�P � these are dened as
follows�

i���� �W n i����� i���� �
�

����T

i��� ���

where � � � � T i� i�� � �� �W� For any � � A� we have i���� � i����



The lower bound represents the set of possible worlds in which � is proved
to be true and the upper bound represents the set of possible worlds in which
�� fails to be proved� Function p���� � wp�i����� gives the degree of our belief
in � and function p���� � wp�i����� represents the degree we fail to believe in
��� For a formula � in A� if p���� � p����� then p��� is dened as p���� and is
called the probability of this formula�

In the following� when we mention a lower bound of a probability distribution
on A� we always mean the function p���� calculated from the lower bound of
incidence sets�

��� Basic Incidence Assignment

De�nition Basic incidence assignment
Given a set of axiomsA� a function ii dened on A is called a basic incidence

assignment if ii satises the following conditions�

ii��� � ii��� � fg where � 	� �

ii��� � fg ii�T � �W n
�

j

ii��j�

where W is a set of possible worlds�
The elements in ii��� make only � true without making any of its superfor�

mulae true�

Proposition � Given a set of axioms A with a basic incidence assignment ii�
then the function i de�ned by equation � �� is an incidence function on A�

i��� �
�

�j���T

ii��j� ���

Proposition � Given an incidence calculus theory � W� �� P�A� i �� there ex�
ists a basic incidence assignment for the incidence function�

PROOF This proof procedure is actually to construct a basic incidence
assignment ii for the given incidence function�

The denition of i leads us to the conclusion that if � � � � T then
i��� 
 i���� As we assume that P is nite� then At�L�P � and A are all nite�

A subset A� of A can be dened as A� � f��� ���� �ng where A� satises the
condition that

��i � A�� �� � A� if � 	� �i then �� �i 	� T

Therefore� A� contains the �smallest� formulae in A and A� is not empty� In
fact� we can get A� using the following procedure� For a formula �i � A� if
�� � A� � 	� �i and � � �i � T � then we use � to replace �i and repeat the
same procedure until we obtain a formula �j and we cannot nd any formula
which makes �j true� then �j will be in A��



For any formula �i in AnA�� there are �i�� ���� �il � A� where �ij � �i � T �
So i��ij� 
 i��i� and �

S
j i��ij�� 
 i��i��

Algorithm A� From a function i� we can obtain another function ii using
the following procedure�

Step �� for every formula � � A�� dene ii��� � i����

Step �� update A as A nA��

Step �� chose a formula �i in A which satises the requirement that there are
�i�� ���� �il � A� where �ij � �i � T and for any �j � A� if �j 	� �i� then
�j � �i 	� T � Dene ii��i� � i��i� n

S
j ii��ij��

Step �� delete �i from A and update A� as A�  f�ig when ii��i� 	� fg� If A
is empty then terminate the procedure� Otherwise go to step ��

Further dening ii�T � � W n jii��j�� if ii�T � 	� fg then ii�T � represents
only those possible worlds which make T true� This is also an alternative way to
represent ignorance� That is� based on the current information we don�t know
which formula ii�T � makes true except T � Adding T to A�� we get a function ii

as ii � A� � �W � Now we need to prove that ii is a basic incidence assignment�
That is� we need to prove ii��i� � ii��j� � fg where �i 	� �j� In ����� we
have proved this result� So the equation ii��i� � ii��j� � fg holds for any two
distinct elements �i and �j in A�� As we also have ii�T � � W n jii��j� and
ii��� � i��� � fg� ii is a basic incidence assignment�

QED

� Recovering an Incidence Function from a

Lower Bound of probabilities on a Set of Ax�

ioms

Given an incidence calculus theory� we can infer lower bounds of probabilities on
formulae� However sometimes numerical assignments are given on some formulae
directly without dening any incidence calculus theories� We are interested in
how to build incidence calculus theories in these cases� The key part for an
incidence calculus theory is to dene its incidence function� In this section� we
show a way to recover incidence functions in these circumstances�

When we know a proposition set P � its language set L�P �� a set of axioms
A and an assignment of lower bound of probabilities on A� our objective is to
determine an incidence function i� a set of possible worlds W and the discrete
probability distribution on W from which the corresponding probability distri�
bution on A is produced� In order to achieve this goal� we will construct a
function ii rst and then form i�

For the set of axioms A� we always assume that for �i� �j � A� �i � �j � A
and p��i � �j� is known� If it is not� we will assume that p��i � �j� � �� When
�� �i � T � i��� 
 i��i� and p��� � p��i��



In a similar way as we described in the above section� a special set A� is
constructible from A which satises the condition

�� � A�� ��
� � A� �� � � 	� T� if � 	� �� �	�

Assume that there are an incidence function i and a basic incidence assignment
ii associated with this A� then w� � ii��i� and w� � ii��j� must be two disjoint
subsets of an unknown W because of the feature ii��i� � ii��j� � fg when
�i� �j � A�� �i 	� �j� As it is required that the probability distribution on
W should be discrete in incidence calculus� we treat w� and w� as two single
elements in W� The following procedure gives the algorithm for determining
the incidence function i� its basic incidence assignment ii and the set of possible
worlds with its probability distribution�

Algorithm B� Given A and a lower bound of probability distribution p� on
A� determine a basic incidence assignment and an incidence function�

Step �� Assume that A� is a subset of A as dened above in �	�� If there are l
elements in A�� then l elements in W can be dened from A� and dene
��wi� � p���i� for i � �� ���� l� �i � A�� Further dene ii��i� � fwig�
i��i� � fwig and A

