Skip to main content

Farthest neighbors, maximum spanning trees and related problems in higher dimensions

  • Conference paper
  • First Online:
Book cover Algorithms and Data Structures (WADS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 519))

Included in the following conference series:

Abstract

We present a randomized algorithm of expected time complexity O(m 2/3 n 2/3log4/3 m+mlog2 m+nlog2 n) for computing bi-chromatic farthest neighbors between n red points and m blue points in ɛ3. The algorithm can also be used to compute all farthest neighbors or external farthest neighbors of n points in ɛ3 in O(n 4/3log4/3 n) expected time. Using these procedures as building blocks, we can compute a Euclidean maximum spanning tree or a minimum-diameter two-partition of n points in ɛ3 in O(n 4/3log7/3 n) expected time. The previous best bound for these problems was O(n 3/2log1/2 n). Our algorithms can be extended to higher dimensions.

We also propose fast and simple approximation algorithms for these problems. These approximation algorithms produce solutions that approximate the true value with a relative accuracy ɛ and run in time O(nɛ(1−k)/2logn) or O(nɛ(1−k)/2log2 n) in k-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. Proc. of 6th ACM Symp. on Computational Geometry, 1990, pp. 203–210.

    Google Scholar 

  2. F. Aurenhammer. Improved algorithms for discs and balls using power diagrams. Journal of Algorithms, 9 (1988), 151–161.

    Google Scholar 

  3. B. Chazelle. How to search in history. Information and Control, 64 (1985), 77–99.

    Google Scholar 

  4. K. Clarkson. Fast expected-time and approximate algorithms for geometric minimum spanning tree. Proc. 16th Annual Symposium on Theory of Computing, 1984, pp. 342–348.

    Google Scholar 

  5. K. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Computing, 17 (1988), 830–847.

    Google Scholar 

  6. K. Clarkson and P. Shor. Applications of random sampling in computational geometry, II. Discrete and Computational Geometry. 4 (1989), pp. 387–421.

    Google Scholar 

  7. H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions. Proc. of 5th ACM Symp. on Computational Geometry, 1989, pp. 145–151.

    Google Scholar 

  8. H. Edelsbrunner. Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

    Google Scholar 

  9. H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete and Computational Geometry, 1 (1985), 25–44.

    Google Scholar 

  10. H. Edelsbrunner and M. Sharir, A hyperplane incidence problem with applications to counting distances. Proc. of International Symposium on Algorithms, LNCS 450, Springer-Verlag, 1990.

    Google Scholar 

  11. O. Egecioglu and B. Kalantari. Approximating the diameter of a set of points in the Euclidean space. Technical report, Rutgers University, 1989.

    Google Scholar 

  12. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30 (1985), 209–221.

    Google Scholar 

  13. R. L. Graham and P. Hell. On the history of minimum spanning tree problem. Annals of History of Computing, 7 (1985), 43–57.

    Google Scholar 

  14. D. Haussler and E. Welzl. ∈-nets and simplex range queries, Discrete and Computational Geometry. 2 (1987), 127–151.

    Google Scholar 

  15. C. Monma, M. Paterson, S. Suri and F. F. Yao. Computing Euclidean maximum spanning trees. Algorithmica, 5 (1990), 407–419.

    Google Scholar 

  16. C. Monma and S. Suri. Partitioning points and graphs to minimize the maximum or the sum of diameters. Proceedings of 6th International Conference on the Theory and Applications of Graphs, John Wiley and Sons, 1989

    Google Scholar 

  17. F. P. Preparata and M. I. Shamos. Computational Geometry. Springer Verlag, New York, 1985.

    Google Scholar 

  18. F. Preparata and R. Tamassia. Efficient spatial point location. Workshop on Algorithms and Data Structures, LNCS 382, Springer-Verlag, (1989), 3–11.

    Google Scholar 

  19. R. Seidel. A convex hull algorithm optimal for point sets in even dimensions. University of British Columbia, Vancouver, 1981.

    Google Scholar 

  20. P. Vaidya. Minimum spanning trees in k-dimensional space. SIAM J. of Computing, 17 (1988), 572–582.

    Google Scholar 

  21. P. Vaidya. An O(n log n) algorithm for the all-nearest-neighbor problem. Discrete and Computational Geometry, 4 (1989), 101–115.

    Google Scholar 

  22. A. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems, SIAM J. Computing, 11 (1982), 721–736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Nicola Santoro

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Matoušek, J., Suri, S. (1991). Farthest neighbors, maximum spanning trees and related problems in higher dimensions. In: Dehne, F., Sack, JR., Santoro, N. (eds) Algorithms and Data Structures. WADS 1991. Lecture Notes in Computer Science, vol 519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028254

Download citation

  • DOI: https://doi.org/10.1007/BFb0028254

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54343-5

  • Online ISBN: 978-3-540-47566-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics