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A b s t r a c t .  We introduce a novel perspective for viewing the "ego-motion 
reconstruction" problem as the estimation of the state of a dynamical 
system having an implicit measurement constraint and unknown inputs. 
Such a system happens to be "linear", but it is defined on a space (the 
"Essential Manifold") which is not a linear (vector) space. 
We propose two recursive schemes for performing the estimation task: the 
first consists in "flattening the space" and solving a nonlinear estimation 
problem on the fiat (euclidean) space. The second consists in viewing the 
system as embedded in a larger euclidean space, and solving at each step 
a linear estimation problem on a linear space, followed by a "projection" 
onto the Essential Manifold. 
Both schemes output  motion estimates together with the joint second 

order statistics of the estimation error, which can be used by any "struc- 
ture from motion" module which incorporates motion error [18, 22] in 
order to estimate 3D scene structure. 
Experiments are presented with real and synthetic image sequences. 

1 I n t r o d u c t i o n  

A camera (or a human eye) is moving inside a static scene. The objects pop- 
ulating the ambient space are projected onto the CCD surface (or the retina), 
and their projection changes in time as the camera moves. The "visual motion" 
problem consists of reconstructing the motion of the camera ("ego-lnotion") and 
the "structure" of the scene from its time-varying projection. 
A simple representation of the "structure" of a scene is obtained from the po- 
sition of a (finite) set of salient "feature" points in 3D space with respect to 
some reference frame, for example the one moving with the viewer. We call 

X i = i X  Y Z] T ~ R.3 the coordinates of the {th point in a cartesian frame, 
and weLlet i = 1~... N. As the camera moves between two discrete t ime instants, 
with rotation R and translation T, the coordinates change according to the rigid 
motion constraint: 

X i ( t + l ) = R ( t ) X ~ ( t ) + T ( t )  Vi= I . . . N ,  (1) 
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where T E t~. 3 and/~ C SO(3) - - t h e  group of Special Orthogonal (rotation) ma- 
trices. We model the camera as an ideal perspective projection of the euclidean 
space onto the real-projective plane [2, 16] (pinhole camera): 

~r : f( 3 --~ p~p2 Y ". (2) 

In [20] we show how visual motion can be formulated as a combined "inversion- 
estimation" or "identification-estimation" task for the dynamical model (1)-(2). 
However, due to the "driftless" structure of the model, any inverse system is 
essentially instantaneous, and hence it does not exploit the benefits of recur- 
siveness in terms of noise rejection and computational efficiency. Using the trick 
of "dynamic extension" [9] we show how the visual motion task can be trans- 
formed into the estimation of the state of a nonlinear system with unknown 
inputs, which ill the estimation process are viewed as disturbances. A funda- 
mental issue in deriving a state estimator (observer) is of course observability, 
which for linear systems is a necessary and sufficient condition for having all 
estimation error with spectrally assignable dynamics. For nonlinear systems the 
issue is more subtle [9, 12]; however, at least "local weak observability" is re- 
quired iu order to be able to state sufficient conditions for the existence of an 
observer with linear and spectrally assignable error dynamics. Other traditional 
state estimation techniques, such as the Extended Kalman Filter (EKF) [11, 10] 
at"e based upon the linearization of the model about the current trajectory. 
The model which derives from (1)-(2) has the peculiarity of not only having a 
linearization which is not observable, but of also bein9 non-"locally weakly ob- 
servable". Hence, for the local IineaT"ization-based methods, it is not possible to 
derive sufficient conditions for convergence [19]. However, we show that ,  once 
motion is estimated, structure is linearly observable in the model (1)-(2), and 
therefore standard techniques, such as the EKF,  can be used effectively for struc- 
ture estimation [14, 18, 221. Therefore the representation described by (1) and 
(2), though being the very simplest one can imagine, is not the most appropriate 
for motion estimation. 