� �� A nA��

Step �� Chose a formula � from A� which satises the condition that ��� � A��
�� � � 	� T if �� 	� ��

For all �j � A� repeat p���� �� p���� � p���j� when �j � � � T �

If p���� � � then add an element wl�� to W and dene

ii��� � fwl��g ��wl��� � p���� A� �� A�  f�g
A �� A� n f�g i��� � ii���  ��j���T ii��j�� l �� l � �

If p���� � �� dene ii��� � fg� If p���� � �� this assignment is not
consistent� stop the procedure� Repeat this step until A� is empty�

Step �� Finally if �j�p���j�� � � then add an element wl�� to W and then
dene ��wl��� � ���jp���j� and ii�T � � fwl��g�

Step �� The resulting the set of possible worlds is W � fw�� w�� ���� wl��g
and the probability distribution is ��wi� � p���i� where �i � A� and
�i��wi� � �� Two functions ii and i are dened as ii��i� � fwig and
i��� � �j��ii��j�� �j � A�� It is easy to prove that ii and i are a
basic incidence assignment and an incidence function respectively� The
corresponding incidence calculus theory is �W� �� P�A� i ��

If there are n elements in A then there are at most n�� elements inW� This
algorithm is entirely based on the result that ii���� ii��� � fg� In algorithm B�
for a formula �� we keep deleting those portions in p���� which can be carried by
its superformulae until we obtain the last bit which must be carried by � itself�
Then the last portion will only be contributed by its basic incidence set�



� Extending the Result to DS Theory

One of the meaningful extensions of this algorithm is to calculate the mass
function in DS theory when A is the whole language set L�P � and p� is a belief
function on it ���� �	� and� in particular� to recover the corresponding probability
space when p� is thought of as an inner measure �or a lower bound� on A in
probability structures ���� One may suspect that bel is usually dened on a frame
of discernment� in DS theory rather on a set of formulae� We will brie�y show
how to build a belief function on a set of formulae here� more details can be
found in ���� Assume that we have a set of propositions P and its basic element
set At� Because At satises the denition of a frame of discernment� we can talk
about a belief function on At� Further if we follow the one�to�one relationship
between �At and L�P � as we have seen in section �� then given a belief function
bel on At� we can dene a belief function on L�P � as bel���� � bel�A�� where
A� 
 At� Therefore we can also talk about a belief function on a language set
L�P ��

In DS theory� a function on a frame � is called a mass function� denoted as
m if �Am�A� � � where A 
 �� The relationship between a belief function�
denoted as bel� and its mass function is unique� They can be recovered from
each other as follows�

bel�A� � �B�Am�B�

m�A� � �B�A�B �������
a�bbel�B�

where a� b �j �A � �B� j where A�B � L�P � ��	�� j A j stands for the element
number in A�

In the following we show an alternative way to obtain a mass function from
a belief function by means of incidence calculus� Assume that A is the whole
language set L�P � and p� is a belief function on A� then p� is also a lower bound
of probability on A in incidence calculus as shown in �	� 
��

AlgorithmC� Given a function bel on the set L�P � � A� determine whether
bel is a belief function on this language set � and obtain its mass function m if
it is�

Step �� Delete all those elements in A in which bel � �� Then as in algorithm
B� dene a subset A� out of A� For any � � A�� dene m��� � bel����
Assume that there are l elements in A�� Dene A� � A nA��

Step �� Chose a formula � from A� which satises the condition that ��� � A��
�� � � 	� T �

For all �j � A� repeat bel��� �� bel��� � bel��j� when �j � � � T �

If bel��� � �� dene� l �� l � �

�A set is de�ned as a frame of discernment if this set contains mutually exclusive and
exhaustive answers for a question�

�In fact� this language set can be any frame of discernment�



A� �� A�  f�g
A� �� A� n f�g
m��� �� bel���

If bel��� � � then � is not a focal element� of this belief function�

If bel��� � � then this assignment is not a belief function� stop the proce�
dure�

Repeat this step until A� is empty�

Step �� All the elements in A� will be the focal elements of this belief function
and the function m dened in Step � is the corresponding mass function�
It is easy tp prove that �Am�A� � ��

The algorithm tries to nd the focal elements of a belief function one by
one� Once all the focal elements are xed and the uncertain values of these
elements are dened� the corresponding mass function is known� The worst case
of computational complexity of this algorithm is the same as the approach used
in DS theory but it may be more e�cient when the elements in A� are arranged
in the decreasing sequence of their sizes� However the Fast Moebius Transform
of Kennes and Smets remains faster than ours ��� ��� The application of the
algorithm to probability spaces is described in �����

� Summary

We have discussed an approach to dening an incidence function based on a
probability measure in incidence calculus� The advantage of this approach is
that its computational complexity is lower i�e� o�j A j� comparing to the method
discussed in ����� The latter is exponential given the same set of axioms A�
The size of the set of possible worlds entirely depends on the size of A� For
example� if there are only two elements in A� then we can dene a set of possible
worlds containing at most three elements� This is mainly because the probability
distribution on the set of possible worlds must be discrete�

When we extend the result to DS theory and the probability space� we follow
the known result that a lower bound in incidence calculus is equivalent to a
belief function and a belief function is� in turn� equivalent to an inner measure in
probability structures when these three theories concern the same problem space�
Therefore the incidence assignment procedure can be not only used to dene an
incidence assignment but also used to construct an undened probability space�
In the latter case� a basis for an ��algebra of a probability space is similar to a
set of possible worlds except each subset in the basis usually contains more than
one elements�
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