N
N

N

HAL

open science

The complexity of propositional linear temporal logics in
simple cases
Stéphane Demri, Ph. Schnoebelen

» To cite this version:

Stéphane Demri, Ph. Schnoebelen. The complexity of propositional linear temporal logics in simple
cases. Annual Symposium on Theoretical Aspects of Computer Science (STACS 1998), Jan 1998,

Paris, France. pp.61-72, 10.1007/BFb0028549 . hal-03199998

HAL Id: hal-03199998
https://hal.science/hal-03199998

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03199998
https://hal.archives-ouvertes.fr

The Complexity of Propositional Linear
Temporal Logics in Simple Cases
(Extended Abstract)

S. Demri! and Ph. Schnoebelen?

! Leibniz-IMAG, Univ. Grenoble & CNRS UMR 5522,
46, av. Flix Viallet, 38031 Grenoble Cedex, France
email: demri@imag.fr
2 Lab. Specification and Verification, ENS de Cachan & CNRS URA 2236,
61, av. Pdt. Wilson, 94235 Cachan Cedex, France

email: phs@lsv.ens-cachan.fr

Abstract. It is well-known that model-checking and satisfiability for
PLTL are PSPACE-complete. By contrast, very little is known about
whether there exist some interesting fragments of PLTL with a lower
worst-case complexity. Such results would help understand why PLTL
model-checkers are successfully used in practice.

In this paper we investigate this issue and consider model-checking and
satisfiability for all fragments of PLTL one obtains when restrictions are
put on (1) the temporal connectives allowed, (2) the number of atomic
propositions, and (3) the temporal height.

1 Introduction

Background. PLTL is the standard linear-time propositional temporal logic used
in the specification and automated verification of reactive systems [MP92,Eme90].
It is well-known that model-checking and satisfiability for PLTL are PSPACE-
complete [SC85,HR83]. However, many research groups were not deterred from
implementing PLTL model-checkers. They often comment about the PSPACE
complexity by emphasizing that, in practice, PLTL specifications are not very
complex, have a low temporal height (number of nested temporal connectives)
and are mainly boolean combinations of simple eventuality, safety, responsive-
ness, fairness, ... properties. Actually a systematic theoretical study deserves to
be made in order to understand whether some natural classes of PLTL formulas
have lower complexity. We know of no such systematic study of this kind in the
literature. This is all the more surprising because PLTL is extensively used in
the specification and automated verification of reactive systems.

Our objectives. In this paper, our goal is to revisit the complexity questions
from [SC85] when there is a bound on the number of propositions and/or on the
temporal height of formulas. The first aim is to obtain a better understanding
of where does the complexity come from. For instance [SC85] notes that satis-
fiability for L(F), the fragment of PLTL using only the F (sometimes) operator,

is NP-hard because already satisfiability is NP-hard for the propositional cal-
culus. This is not very enlightening. It does not say anything about how much
added complexity is brought by introducing F into the propositional calculus.
For the propositional calculus, and even for many modal logics [Hal95], satis-
fiability becomes linear-time when at most n propositions can be used. What
about L(F) ?

Another aim is to see whether there is a formal way of stating that “practical
applications only use simple PLTL formulas”. For example, in practical appli-
cations the temporal height often turns out to be at most 3 (when fairness is
involved) even when the specification is quite large and combines a large number
of temporal constraints. Could such a bounded height be used to argue about
reduced complexity 7

Our contribution. Our contribution is twofold. On one hand we provide a num-
ber of polynomial-time reductions allowing us to answer all the questions we
put forward (only a few remaining ones are solved with ad-hoc methods). As
a matter of fact, we show that (1) when the number of propositions is fixed,
satisfiability can be transformed in polynomial-time into model-checking, (2) n
propositional variables can be encoded into only one if F (sometimes) and X
(next) are allowed, (3) into only two if U (until) is allowed. When arbitrarily
many propositions are allowed, (4) temporal height can be reduced to 2 if F
is allowed, and (5) model-checking for logics with X can be transformed into
model-checking without X. Besides, when the formula ¢ has temporal height at
most 1, (6) knowing whether S |= ¢ only depends on a O(]¢|) number of places
in S.