The recent literature proposes a variety of techniques for recovering structure 
and/or  motion recursively [3, 14, 8, 7, 1, 18, 22], all of them based essentially on 
the same basic model (1)-(2), which in fact defines the visual motion problem 
for feature-points in the euclidean 3D space 3. In particular, among those dealing 
with both structure and motion estimation, [1] is based on an extended model 
with motion added to the state space, the structure referred to the observer's 
reference at time 0 and a more general camera model. In [18] motion is recovered 
from 2 frames and fed to a model similar to (1)-(2), hence at each step motion is 
considered known and it does not exploit a dynamical model, as in [141. In [22] 
motion is computed instantaneously as in [18], and then inserted it into the state 
dynamics with a model similar to the one used in [1]. 

We have described a "viewer-centered" representation of the visual motion problem. 
"Object-centered" representations are essentially equivalent to the previous up to a 
diffeomorphism, therefore we will not make a distinction between the two. 
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This work is mot ivated by the fundamental  limitations of the model (1)- 
(2), and presents a new dynamic model for motion est imation which is globally 
observable 4. In section 2 we introduce and describe the Essential Manifold, in 
sections 3 and 4 we show how motion can be represented and est imated on the 
Essential Manifold. We introduce then the two approaches for performing the 
est imation task, which are unified within the new representation. In section 5 
we address some special cases and possible generalizations. Finally in section 6 
we show some experiments  on real and synthetic image sequences. 

2 The  Essential  Space 

2.1 R i g i d  m o t i o n  a n d  t h e  E s s e n t i a l  C o n s t r a i n t  

Suppose the correspondence of N feature points is given between t ime t and 
t + 1, while the viewer has moved of (T, JR). It  is immediate  to see (fig. 1 left) 
tha t  the vector X,  describing the coordinates of the generic point at t ime t, the 
corresponding vector X '  at t ime t + 1, and T are coplanar, and therefore their  
triple product  is zero [13]. This is also true with x in place of X,  since the two 
represent the same projective point. When expressed with respect to a common 
reference, for example that  at t ime t, the coplanarity condition is writ ten as 
x r ~ R ( T  A xi) = 0 V i = 1 . . . N .  Once more than  8 correspondent points in 
general position are given [13, 15, 6, 16], the above constraint is also sufficient 
to characterize rigid motions up to a finite number  of solutions. The operator  
TA belongs to so(3) - - t h e  algebra of skew symmetr ic  matrices; following the 
notat ion of Longuet-Higgins [13] we define Q - RS - RTA so tha t  the above 
coplanarity condition, which we call the "Essential Constraint",  becomes 

x ' T q x ~  = 0 ; vi  = 1 . . .  N.  (3) 

Since the constraint is linear in Q, it can be writ ten as X(x'(t) ,  x ( t ) )q( t )  = 0; X 
is an N x 9 mat r ix  whose generic row is [XlX~ x2x~ x~ z~x' 2 x2x~ x~ Xl x2 1 ], and 
q is a nine-vector obtained by stacking the columns of Q. We will occasionally 
use the (improper) notation x Q  - xq,  confusing Q and q. 

2.2 T h e  E s s e n t i a l  M a n i f o l d  

We have seen tha t  a rigid motion can be encoded using the Essential Constraint 
(3) based on the 3 x 3 mat r ix  Q - R ( T A )  C R 9. Since we can reconstruct  
translation only up to a scale factor, we can restrict Q to belong to ~ p s  __ 
the real projective space of dimension 8 - -  or impose the norm of translation 
to be unitary. We will address later the case T = 0. The  mat r ix  Q belongs to 
the set ~: - {RSIR  E SO(3),  S E so(3)} n R P  8 which we call the Essential 

4 The maximal dimension of the observability codistribution of the basic model is 
reached after four levels of Lie-differentiation. Therefore in order to recover the 
observable components of the state-space it is necessary to perform a number of 
error-prone operations. The model that we will introduce has the advantage of being 
globMly observable with only one level of differentiation [19]. 
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F i g .  1. (Left) The Essential Constraint. (Right) St ruc tu re  of  the  mot ion  probIem on 
the Essential Space 

