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A b s t r a c t .  This article presents a new method to find the best rigid 
registration between a curve and a surface. It is possible to write a com- 
patibility equation between a curve point and a surface point, which 
constrains completely the 6 parameters of the sought rigid displacement. 
This requires the local computation of third order differential quantities 
and leads to an algebraic equation of degree 16. 
A second approach consists in considering pairs of curve and surface 
points. Then only first order differential are necessary to compute lo- 
cally the parameters of the rigid displacement. Although computation- 
ally more expensive, the second approach is more robust, and can be 
accelerated with a preprocessing of the surface data. 
To our knowledge, it is the first method which takes full advantage of 
local differentiM computations to register a curve on a surface. 

1 I n t r o d u c t i o n  

Finding the best spatial  registration between a rigid curve and a rigid surface is 
an impor tan t  problem in the medical field when a volume medical image must be 
registered either with a single cross-section acquired later with a CT-Scanner or 
MR I ,o r  with a 3D curve acquired with a laser range finder on the external surface 
of a patient. Besl mentionned this problem in a paper  on 3D registration [1], and 
Grimson presented recently an industrial application of this type but restricted 
to the recognition of cylinder objects [2]. 

The scope of our study is more general in that  we do not restrict the shape 
of the observed surfaces or curves. In fact~ although results are presented with 
planar curves, the developped formalism is valid also for general spatial curves 
and free form surfaces. On the other hand, we assume that  it is possible to 
compute the differential properties of both  the curve and the surface, either 
up to the third order (first approach), or at least up to the first order (second 
approach). Both are reasonable assumptions with high resolution medical volume 
images, where adequate spatial filtering allows for the extraction of anatomical  
surfaces and curves, with the computat ion of differential properties [3, 4, 5]. 

2 R e g i s t r a t i o n  U s i n g  o n e  P o i n t  o n  C u r v e  a n d  S u r f a c e  

2.1 G e o m e t r i c a l  Constraints  
At each point of a parametr ic  curve, we can define an intrinsic or thonormal  
f rame (t, n, b)  (the Frenet frame) and metric invariants (the curvature k and 
torsion r) .  We can also build at each point of a parametr ic  surface the two fun- 
damental  forms and infer from them an intrinsic or thonormal  frame ( e l ,  e2,  N)  
(the principal frame) and the two principal curvatures. (kl, k2)) [6] 

When a curve lies on a surface, its tangent vector is in the tangent plane of the 
surface. We can then also construct a third intrinsic or thonormal  frame (t,  g, N),  
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called the Darboux frame. Thus, for each of these frames, we can express the 
derivatives of the frame along the curve with respect to the arc length s in the 
same frame (moving frame method) [6]. Using the relations between the Darboux 
frame and the Frenet f rame or the principal frame we obtain: 

k,~ ---- k cos 8 ---- kl cos s ~ + ks sin s ~ (normal curvature) (1) 

1 , Ok1 Ok2 d~ 
- cos + sin + (geodes ic  curvature)  (2) kg = k sin 0 -- kt ks 0e~ ~ -~s 

dO 
rg ---- r - - -  = (kl - k2) cos ~o sin ~ (geodesic torsion) (3) 

ds 

The knowledge of 0 (angle betwen the normal to the curve and the normal to 
the surface) and ~ (angle between the curve tangent and the principal direction 
e l )  characterizes the rotation between the Frenet frame and the principal f lame. 

For each point on the curve, we can compute its curvature k and its torsion r 
and their derivatives with respect to the arc length s. Moreover, for each point of 
the surface the principal curvatures (kt, k2) and their derivatives along e 1 and 
e 2 can be computed. However k. ,  kg, ra, the two angles 0, ~ and their derivatives 
with respect to s are unknown. In our problem, we have a model S of a surface 
and a curve a that  we wish to register on S. For every point m of a and its 
homologous point M on the surface, every pair (0, ~) which is solution of (1,2,3) 
gives us a unique registered F~enet frame. It is then easy to find the rotation of 
the F~enet frame and to infer the rigid t ransformation which maps  m into M. 

2.2 D e t e r m i n i n g  t h e  A n g l e s  0 a n d  ~0 

The drawback of the system (1,2,3) where the unknown values are (0(s), ~(s)) is 
the presence of the derivatives of (a(s), T(s)) with respect to s (except for (1)). 
Thus, in order to find (0, ~) we must  eliminate those derivatives. By derivat- 
ing (1) with respect to s and using (2,3) and 2 we obtain: 
1 dk .  0kl ~ Ok1 . 3ks 3k2 . 
~. ~s k ,+kg(3 r , - r )  = ~- -  cos ~+3-z-- cos ~ ~ sm ~+3 ~e~ cos ~ sin 2 ~+-g-- sm ~ = C(9~) 

U(~I 062 (YeS 
(4) 

Therefore we obtain one single algebraic equation in ~ with 

1 dk  2 
/ ( 9 )  = ( k~ - k~(~))(3~,(~) - v)2 - (C(~)  - ~ k ~ ( ~ ) )  = 0 (5) 

Since (5) is an algebraic equation of degree sixteen, there is no hope to find 
explicit roots for the general case, but classical methods may be used [7]. 