On the other hand, we give new proofs showing that satisfiability and model-
checking for L(U) and L(F,X) are PSPACE-hard. These proofs are “simpler”
than the construction in [SC85] (e.g. we directly transform any QBF problem
into a linear-sized L(U) formula of temporal height 2) and they directly ap-
ply to restricted fragments of PLTL. Also, these proofs transform QBF into a
model-checking problem, so that they are new “master reductions” for PLTL,
interesting in their own right.

Related work. Tt is common to find papers considering extensions of earlier tem-
poral logics. The search for fragments with lower complexity is less common.
[EES90] investigates (very restricted) fragments of CTL (a branching-time logic)
where satisfiability is polynomial-time. [Hal95] investigates, in a systematic way,
the complexity of satisfiability (not model-checking) for various multimodal log-
ics when the modal height or the number of atomic propositions is restricted. We
found that PLTL behaves differently. As far as PLTL is concerned, some com-
plexity results for some particular restricted fragments of PLTL can be found
in [EL87,CL93,Spa93,DFRI7] but these are not a systematic study sharing our
objectives. [Har85] has a simple proof, based on a general reduction from tiling
problems into modal logics, that satisfiability for L(F,X) is PSPACE-hard. In
fact, his proof shows that PSPA CE-hardness is already obtained with temporal
height 2 but bounding temporal height is not a concern in this paper.

Plan of the paper. Section 2 recalls various definitions we need throughout the
paper. Sections 3 and 4 study the complexity of PLTL fragments when the num-
ber of atomic propositions is bounded. Polynomial-time transformations from
QBF into model-checking problems can be found in Section 5. Section 6 stud-
ies the complexity of PLTL fragments when the temporal height is bounded.
Section 7 contains concluding remarks and provides a table summarizing the
complete picture we have established about complexity for PLTL fragments.

2 Basic definitions and results

Regarding complexity, we assume that the reader understands what is meant
by classes such as P, NP and PSPACE, see e.g. [Joh90]. As usual, given two
problems P; and Pa, we write P; <, P> when there exists a polynomial-time
transformation (”many-one reduction”) from P; into Ps.

Regarding temporal logic, we follow notations and definitions from [Eme90].
Some of them are recalled below.

Syntazx. PLTL is a propositional linear-time temporal logic based on a countably
infinite set P = {A;, As,..., P1, Py, ...} of propositional variables, the classical
connectives — and A (negation and conjunction), and the temporal operators
X (next), U (until), F (sometimes). The set {¢p,...} of formulas is defined in
the standard way. We use the connectives V, =, < and G (always) as abbre-
viations with their standard meaning. We write P(p) (resp. sub(p)) for the set
of propositions occurring in (resp. the set of subformulas of) ¢. The temporal
height of formula ¢, written th(y), is the maximum number of nested temporal
operators (among X, U, F) in ¢. We write |¢| to denote the length (or size) of ¢,
assuming a reasonably succinct encoding. Following the usual notations (see e.g.
[SC85,Eme90]), we let L(Hy, Ha, . ..) denote the fragment of PLTL for which only
the temporal operators Hy, Hs, ... are allowed. For instance L(U) is “PLTL with-
out X”. We write LE(H,...) to denote the fragment of L(H,...) where at most n
propositions are used, and at most temporal height & is allowed. We write nothing
for n and/or k, or we use w, when no bound is required: L(H,...) = LY(H,...).

Semantics. A linear-time structure (also called a model) is a pair (S, ¢€) of an w-
sequence S = 8g, S1,... of states, with a mapping € : {so, s1,...} — 27 labeling
each state s; with the set of propositions that hold in s;. We often only write
S for a structure, and we often use the fact that a structure S can be viewed
as an infinite string of subsets of P. Let S be a structure, ¢ € IN and a PLTL
formula ¢, the satisfiability relation = is inductively defined as follows (we omit
the usual conditions for the propositional connectives):

~SiEAE Ace(s;) (when AeP);

~SiEXe & Si+lEp;

S,il=Fp & for some j >4, S,j = ¢;

— S,i= Uy & thereisaj >ist. S j = andforalli <j <j, 8,5 =

v is satisfiable iff S,0 = ¢ (also written S = ¢ or S, sg | ¢) for some S. The
satisfiability problem for a fragment L(...), written SAT(L(...)), is the set of all
satisfiable formulas in L(...).