Space; it encodes rigid motion in a more compact way than SE(3)  - - t h e  Special 
Euclidean group of rigid mot ions--  the price being that  we loose the smooth 
group structure. However, a slight modification of the Essential Space proves to 
have the structure of a topological manifold of class at least Co [20]. Consider 
the map 

~ : E- -~  S 2 x R  a ~. ,R 5 = (4) 

where U, V are defined by the Singular Value Decomposition (SVD) of Q - 
UZV T, V.a denotes the third column of V and Rz(~) is a rotation of ~ about 
the Z axis. T, f2 denote the local coordinates 5 of Q; T is represented in spherical 
coordinates and ~Q is the rotation 3-vector corresponding to the 3 x 3 rotation 
matr ix  URz(} )V  T via the Rodrigues' formulae [17]. The map q5 defines the 
local coordinates of the Essential Manifold modulo a sign in the direction of 
translation and in the rotation angle of Rz. This ambiguity can be resolved 
by imposing that  the observed points are in front of the viewer [13]. Consider 
one of the four local counterparts of Q E E,  and the triangulation map d~,~, : 
E -+ R ~+~, d~,~, (Q) = [Z, Z'] T which gives depth of each point as a fnnction of 
its projections and the motion parameters. We redefine the Essential Space as 
E - / ) N d  -~ rR 2~N x , : g ~ \  - b ]  ~ o r  

E _ { R S l R  e S O ( a ) , S  T a  so(a),llTll = > 0 Vi = 1 . . . N } .  

Now it is easy to see that  ~, restricted to E,  locally qualifies as a homeomor- 
phism. The inverse map is simply qh-I(D,T)  = e(~^)(TA), which is smooth. 

E also has the structure of an algebraic variety [15], which we will not discuss 
in this paper. 

5 The re  is an abuse  of nota t ion:  T indica tes  b o t h  the  t r ans l a t ion  be tween  two f rames  
and  the  t r ans l a t ion  par t  of the  canonical  (screw) coord ina tes  of mot ion .  We allow 
such an ambigui ty  since the  two are equivalent  up to  a d i f feomorph ism [17]. 
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3 M o t i o n  r e p r e s e n t a t i o n  o n  t h e  E s s e n t i a l  M a n i f o l d  

We observe N points moving in space under some rigid motion through their  
noisy projections onto the image plane: xi( t )  + hilt)  ; i = 1 . . .  N.  At each t ime 
instant we have a constraint in the form xq( t )  - - g  ~ 0, and hence q lies at 
the intersection between the EssentM Manifold and the linear variety X- l (0 )  
(see fig. 1 right). ~ is a noise process which can be characterized in terms of the 
noise in the image-plane measurements  ni [20]. As t ime goes by, the point Q(t) ,  
corresponding to the actual motion, describes a t ra jectory on E satisfying 

q ( t  + 1) - q( t )  + n Q ( t ) .  

The last equation is in fact just a definition of the right-hand side, since we do 
not know nQ( t ) .  If  we want to make use of such a model for est imating Q we 

have to make some assumptions. For now we will consider it as a discrete t ime 
dynamical  model for Q on the Essential Manifold, having unknown inputs. If  we 
accompany it with the Essential Constraint, we get 

q ( t +  1) = q( t )  ; Q E E + n Q ( t )  
o = xQ(t) + 5(t). (*) 

This shows that  motion estimation can be viewed as s tate  est imation of a dy- 
namicai system defined on a topological manifold and having an implicit mea- 
surement  constraint and unknown inputs. As it can be seen the system is "linear" 
(both the s tate  equation and the Essential Constraint are linear in Q),  but the 
word "linear" is not appropriate  in this context, since E is not a linear space. 

