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A b s t r a c t .  Image deformations due to relative motion between an ob- 
server and an object may be used to infer 3-D structure. Up to first 
order these deformations can be writ ten in terms of an affine transform. 
Here, a novel approach is adopted to measuring affine transforms which 
correctly handles the problem of corresponding deformed patches. The 
patches are filtered using gaussians and derivatives of gaussians. The 
problem of finding the affine transform is reduced to that  of finding the 
appropriate deformed filter to use. The method is local and can handle 
arbitrarily large affine deformations. Experiments demonstrate that  thls 
technique can find scale changes and optical flow in situations where 
other methods fail. 

1 I n t r o d u c t i o n  

Changes  in the  re la t ive  or ien ta t ion  of a surface wi th  respect  to a c a m e r a  cause 
de fo rmat ions  in the  image  of  the  surface. Deformat ions  can be used to infer local  
surface geome t ry  and  dep th  f rom mot ion .  Since a r epea t ing  t ex tu re  p a t t e r n  can 

be t hough t  of  as a p a t t e r n  in mot ion ,  shape  f rom tex tu re  can also be der ived 
f rom de fo rmat ions  [5]. 

To first order,  this  de fo rma t ion  toge ther  wi th  the  image  t r ans l a t i on  can be 
descr ibed  using a six p a r a m e t e r  affine t r ans fo rma t ion  (t  , A ) where 

r I = ~ + A r  (1) 

r '  and  r are the  image  coord ina tes  re la ted  by  an  affine t rans form,  t is a 2 by  1 
vector  represent ing  the  t r ans l a t i on  and  A the  2 by 2 affine de fo rma t ion  ma t r ix .  
The  affine t r ans fo rm is useful because  the  image  p ro jec t ions  of a smal l  p l ana r  
pa t ch  f rom different v iewpoin ts  are well a p p r o x i m a t e d  by  it [5]. 

In F igure  (1) the  image  on the  r ight  is scaled 1.4 t imes  the  image  on the left. 
Even if the  cent ro ids  of the  two image  pa tches  are m a t c h e d  accura te ly ,  measur ing  
the affine t r ans fo rm is difficult since the  sizes of  every po r t i on  of the  two images  

differ. This  p rob lem arises because  t r ad i t i ona l  ma tch ing  uses fixed corre la t ion  
windows or filters. The  correct  way to app roach  this p rob lem is to deform the  
corre la t ion  window or filter according  to  the  image  deformat ion .  
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This paper derives a computational scheme where gaussian and derivative of 
gaussian filters are used and the filters deformed according to the affine trans- 
formation. The resulting equations are solved by linearizing with respect to the 
affine parameters rather than the image coordinates. This allows the lineariza- 
tion point to be moved so that  arbitrary affine transforms can be solved unlike 
traditional methods restricted to small affines. The method is local, applicable 
to arbitrary dimensions and can measure affine transforms in situations where 
other algorithms fail. For example, Werkhoven and Koenderink's algorithm [6] 
when run on the images in Figure (1) returns a scale factor of 1.16 while our 
algorithm does the matching correctly and therefore returns a scale factor of 
1.41. For a review of related work see [5]. 

Fig. I .  Dollar Bill scaled 1.4 times 

2 D e f o r m a t i o n  o f  F i l t e r s  

The initial discussion will assume zero image translation; translation can be re- 
covered as suggested in section 3. It is also assumed that  shading and illumination 
effects can be ignored. 
N o t a t i o n  Vectors will be represented by lowercase letters in boldface while 
matrices will be represented by uppercase letters in boldface. 

Consider two Riemann-integrable functions F1 and F2 related by an affine 
transform i.e. 

~ l ( r )  = F~(Ar) (2) 

Define a generalized gattssian as 

1 r T M - l r  
G(r, M) = (2r)~/2det(M)l/~e~p( 2 ) (3) 

where M is a symmetric positive semi-definite matrix. Then it may be shown 
that  the output  of F1 filtered with a gaussian is equal to the output  of F~ filtered 
with a gaussian deformed by the affine transform (see [5] for details) i.e. 

f = f (41 
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where the integrals are taken from - o o  to ~ .  R is a rotation matrix and 
a diagonal matrix with entries (slot) 2, (s2a)2. . . (sn~) ~ (si > 0) and R Z R  T = 
cr2AA T (this follows from the fact that  A A  T is a symmetric, positive semi- 
definite matrix). 

