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Abstract. Image deformations due to relative motion between an ob-
server and an object may be used to infer 3-D structure. Up to first
order these deformations can be written in terms of an affine transform.
Here, a novel approach is adopted to measuring affine transforms which
correctly handles the problem of corresponding deformed patches. The
patches are filtered using gaussians and derivatives of gaussians. The
problem of finding the affine transform is reduced to that of finding the
appropriate deformed filter to use. The method is local and can handle
arbitrarily large affine deformations. Experiments demonstrate that this
technique can find scale changes and optical flow in situations where
other methods fail.

1 Introduction

Changes in the relative orientation of a surface with respect to a camera cause
deformations in the image of the surface. Deformations can be used to infer local
surface geometry and depth from motion. Since a repeating texture pattern can
be thought of as a pattern in motion, shape from texture can also be derived
from deformations [5].

To first order, this deformation together with the image translation can be
described using a six parameter affine transformation (t , A ) where

v =t 4+ Ar (1)

r’ and r are the image coordinates related by an affine transform, t is 2 2 by 1
vector representing the translation and A the 2 by 2 affine deformation matrix.
The affine transform is useful because the image projections of a small planar
patch from different viewpoints are well approximated by it [5].

In Figure (1) the image on the right is scaled 1.4 times the image on the left.
Even if the centroids of the two image patches are matched accurately, measuring
the affine transform is difficult since the sizes of every portion of the two images
differ. This problem arises because traditional matching uses fixed correlation
windows or filters. The correct way to approach this problem is to deform the
correlation window or filter according to the image deformation.
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This paper derives a computational scheme where gaussian and derivative of
gaussian filters are used and the filters deformed according to the affine trans-
formation. The resulting equations are solved by linearizing with respect to the
affine parameters rather than the image coordinates. This allows the lineariza-
tion point to be moved so that arbitrary affine transforms can be solved unlike
traditional methods restricted to small affines. The method is local, applicable
to arbitrary dimensions and can measure affine transforms in situations where
other algorithms fail. For example, Werkhoven and Xoenderink’s algorithm {6]
when run on the images in Figure (1) returns a scale factor of 1.16 while our
algorithm does the matching correctly and therefore returns a scale factor of
1.41. For a review of related work see [5].

Fig. 1. Dollar Bill scaled 1.4 times

2 Deformation of Filters

The initial discussion will assume zero image translation; translation can be re-
covered as suggested in section 3. It is also assumed that shading and illumination

effects can be ignored.
Notation Vectors will be represented by lowercase letters in boldface while

matrices will be represented by uppercase letters in boldface.
Consider two Riemann-integrable functions Fy and F, related by an affine

transform 1.e.
Fi(r) = Fy(Ar) (2)
Define a generalized gaussian as
1 T M~y
- 3
(2m)"/2det(M)112 P (-——=—) (3)
where M is a symmetric positive semi-definite mairix. Then it may be shown

that the output of Fy filtered with a gaussian is equal to the cutput of F; filtered
with a gaussian deformed by the affine transform (see [5] for details) i.e.

/ Fy(r)G(r,0?I)dr = / Fy(Ar)G(Ar, RERT)d(Ar) (4)

G(r,M)=
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where the integrals are taken from —oo to co. R is a rotation matrix and X
a diagonal matrix with entries (310')2,(320)2...(5,,(7)2 (si > 0) and RERT =
02AAT (this follows from the fact that AAT is a symmetric, positive semi-
definite matrix).

Intuitively, (6) expresses the notion that the gaussian weighted average bright-
nesses must be equal, provided the gaussian is affine-transformed in the same
manner as the function. The problem of recovering the affine parameters has
been reduced to finding the deformation of a known function, the gaussian,
rather than the unknown brightness functions. The equation is exact and is
valid for arbitrary dimensions.

The level contours of the generalized gaussian are ellipsoids rather than
spheres. The tilt of the ellipsoid is given by the rotation matrix while its ec-
centricity is given by the matrix X, which is a function of the scales along each
dimension. The equation clearly shows that to recover affine transforms by filter-
ing, one must deform the filter appropriately; a point ignored in previous work
[1, 2, 6, 3]. The equation is local because the gaussians rapidly decay.

The integral may be interpreted as the result of convolving the function with
a gaussian at the origin and will be written as

F1 + G(r,c*I) = Fy + G(r1, RZRT) (5)

where 7y = Ar. In the case of similarity transforms, A = sR i.e. a scale change
and a rotation, this reduces to,

Fi % G(r,0%) = Fy % G(ry, (50)?) (6)

Note that this equation is valid for an arbitrary rotation..

Similar equations may be written using derivative of gaussian filters (for
details see [5]).

3 Solution for the Case of Similarity Transforms

To solve (6) requires finding a gaussian of the appropriate scale so given o. A
brute force search through the space of scale changes is not desirable. Instead a
more elegant solution is to linearize the gaussians with respect to o. This gives
an equation linear in the unknown «

Fy % G(.,(50)%) ~ Fy = G(.,0%) + ad® V2 F, x G(., 0?) (7

where s = 1+a. The key notion here is that the linearization is done with respect
to o and not the image coordinates.

Equation (7) is not very stable if solved at a single scale. By using gaussians of
several different scales o; the following linear least squares problem is obtained:

Zil|F1x G(., o-?) — Fyx G(.,a’f) + aaize * VZG(., a‘f)][2 (8)

and solved using Singular Value Decomposition (SVD).