Two models are equivalent modulo stuttering, written S ~ S’, if they display the
same sequence of subsets of P when repeated (consecutive) elements are seen
as one element only. Lamport [Lam83] argued that one should not distinguish
between stutter-equivalent models and he advocated prohibiting X in high-level
specifications. Indeed S =~ S’ iff S and S’ satisfy the same L(U) formulas.

Model-checking. A Kripke structure T = (N, R, €) is a triple such that N is a non-
empty set of states, R C N x N is a total next-state relation, and € : N — 2F
labels each state s with the set of propositions that hold in s. A path (or an
execution) in T is an w-sequence S = g, $1, ... of states of N such that s;Rs; 1
for all i € IN. (A path in T is a linear-time structure and a linear-time structure is
an infinite Kripke structure.) We follow [Eme90,SC85] and write T, s = ¢ when
there ezists a path S starting from s s.t. S |= . This existential formulation
is what we need for our complexity study. It is the dual of the more common
“all paths from s satisfy ¢” used in verification. All complexity results can be
translated, modulo duality, between the two formulations. The model-checking
problem for a fragment L(...), written MC(L(...)), is the set of all (T s, ¢) s.t.
T, s = ¢ where T is finite and ¢ is in L(...).

As far as computational complexity is concerned we make a substantial use of
the already known upper bounds: SAT(L(F)) and MC(L(F)) are NP-complete.
SAT(L(F, X)), MC(L(F, X)), SAT(L(U)) and M C(L(U)) are PSPACE-complete.
As a consequence, most of our proofs establish lower bounds.

3 Bounding the number of atomic propositions

In this section we evaluate the complexity of satisfiability and model-checking
when the number of propositions is bounded. As a consequence, we show that
there exist instances of a (linear temporal) logic for which satisfiability is NP-
complete (resp. PSPACE-complete) but whose restriction to the formulas with
at most n atomic propositions for some fixed n > 2 (resp. with exactly one
proposition) is still NP-complete (resp. is in P). This is in contrast with the
results obtained with the standard modal logics S5, KD45 (resp. the modal logic
S4) in [Hal95].

We start by observing that, when the number of propositions is bounded,
satisfiability can be polynomial-time reduced to model-checking.

Proposition 1. For anyn € IN and H C {F, X, U}, SAT(L%(H)) <, MC(L¥(H)).

Proof. Take ¢ € L¥(H) such that P(¢) C {A1,...,4,}. Let T = (N, R,¢€) be
the Kripke structure such that, NV 4 oA An} g the set of all 27 valuations,
R £ N x N relates any two states and for all s € N, s is its own valuation:
€(s) = s. One can see that ¢ is satisfiable iff for some s € N, T,s |= ¢. The

reduction is in polynomial-time since n and then | T | are constants. Then the
polynomial-time transformation can be easily defined.

Proposition 1 is used extensively in the rest of the paper. It only holds when n
is bounded and should not be confused with the reductions from model-checking
into satisfiability one can find in the literature (e.g. [SC85,Eme90]).

We show that n propositional variables can be encoded into one if F and X
are allowed and into only two if U is allowed.

Proposition 2. ForHy,... a set of temporal operators, (1) MC(Ly,(H1,...)) <,
MC(L2(U,Hy,...)), and (2) MC(Ly,(Hy,...)) <, MC(L1(F,X,Hq,...)).

Proof. We show (1) here. (2) can be found in [DS97]. To a Kripke structure
T = (N,R,e) on P = {P,...,P,} we associate a Kripke structure D, (T) =
(N',R',¢') over P' = {A, B} given by
N = {{s,i) | s€ N,1 <i<2n+2}
Ny o aet [s=s8 and i =i+ 1, or
(s,) B 0) < {sRs’ and : =2n +2 and i’ = 1,
C((s 1) gy, CUs2 1) = (A

é((5,2)) = {}, €((s,2+2) < { ij}gitgefiviief(S)’

where j = 1,...,n. Fig. 1 displays an example.