Intuitively, (6) expresses the notion that the gaussian weighted average bright- 
nesses must be equal, provided the gaussian is affine-transformed in the same 
manner as the function. The problem of recovering the affine parameters has 
been reduced to finding the deformation of a known function, the gaussian, 
rather than the unknown brightness functions. The equation is exact and is 
valid for arbitrary dimensions. 

The level contours of the generalized gaussian are ellipsoids rather than 
spheres. The tilt of the ellipsoid is given by the rotation matrix while its ec- 
centricity is given by the matrix E, which is a function of the scales along each 
dimension. The equation clearly shows that  to recover affine transforms by filter- 
ing, one must deform the filter appropriately; a point ignored in previous work 
[1, 2, 6, 3]. The equation is local because the gaussians rapidly decay. 

The integral may be interpreted as the result of convolving the function with 
a gaussian at the origin and will be written as 

F1 * G(r, cr2I) = F2 * G(rl ,  R ~ R  T) (5) 

where rl  = At. In the case of similarity transforms, A = s R  i.e. a scale change 
and a rotation, this reduces to, 

El * G(r, a 2) = F2 * a ( r t ,  (scr) 2) (6) 

Note that this equation is valid for an arbitrary rotation.. 
Similar equations may be written using derivative of gaussian filters (for 

details see [5]). 

3 S o l u t i o n  f o r  t h e  C a s e  o f  S i m i l a r i t y  T r a n s f o r m s  

To solve (6) requires finding a gaussian of the appropriate scale scr given or. A 
brute force search through the space of scale changes is not desirable. Instead a 
more elegant solution is to linearize the gaussians with respect to or. This gives 
an equation linear in the unknown c~ 

F1 * C(., (sa) ~) ~ F2 * C(. ,  a 2) + aa2V~F2 , C(., a2) (7) 

where s = l + a .  The key notion here is that  the l inearization is done with respec~ 
to cr and not  the image coordinates. 

Equation (7) is not very stable if solved at a single scale. By using gaussians of 
several different scales cri the following linear least squares problem is obtained: 

E,]JFI *G( . ,~ ) -  F 2 * G ( . , ~ ) + ~ F 2 ,  V~G(.,~)I[ 2 (S) 
and solved using Singular Value Decomposition (SVD). 

The following crd (1.25,1.7677,2.5,3.5355,5.0)- spaced apart by half an octave 
- were found to work well. The corresponding filter widths were approximately 
8 * crl (3,5,7,11,15,21,29,41) 
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C h o o s i n g  a D i f f e r e n t  O p e r a t i n g  P o i n t :  For large scale changes (say scale 
change > 1.2) the recovered scale tends to be poor. This is because the Taylor 
series approximation is good only for small values of a. The advantage of hn- 
earizing the gaussian equations with respect to cr is that  the hnearization point 
can be shifted i.e. the right-hand side of (6) can be hnearized with respect to a 
different from the one on the left-hand side (other methods linearize the function 
F or the gaussian with respect to r and are therefore constrained to measuring 
small affine transforms). Let the right-hand side of (7) be linearized around cr i 
to give the following equation 

' ~  V~C(., ~ )  (9) F I *  G(., a~) ~ F2 * G(., cr]) + a a i F~ * 

where s = cri/cri(1 + c~'). The strategy therefore is to pick different values of (zj 
and solve (9) ( or actually an overconstrained version of it). Each of these ai  will 
result in a value of a ' .  The correct value of a ~ is that which is most consistent 
with the equations. By choosing the ~r i appropriately, it can be ensured that  no 
new convolutions are required. 

In principle, arbitrary scale changes can be recovered using this technique. 
In practice, most scale changes in motion and texture are < 2.5 and therefore 
three operating points (or, 1.4c~, 2.0~r) should suffice. 