The following o; (1.25,1.7677,2.5,3.5355,5.0) - spaced apart by half an octave
- were found to work well. The corresponding filter widths were approximately
8 * o; (3,5,7,11,15,21,29,41)
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Choosing a Different Operating Point: For large scale changes {say scale
change > 1.2) the recovered scale tends to be poor. This is because the Taylor
series approximation is good only for small values of o. The advantage of lin-
earizing the gaussian equations with respect to o is that the linearization point
can be shifted i.e. the right-hand side of (6) can be linearized with respect to a ¢
different from the one on the left-hand side (other methods linearize the function
F or the gaussian with respect to r and are therefore constrained to measuring
small affine transforms). Let the right-hand side of (7) be linearized around o;
to give the following equation

F1xG(,0?)m Fy%G(.,,07) + o0} Fa * V2G(.,03) (9)

where s = 0j/0;(1 + a'). The strategy therefore is to pick different values of o;
and solve (9) ( or actually an overconstrained version of it). Each of these o; will
result in a value of a’. The correct value of o’ is that which is most consistent
with the equations. By choosing the o; appropriately, it can be ensured that no
new convolutions are required.

In principle, arbitrary scale changes can be recovered using this technique.
In practice, most scale changes in motion and texture are < 2.5 and therefore
three operating points (o, 1.40, 2.00) should suffice.

Finding Image Translation: Image translation, i.e. optic flow can be recov-
ered in the following manner. Let F; and F; be similarity transformed versions
of each other (i.e. they differ by a scale change, a rotation and a translation). As-
sume that an estimate of the translation t; is available. Linearizing with respect
to 7 and o gives

Fi(r+t0)*G(r,02)—86tT Fi(r+10)*G(r,0%) » F2+G(.,0°) +ac’ F;xV?G(.,0°)
(10)

which is again linear in both the scale and the residual translation d¢. As before
an overconstrained version of this equation using multiple scales is obtained and
solved for the unknown parameters. Large scales are handled as before.

to is obtained either by a local search or from a coarser level in a pyramid
scheme, while 8t is estimated from the equation (see [4] for details).

Note that since the gaussians are rotation invariant, the translation can be
recovered for arbitrary rotations about an axis perpendicular to the image. No
other scheme is able to do this.

3.1 Experimental Results

Experiments on synthetic images show that the affine transform can be recovered
to within a few percent (see [5]).

Figure (2) illustrates the power of this algorithm. A random dot image is
scaled by a factor of 1.1 and rotated around an axis perpendicular to the image
by 30 deg. On the left is the flow produced by an SSD based pyramid scheme.
Note that the algorithm fails quite dramatically because of the large rotation.
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This occurs because for correct matching the template also needs to be rotated
by the same angle. For small angles, the template rotation can be ignored but
this cannot be done for large rotations. On the other hand the results of run-
ning the algorithm described here are shown on the right-hand side. The flow
shown is clearly rotational. Note that the flow has been computed at every point
without fitting a global model. To the best of our knowledge no other existing
algorithm can compute the flow correctly in this situation A histogram of the of
the recovered scale values peaks at 1.1 which is the correct value.

Fig. 2. Random Dot Sequence

Figure (1) shows a dollar bill scaled by 1.4. The algorithm correctly recovers
the scale as 1.41. Other experiments with scaled and rotated versions of the
dollar bill consistently show good recovery of scale within a few percent.

For other examples see [4].

4 Solving for the General Affine

The strategy adopted will be to first sample the space of scales and orientations
to derive a finite set of filters. The gaussian equation is then linearized with

respect to the scales and orientation about the elliptical filter closest to the right
orientation and scales.
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Recall that the gaussian weighted brightnesses are equal if
Fy + G(r,0%I) = F3 % G(r1, R(8 + ¢) X' RT (8 + ¢)) (11)

where F) is filtered with an elliptical gaussian of orientation 8 + ¢ and standard
deviations s10; and sy0;. Linearizing the gaussian on the right with respect to
01, 02 and 6 gives,

Fi % G(r,d*I) = F; % G(r1, RERT) + (51 — 1)01° Fy % Gpizr(., RERT)
+ (52 — 1)0'22F2 * Gyiyl(., RZRT)
+ ¢[1/02% — 1/01%|Fs % Gy (., RERT) (12)

where G(., RZRT) is a member of the sample set with sigma’s 01,02, R = R(6)
and (z',¥)¥ = R(6)(z,y)T ie. (x’y’) are the coordinate axes defined by the
major and minor axes of the sample ellipse. Since 8 is known, computing (x’,y’)
and hence Ggipr, Gy and Gy s straightforward. This is a good approximation
if (s1 — 1), (s2 — 1) and ¢ are small.

In the case where o3 /o3 this approximation may be rewritten so that elliptical
gaussians are not needed and circular gaussians suffice.

Computing the matrix A: Now AAT = REZRT is the SVD of AAT. Also,
note that (AT A)~! can be recovered by interchanging the roles of Fy and F,
in (5), where (AT 4)"! = R;T Z~1R; is the SVDto solve of (AT A)~!. There-
fore A = RXY/2R, (again using SVD). All the quantities on the right can be
measured and hence A can be computed.
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