4 R e c u r s i v e  e s t i m a t i o n  o n  t h e  E s s e n t i a l  S p a c e  

The first approach for performing the estimation task consists in composing (*) 
with the local coordinates chart ~ defined in (4), ending up with a nonlinear 
dynamicM model for motion in the linear space I{ 5. At this point we have to 
make some assumptions about  motion: if we do not have any dynamical  model 
available, we may  assume a statistical model. In particular we will assume tha t  
motion is a first order random walk in t{ 5 lifted to the Essential Manifold (see 
fig. 2 left). The  task is now to est imate the state of a nonlinear system driven 
by white, zero-mean gaussian noise. This will be done using a variation of the 
tradit ional EKF for systems with implicit measurement  constraints, which we 
call the Implicit  Extended Kalman Filter (IEKF).  

In the second approach we change the model for motion: in particular we as- 
stone motion to be a first order random walk in R 9 projected onto the Essential 
Manifold (see fig. 2 left). We will see that  this leads to a method for est imating 
motion via solving at each step a linear estimation problem in the linear embed- 
ding space R 9 and then "projecting" the est imate onto the Essential Manifold 
(see fig. 2 right). The  notion of projection onto the Essential Manifold will be 
made clear later. 

It  is very impor tant  to understand that  these are modeling assumptions and 
can be validated only a posteriori. In general we observe tha t  the first method 
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Fig. 2. (Left) Model of  motion as a random wMk in ~5 lifted to the manifoId or as a 
random walk in ~9 projected onto the manifold. (Right) Estimation on the Essential 
Space 

solves a strongly nonlinear problem with techniques based upon linearizing the 
system about  the current reference trajectory. The update  of the second method 
does not involve linearization, while it imposes the constraint of belonging to 
the Essential Manifold in a weaker way. The next two sections are devoted to 
describing these two techniques which produce, together  with the motion esti- 
mates,  the variance of the estimation error, which is to be used by the subsequent 
modules of the structure and motion estimation scheme [22]. 

4.1 L o c a l  c o o r d i n a t e s  e s t i m a t o r  

Compose the model (*) with the map �9 defined in (4). Call [ ~ [T, ~21T E a 5 
the local coordinates of Q. Then the system becomes 

(**) 
0 = xq(~(t))  + ~(t). 

We model motion as a first order random walk, i.e. r~(t)  C Y(O,R.n~) for 
some R ~  which is referred to as variance of the model error. While the above 
assumption is arbi t rary and can be validated only a posteriori, it is often safe to 
assume tha t  the noise in the measurements  n~(t) is a white zero-mean gaussian 
process. The  second order statistics of {~ can be inferred from ni ,  as it has been 
done in [20]. Now (**) is in a form suite~ble for using an IEKF.  A derivation of 
the IEKF is reported in [20]: it is based upon the fact tha t  the variational model 
about  the best current t ra jectory is linear and ezplicit,  so tha t  a linear update  
equation can be derived and a pseudo-innovation process can be defined. Finally 
call C - (~ and D - (a~x-~qx), we have 

P red ic t ion  s tep : 

{ ~(t + 110 = ~(tlt) ; ~(010) = ~0 
P( t  + 1t0 = P(tlt) + R~r ; P(010) = P0 

U p d a t e  s tep  : 

{ ~(t + lit + 1) = ~(t + lit) - L(t  + 1)xq( i ( t  + 110) 
P( t  + lit + 1) = V(t  + 1)P(t + l l t ) v T ( t  + 1) + L(t  + 1)R,(t  + 1)Lr(t  + 1) 
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G a i n  : 
L ( t +  1) = P ( t +  l l t )CT( t+  ! )A- l ( t  + I) 
A(t + 1) = C(t + 1)P(t + l l t )C~(t  + 1) + R~(t + 1) 
/~(t d- 1) = I - L(t  -t- 1)C(t -t- 1) 

Var iance  of ~ : 
{ R a ( t +  1) = D ( t +  1 ) R x D T ( t +  1) 

Note that  P( t ] t )  is the variance of the motion estimation error which is mod- 
eled as variance of measurement  error by the subsequent modules of the motion 
and structm-e estimation scheme [22]. Also note tha t  Q(~) is a strongly non- 
linear flmction. This model was first introduced by Di Bernardo et al. [5] in a 
slightly different formulation. The Implicit  KMman Filter was used in the past  
by Darmon [4] and in later works. 