Fig.1. T and D3(T)

Here alternations between A and —A mark slots in D, (7). B in the i-th
encodes that P; holds. Define Atp = AA B, AltY = Atp and AltFT < A A
~BA(AA ﬁB)U(ﬁA A (ﬁAUAltﬁ)) for k € {1,...,n — 1}. Cleatly, Atp is
satisfied in D,,(T) at all (s, j) with j = 1 and only there. Alt* expresses the fact
that there remains & “A——A” alternations before the next state satisfying Atp.

We now translate formulas over T into formulas over D, (T) via the following
inductive definition:

Da(P) * AU(=Atp A =AtpU(Alt; =" A AUB));

D,, is homomorphic for the boolean connectives;
Dy (pUg') = (Atp = Dn(9))U(Atp A Dy(y))

We have for s € N, T, s |= ¢ iff D, (T),(s,1) = Dp(p).

Proposition 3. 1. SAT(L(...)) <, SAT(L2(U,...)) and 2. SAT(L(...)) <,
SAT(L,(F,X...)).

Proof. By way of example let us show 1. (see [DS97] for the full details). Let 1/,
be the formula

Y, = Atp ANG(-A = (B = BUA)A (=B = -BUA))
AG [AtD = AtpU(=AA-BA ((mAA-B)UAILY))

One can show that for any model S over P = {Py,...,P,}, D,(S) E 9/, and
for any S’ over {4, B}, if S’ |= 4], then there exists a (unique) S such that
S’ & Dy, (S). Then o, an L, (.. .) formula, is satisfiable iff ¢, AD,,(¢), an Lo (U, .. .)
formula, is satisfiable.

In the full version [DS97], we also show that M C(L2(F)) and SAT(L2(F)) are
NP-hard using

Proposition 4. SAT(L(F)) <, SAT (Ls(F)).

We also provide in [DS97], a polynomial-time transformation from boolean SAT
into MC(L% (F)).

4 One proposition and U is in P

In this section, we give a linear-time algorithm for LY (U) that relies on linear-
sized Biichi automata. Recall that the standard method for PLTL satisfiability
and model-checking is to compute, for a given PLTL formula ¢, a Biichi au-
tomaton ! A, recognizing exactly the models of ¢ and then checking whether
a Kripke structure T satisfies ¢ by computing a synchronous product of 7" and
A-, and checking whether the resulting system (a larger Biichi automaton) rec-
ognizes an empty language or not. This method was first presented in [Wol83],
where a first algorithm for computing A, was given. PSPACE-completeness
comes from the fact that A, can have exponential size. Indeed, once we have
Ay the rest is easy:

Lemma 5. It is possible, given a Biichi automaton A recognizing the models of
formula ¢, and a Kripke structure T, to say in time O(|T| . | A|) whether there
is a computation in T which satisfies ¢.

! or a Muller automaton, or an alternating Biichi automaton, or ...

We consider a single proposition: P = {A}. Any linear model is equivalent,
modulo stuttering, to one of the following:

Sp = (A—A)" A SEE A (ASA)NAY SpE (A-A)
Sy = (mAA)M AV SEE A(-AA)-AY SpE (RAA)

For 1 <4 < 6, the size of a Biichi automaton recognizing S? (modulo stuttering)
is in O(n).

Lemma 6. For anyi=1,...,6, ¢ € L¥(U,X) and n > th(y), we have S;"t! =
e iff Si = .

Proof. By structural induction on ¢ and using the fact that the first suffix of a
Srisa 8¢ withn —1<n' <n, eg. (S7) is S§~' (for n > 0) and (S is S}

Lemma 7. 1. There exists an algorithm which, given T, sqg, n € N and 1 <1 <
6, checks whether, starting from so, T has a path S =~ S in time O(n. |T|).