F i n d i n g  I m a g e  T r a n s l a t i o n :  Image translation, i.e. optic flow can be recov- 
ered in the following manner. Let F1 and F2 be similarity transformed versions 
of each other (i.e. they differ by a scale change, a rotation and a translation). As- 
sume that an estimate of the translation to is available. Linearizing with respect 
to r and o" gives 

F1 (r + to) * C(r,  2 )  _ 5tT F1 (r + to) * C(r,  2 )  ~ F2 * C(., ~ )  + ~ F~ �9 V ~ G(., ~ )  
(10) 

which is again linear in both the scale and the residual translation St. As before 
an overconstrained version of this equation using multiple scales is obtained and 
solved for the unknown parameters. Large scales are handled as before. 

to is obtained either by a local search or from a coarser level in a pyramid 
scheme, while 5t is estimated from the equation (see [4] for details). 

Note that  since the gaussians are rotation invariant, the translation can be 
recovered for arbitrary rotations about an axis perpendicular to the image. No 
other scheme is able to do this. 

3.1 E x p e r i m e n t a l  R e s u l t s  

Experiments on synthetic images show that the affine transform can be recovered 
to within a few percent (see [5]). 

Figure (2) illustrates the power of this algorithm. A random dot image is 
scaled by a factor of 1.1 and rotated around an axis perpendicular to the image 
by 30 deg. On the left is the flow produced by an SSD based pyramid scheme. 
Note that  the algorithm fails quite dramatically because of the large rotation. 
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This occurs because for correct matching the template also needs to be rotated 
by the same angle. For small angles, the template rotation can be ignored but 
this cannot be done for large rotations. On the other hand the results of run- 
ning the algorithm described here are shown on the right-hand side. The flow 
shown is clearly rotational. Note that the flow has been computed at every point 
without fitting a global model. To the best of our knowledge no other existing 
algorithm can compute the flow correctly in this situation A histogram of the of 
the recovered scale values peaks at 1.1 which is the correct value. 

Fig. 2, Random Dot Sequence 

Figure (1) shows a dollar bill scaled by 1.4. The algorithm correctly recovers 
the scale as 1.41. Other experiments with scaled and rotated versions of the 
dollar bill consistently show good recovery of scale within a few percent. 

For other examples see [4], 

4 S o l v i n g  f o r  t h e  G e n e r a l  A f f i n e  

The strategy adopted will be to first sample the space of scales and orientations 
to derive a finite set of filters. The gaussian equation is then linearized with 
respect to the scales and orientation about the elliptical filter closest to the right 
orientation and scales. 
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Recall that  the gaussian weighted brightnesses are equal if 

F1 * C(r,  ~2I) = F2 * C(r l ,  R(e + r  + r (11) 

where F2 is filtered with an elliptical gaussian of orientation 0 + r and standard 
deviations SlCrl and s2cr2. Linearizing the gaussian on the right with respect to 
a l ,  ~r~ and 0 gives, 

, : , H E R  r )  + - , R E R  

+ - ( . ,  R Z R  

+ r - 1/~r:2]F2 * G=,~,(., R ~ R  T) (12) 

where G(., Rb~,R T) is a member  of the sample set with sigma's c~, a~, R = R(0) 
and (~,,y,)T = R(O)(m,y)T i.e. (x' ,y') are the coordinate axes defined by the 
major  and minor axes of the sample ellipse. Since ~ is known, computing (x ' ,y ' )  
and hence G=,=,, G=,~, and G~,~, is straightforward. This is a good approximation 
if (sz - 1), (s~ - 1) and r are smaU. 

In the case where ~rl/Cr2 this approximation may be rewritten so that  elliptical 
gaussians are not needed and circular gaussians suffice. 

C o m p u t i n g  t h e  m a t r ] x  A: Now A A  T = R E R  T is the SVD of A A  T. Also, 
note that  (ATA)  -1 can be recovered by interchanging the roles of F1 and F2 
in (5), where ( A r A )  -1 = R2T2~-1R2 is the SVDto solve of (ATA) -1.  There- 
fore A = REI /2R2  (again using SVD). All the quantities on the right can be 
measured and hence A can be computed. 
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