4.2 T h e  E s s e n t i a l  E s t i m a t o r  in t h e  e m b e d d i n g  s p a c e  

Suppose tha t  motion, instead of being a random walk in IR 5, is represented on 
the Essential Manifold as the "projection" of a random walk through t{ 9 (see 
fig. 2 left). The "projection" oIlto E is defined as follows: 

pr<E> : R 3X3 "-4 E 

M v-+ Udiag{1, 1, O}V T 

where U , V  E R 3x3 are defined by the SVD of M - U Z V  T. The fact tha t  this 
operator  maps  onto the Essential Manifold is a s tandard result [15] and is proved 
in [20]. Note tha t  the projection minimizes the Frobenius norm and the 2-norm 
of the distance of a point in R 3x3 from the Essential Manifold. Now define the 
operator  (9 that  takes two elements in R 3x3, stuns them and then projects the 
result onto the EssentiM Manifold: 

@ : t{ 3x3 x t{ axa --* E 

Mi, M2 ~ Q = pr<F.>(Mi -I- Ms) 

where the symbol + is the usual sum in 1{3x3. With  the above definitions our 
model for motion becomes simply 

q ( t  + l) = Q(t) | nq ( t )  

where nq is modeled as a white zero-mean gaussian noise in R 9 with variance 
RnQ. If  we couple the above equation with the lower part  of (*), we have again 
a dynamical  model on an euclidean space driven by white gaussian noise. Note 
tha t  the final model is precisely ( . )  with @ in place of + and the constraint 
Q E E released. The EssentiM Est imator  is the least variance filter for such 
a model, and corresponds to a linear Kaiman filter update  in the embedding 
space, followed by a projection onto the Essential Manifold (see fig. 2 right). 
Note tha t  in principle the gain could be preeomputed  ofttine, for each possible 
configuration of motion and feature positions. 

P r ed i c t i on  s tep  : 

{ q(t + lit) = ~i(tlt) ; 4(010) = qo 
P( t  + 1It) = P(tlt) + R~Q ; P(0]0) = P0 
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U p d a t e  s tep : 
dl(t + lit + 1) = / t ( t  + lit) �9 L(t + 1)x(t)dl(t + lit ) 
P(t + 11 t + 1) = F(t  + 1)P(t + l l t ) r r ( t  + 1) + L(t + 1)R~(t + 1)Sr(t  + 1) 

G a i n  : 
L(t + 1) = - P ( t  + ll t)xT(t)A-~(t + 1) 
A(t + 1) = x(t)P(t  + llt)xT (t) + R~(t + 1) 
r ( t  + l) = I - L(t + 1)X(t) 
R~(t + 1) = D(t + 1)RxDT(t + 1) 

5 S p e c i a l  c a s e s  a n d  g e n e r a l i z a t i o n s  

S ingu l a r  case:  w h a t  if  we  o b s e r v e  less t h a n  8 p o i n t s ?  - Suppose we 
are in the situation N(t )  < 8 for some (possibly all) t. Then the Essential 
Constraint will have a preimage which is a whole subspace, and its intersection 
with the Essential Manifold (see fig. 1 right) will no longer be two points on E.  
However, suppose we move under constant (or "slowly varying") velocity; at each 
t ime instant we get a new Essential Constraint,  whose preimage intersects the 
Essential Manifold in a new variety. The intersection of these varieties eventually 
comes to a single point on the Essential Manifold, when the viewer does not move 
on a quadric containing all the visible points [19]. I t  is interesting to note tha t  
extended observations of one only point are sufficient to determine ego-motion. 