For each solution T, (1) gives us cos 6; sin 0 is obtained by (2) and (4 ) .  

2.3 M a t e h l n g  A l g o r i t h m  

First at all we have to compute differential invariants in volume or planar im- 
ages. The use of a Gaussian convolution filter transforms the digital 3D image 
into an infinitely differentiable function I ( x ,  y, z)  [3, 5]. Then the implicit func- 
tion theorem allows us to express the differential caracteristics of the iso-surface 
I ( z ,  y, z) = a as expressions of the derivatives of I (z ,  y, z)[4]. 

Now we can describe our matching algorithm: 

1 for each fonction M (u, v) defined on the surface, ~ = -~t ( r a + t e l )  for (t = 0) 
~0e 1 \ ] 

is called the derivative of M with respect to e I in m. 
s for each function P of the coordinates of the surface (u, v), the derivative of the 

restriction of P on the curve may be written: ~dP ~___ O~ 1 COS ~ + ~OP sin 
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1. For each remaining pair of points with one point on the curve and the other 
one on the surface, solve the equation for the angle 9- Then for each root: 
(a) Compute 0 and determine the rigid transformation. 
(b) Apply the tranformation to the curve. 
(c) If a sufficient number of curve points lie at a distance of the surface 

smaller than a preset threshold, store the 6 parameters of the rigid trans- 
formation in a hash-table. 

2. Repeat until at least one bucket of the hash-table contains a sufficient number 
of stored transfomations. 

By applying the estimated transformation to the curve we can easily eliminate 
irrelevant transformations. However this last process requires the computation, 
for each point of the curve, of the closest point on the surface. This can be done 
by using octree-spline [8]. As soon as the initial guess is reasonably good, we can 
improve the registration by using an iterative method (see [9] for instance). Un- 
fortunately, to find the initial guess, we have to compute third order derivatives 
on the curve and on the surface and solve an algebraic equation of high degree. 
This makes the method applicable to high quality data only. To address this last 
point, we present now a more expensive but more robust approach. 

3 Registration Using pair of Points 
3.1 G e o m e t r i c a l  C o n s t r a i n t s  

The geometric constraints between a pair of points (a, b) on the curve a and 
its homologous pair of points (A, B) on the surface S require only first order 
differential invariants on the curve a~nd surface. 

Since the tangent to a curve lying on a surface is in the tangent plane of the 
surface and that  the scalar product is invariant by a rigid transformation, the 
constraints between the pairs (a, b) et (A, B) can be written as: 

]1 ab ][=l[ AB ]l = d ~ (D(ta)IAB) -- (talab) 
(D( ta) INA) = (D( tb ) lNa}  = 0 and / (D(tb)]AB) ( tb[ab)  

D is the unknown displacement, ( ta ,  tb )  are the tangents to the curve in (a, b) 
and ( NA,  N B )  are the normals to the surface in (A, B) homologous points of 

(a,b) by D. Writing (N  A [ N B }  = cos P and expressing (D( ta) ,  D ( tb )  ) in the 
bases of the tangent planes of the surface in (A, B) 3 we have: 

sin _P D(ta)  ---- cos a N A A N B + sin a Icos FN A - NB] 
sin s O(tb)  = cos fl N A A N B + sin/~ [cos F N  B - NA] 

(a,/3) are the angles between (D( ta) ,  D ( tb )  ) and N A A N B. 
By writing A B  in the two bases and by computing the scalar products 

( D( t a ) I AB)  and ( D ( t b ) I A B )  we get two equations for the angles (a ,Z)  of 
the form A cos 0 + B sin 0 = C 4. As the scalar product is invariant we can write: 
( D ( t a ) l D ( t b ) )  = ( t a l t b )  = cos 7. Thus we have one more equation: 

cos a cos/3 - cos F sin a sin ~ = cos 7 (6) 

Then by solving the equations verified by a and ~3 and keep the roots which 
verify (6) we can find the rigid transformation which maps (a, b) on (A, B). 
3 whenN A A N  B # 0  
4 An equation of the form Acos 8+B sin 0 = C has two roots if and only A 2 + B  ~ >_ C 2 



190 

3.2 Specific Situations 
When sin 7 = 0 and sin F # 0, (i.e. the tangent vectors in (a, b) are parallel). By 
using (6) we prove that (~,/~) must be equal to 0 or ~r and that (ta,  t b, N A A 
N B)  are proportional vectors. This can be seen in the following equation: 

~2 = ( ( N A  A N B I A B ) ) 2  = (ablta)2 = (ab l tb}  2 (7) 
sin F 

Thus in this particular case we have two invariants on the pair of curve points 
and on the pair of surface points : the intrinsic distance d and the quantity ~. 