Z e r o - t r a n s l a t i o n  case  - The  above schemes were described under the standing 
assumption of non-zero translation. When translation is zero there is no parallax, 
and we are not able to perceive depth. The Essential Constraint is undetermined,  
however we can still recover rotation and hence update  the previous est imate 
of s tructure correctly. In fact, due to noise in the measurements  of xi,  x~, there 
will be always a small translation compatible (in least squares sense) with the 
observed points. This translation is automatical ly scMed to norm one by the 
algorithm. This allows us to recover the correct rotat ion and scales depth by 
the inverse norm of the true translation. If we keep track of the scale factor, as 
described below, we can update  the current est imate of s t ructure and recover 
translation within the correct scale. This procedure has proved successful, as we 
show in the experimental  section. 

R e c o v e r y  of  t h e  sca le  f a c t o r  - The Essential filters recover translation only 
up to a scale factor. However, once some scale information is available at one 
step it can be propagated across t ime allowing recovery of motion and s t ructure  
within the correct scale. This has been tested in the simulations by adding the 
scale factor in the filter dynamics with a random walk model. 

O n - l i n e  c a m e r a  c a l i b r a t i o n  - In introducing our algorithms we have de- 
scribed the camera as a simple static map from Na to IRP 2. The  model for the 
camera  may be made more general [6, 16], t ime-varying, and inserted into the 
state dynamics with a statistieM model, as we have done for motiom As long 
as the resulting model preserves observability properties, this will allow us to 
recover camera  calibration together  with relative orientation. Azarbayejani  et 
al. [1] include the camera focal length in the s tandard formulation (1)-(2). 
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S e g m e n t a t i o n  a n d  d e t e c t i o n  o f  o u t l i e r s  - The Essential models are peculiar 
in tha t  they do not represent s tructure explicitly in the state,  which allows 
varying the feature set at each time [21]. However, the innovation process of 
the filters is a measure of how far each point is from the current rigid-motion 
interpretation.  At each t ime instant it is possible to compare each component  of 
the innovation with the variance of the prediction at the previous t ime and reject 
all points tha t  do not fall within a threshold. The  Essential filters have proved 
useful in building a scheme for 3D transparent  motion-based segmentation, which 
is reported in [21]. 

6 E x p e r i m e n t a l  a s s e s s m e n t  

We have tested the described algorithms on a variety of motion and struc- 
ture configurations. We report  the simulations performed on the same data  sets 
of [22]. These consist of views of a cloud of points under a discontinuous motion 
with singular regions (zero-translation and non-zero rotation).  Gaussian noise 
with 1 pixel std has been added to the measurements.  Simulations have been 
performed with a variable number  of points down to i point for constant velocity 
motion, and show consistent performance.  Tnning has been performed within an 
order of magnitude.  See [20] for details. 
T h e  loca l  c o o r d i n a t e s  e s t i m a t o r  - In fig. 3 we show the three components  
of translational and rotational velocity as est imated by the local coordinates es- 
t imator .  Convergence is reached in less than 20 steps. Initialization is performed 
with one step of the traditional Longuet-Higgins algorithm [13]. The  computa-  
tional cost of one iteration os of about  300 Kflops for 20 points. Note tha t  if we 
have some dynamical  model available for motion, we can easily insert it into the 
s tate  model. 
T h e  E s s e n t i a l  E s t i m a t o r  in  t h e  e m b e d d i n g  s p a c e  - When the es t imated 
state is brought to local coordinates we have estimates for rotat ion and trans- 
lation (see fig. 4). It  is noted that  the homeomorphism ~ can have singularities 
due to noise when the last eigenspace is changed with one of the other two. This 
causes the spikes observed in the est imates of motion. However, note tha t  there 
is no transient to recover, since the errors do not occur in the estimation step, 
but in trasfe~win 9 to local coordinates. The switching can be avoided by a higher 
level control on the continuity of the singular values. The computat ional  cost 
amounts  to circa 41 Kflops per step for 20 points. We report  the mean of the 
est imation error of the two schemes, in order to show the absence of est imation 
biases, and the s tandard deviation to compare the performance.  The results are 
summarized in the following table: 