3.3 R e g i s t r a t i o n  A l g o r i t h m  
Using the above-mentioned constraints, the matching algorithm is as follows: 

1. for each pair of curve points and for each pair of surface points being at the 
same distance d: 
(a) find ~ and/~ and keep them if they satisfy (6) with a given accuracy c. 
(b) Compute for each solution (a,/~) the corresponding rigid transformation. 

2. Then proceed the same way as in the first algorithm. 
The main advantage of this algorithm with respect to the one based on the 
computation of ~ comes from the use of first order differential invariants (curve 
tangents and surface normals), instead of the third order differential invariants. 

However, this algorithm has a higher complexity: it is necessary to search for 
pairs of curve and scene points being at a similar distance of each other. A brute 
force algorithm leads to a combinatorial explosion, which is in O(n2p2)). 

The complexity can be decreased by reducing the number of pairs of curve 
points, i.e. selecting those being at a sufficiently large distance of each other. The 
surface can be preprocessed beforehand: pairs of surface points can be ordered 
by increasing distance d. Then, at recognition time, a given pair of curve points 
is compared to surface pairs of similar distance with a O(log(n2)) algorithm. 

A further reduction in the number of such pairs can be easily obtained when 
dealing with planar and closed curves, by imposing parallel tangent vectors. 
In this case, as showed above, it is easy to compute 2 intrinsic invariants at 
each curve and scene point (d and A computed with respect to curve point of 
same tangent vector). The number of pairs of curve points then reduces to O(p), 
since for a given curve point there is a finite number of points on the curve with 
parallel tangents. Applying both strategies can reduce the recognition complexity 
to O(p log(a)) for planar curves, and O(p 2 log(n)) in the general case. 

4 Experimental Results 
4.1 S y n t h e t i c  E x a m p l e s  
After the generation of synthetic volume images of a 3D object (Fig. 1), we 
extracted the object surface for a given iso-intensity value [4], and a curve in a 
randomly selected 2D cross-section, for the same iso-intensity value. The surface 
had about 7000 points while the curve had about 150 points. 

Using the first approach, and using the proposed third order differential in- 
variants, (5) yielded from 0 to 12 solutions for ~. By computing the derivatives 
analytically , the program returned for 90% of the curve points, the correct 
with an accuracy better than 5 degrees. When the derivatives were computed 
by local gaussian filtering this percentage was 75% of the curve points. 

The second approach yielded a correct rigid transformation, for all our tri- 
als. In fact, we got additional solutions, which are quite reasonable due to the 
symmetries of the original object as can be seen in Fig. 1. 
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Fig. 1. Registrations on synthetic examples. 

4.2 Real  Da ta  

We used a volume image of a skull acquired by an X-ray CT-Scan (provided by 
GE-MS), and we computed the iso-surface corresponding to the bone surface. 
In another image of the same skull in a different position, we extracted a single 
cross section and the iso-intensity contour corresponding again to the bone limit. 

The algorithm using the second approach found the rigid transformation 
which superimposes the curve on the surface. As we knew that the cross section 
had been extracted grossly at the level of the orbits, we reduced the complexity 
of the matching algorithm by selecting only about 10 cross-sections of the first 
volume image of the skull, centered about the orbits and by taking the pairs of 
curve points whose inter-distance was larger than 75% of the curve diameter. 

An iterative registration algorithm can improve the found solution. Typically, 
the initial solution is found with a tolerated distance of about 5 voxels between 
the transformed curve and the surface, and this distance can be decreased to 0.5 
voxel after a few tens of iterations of the iterative closest point algorithm. 

5 Conclusion 

In this paper we have presented the differential constraints which can be ex- 
ploited to register rigidly a curve on a surface. These constraints apply by con- 
sidering either homologous points: which requires the computation of third order 
differential invariants and leads to a O(np) algorithm, or homologous pairs of 
points between the curve and the surface, which brings about the computation 
of first order differential invariants and leads to a brute force complexity of 
O(n2p 2) algorithm. This last complexity can be significantly reduced, typically 
to O(p log(n)) by applying additional constraints, in particular when the curve 
is planar and closed. 

We presented results both with synthetic and real data, showing that only 
the second algorithm is robust enough in the presence of noise. Anyhow, the con- 
straints used in the first algorithm can be used efficiently during the verification 
stage of the second algorithm, making the whole study useful in practice. 
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Fig. 2. Top: left: surface from the first CT scan; left: one particular fit. Bottom: left: 
curve from the second CT scan; right: the curve is superimposed on the interpolated 
cross section image. 
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