S c h e m e  Tx (m,  s td)10 -a  Ty ITz [g?x [~Y 1s FlopslConv. [ 
Local ( .2,4) (-1.5, 4.8) (.2, .4) (.S, 2.2) (.2, .2) (-.2, .8) 300K115 steps 
Embedding (.0397, .1) (1.7, 1.3) (.2, A) (-.S, .4) (.004, .2) (-.0016, .4) 41K 50 steps 

E x p e r i m e n t s  o n  r e a l  i m a g e  s e q u e n c e s  - We have tested our schemes on a 
sequence of 10 images of the rocket scene (see fig. 5). There  are 22 feature points 
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nates estimator. The ground truth is shown in dotted lines. (Right) Rotational velocity. 
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Fig. 4. (Left) Components of translational velocity as estimated by the Essential es- 
timator. Note the spikes due to the local coordinates transformation. Note also that 
they do not affect convergence since they do not occur in the estimation process, but 
while transferring to local coordinates. (Right) Rotational velocity. 

visible, and the standard deviation of the error on the image plane is about 
one pixel. The loca.1 coordinates estimator has a transient of about 20 steps to 
converge from any initial condition. Hence we have run it starting from zero, and 
used the final est imate as initial condition for a new run, the results of  which 
are reported in figure 5. We did not perform any ad hoc tuning, and the setting 
was the same as that used in the simulation experiments. As it can be seen, the 
est imates are within 5% error, and the final est imate is less than 1% off the true 
motion.  In this experiment we have used the true norm of translation as scaling 
factor. We have also run experiments in which the scale factor was calculated by 
updating the est imate of the distance between the two closest features, as in the 
s imulation experiments. In this case convergence is slower, and the innovation 
norm reaches regime in about 20-25 steps (three runs over the sequence). 



71 

1.2 

I 

a ~  

- a 2  

.e.4 
2 3 4 5 6 7 8 9 10 

t J~  

- a t  

z 

a ~  

aT 

a 5  

'i[ 
~ .25  ~ 7 S ~ 10 ~ 2 ~ 4 5 6 7 ~ 2 ~ 4 S t l ~  

Fig. 5. (Top-Left) One image of the rocket scene. (Top-Right) Mote[on estimates for the 
rocket sequence: The six components of motion as estimated by the local coordinates 
estimator are showed in solid lines. The corresponding ground truth is in dotted fines. 
(Bottom-Left) Error in the motion estimates for the rocket sequence. All components 
are within 5% of the true motion. (Bottom-Right) Norm of the pseudo-innovation 
process of the local estimator for the rocket scene. Convergence is reaclied in less than 
10+5 steps. 

7 Conclusions  

We have presented a novel perspective for viewing motion estimation. This has 
resulted in two different approaches for solving the motion problem which are 
cast in a common framework. Each scheme has its own personality, the filter in 
the embedding space being faster and more geometrically appealing, the local 
coordinates estimator being more flexible and robust. The schemes are based on 
a globally observable model and enjoy common features such as recursiveness, 
allowing us to exploit at each time all previous calculations, and noise rejection 
from exploiting redundancy. They all benefit from independence from structure 
estimation, which allows us to deal easily with a variable number of points and 
feature sets. Hence we do not need to track specific features through time, and 
we can deal easily with occlusion and presence of outliers. 

Both schemes produce, together with an estimate of motion, the second order 
statistics of the estimation error. 

The approaches can be interpreted as an extension of the Longuet-Higgins' 
algorithm [13] to infinite baseline, and the observability analysis as a generaliza- 
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tion of N-points M-frames theorems. The schemes work for any nmnber of points 
provided that  enough frames are viewed. Possible extensions include on-line es- 
t imation of the camera nlodel. 
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