2. There exists an algorithm which, given T,sqg, n € IN and 1 <1 < 6, checks
whether there is a m > n s.t., starting from so, T has a path S =~ S]* in time

O(n. |T)).

Proof. Given 1 <7 <6 and n € IN, it is easy to build a Biichi automaton with
size O(n) recognizing all models S s.t. S ~ S (resp. s.t. S ~ S for some
m > n). Then Lemma 5 concludes the proof.

Theorem 8. Model-checking for LY (U) is in P.

Proof. We consider a Kripke structure T'= (N, R, €) and some state sg € N. If
there is a path S from sg satisfying ¢ € LY(U) then S ~ SP* for some n € IN
and some ¢ = 1,...,6 and S? = . Conversely, if S |= ¢ and there is a path
S = S starting from sg, then T, 5o = .

It is possible to check whether T' contains such a path in polynomial-time:
We consider all S¥ for k& < th(p). When S¥ |= ¢, seen in time O(k. | ¢ |), we
check in time O(k. | T |), whether, from sg, T admits a path S ~ S¥. We also
consider all SF for k = th(p). When SF |= ¢ we know that SF™™ = ¢ for all
m (Lemma 6) so that it is correct to check whether there is a m s.t. T admits
a path S =~ Sf”m. Thanks to Lemma 7, this can be done in polynomial-time.
Because k <|¢|, the complete algorithm only needs O(|T| .| |°).

With Proposition 1, we get SAT (LY (U)) is in P. In order to be exhaustive one
can show that SAT(LY (X)) and M C(LY (X)) are NP-complete [DS97]. Moreover
since there are only a finite number of essentially distinct formulas in a given
LF(U,X) (for any fixed k,n < w), SAT(LF(X)) and MC(LE (X)) can be proved
in P (see [DS97]). This concludes the study of all fragments with a bounded
number of propositions. In the remaining of the paper, this bound is removed.

5 From QBF into MC(L(V))

In this section, we offer a polynomial-time transformation from validity of Quan-
tified Boolean Formulas (QBF) into model-checking for L(U) that involves rather
simple constructions of models and formulas. This reduction can be adapted to
various fragments and, apart from the fact that it offers a simple means to get
PSPACE-hardness, we obtain a new master reduction from a well-known log-
ical problem. As a side-effect, we establish that MC(L2 (U)) is PSPACE-hard,
which is not subsumed by any reduction from the literature. In the full ver-
sion we show reduction from QBF into model-checking for L(F,X) and give a
construction showing that M C(Ly (F)) is NP-hard.
Py
—_—

Consider an instance of QBF. It has the form P = Q121 ... QnzaAlL, \/;?i:1 lij
where every @, (1 < r < n) is a universal, V, or existential, 3, quantifier. Py
is a propositional formula without any quantifier. Here we consider w.l.o.g. that
Py is a conjunction of clauses, i.e. every [; ; is a propositional variable x,; j)
or the negation -z, (; j) of a propositional variable from X = {z1,...,2z,}. The
question is to decide whether P is valid or not. Recall that

Lemma 9. P is valid iff there exists a non-empty setV C {T, L} of valuations
(truth-value assignments) s.t.

correctness: Yv € V,v = Py, and

closure: for all v € V, for all v s.t. Q. =V, there is a v’ € V s.t. v'[z,] =
not(v[z,]) and for all v’ <, v'[xy] = v[zm].

To P we associate the Kripke structure Tp as given in Figure 2, using labels
from P = {Ag, Ay,...,2T, ... L} ...}

Fig. 2. The structure Tp associated to P = Q171 ... Qnrn N2y \/fiilli,j

Assume S is an infinite path starting from sg. Between sg and s,, it picks
a boolean valuation for all variables in X, then reaches w,, and goes back to
some B,-labeled state (1 < r < n) where (possibly distinct) valuations for
ZTpy Tpig1, -, Ly are picked.

In S, at any position lying between a s,, and the next w,,, we have a notion
of current valuation which associates T or L to any x, depending on the latest

u, ort,. node we visited. To S we associate the set V() of all valuations that are
current at positions where S visits s,, (there are infinitely many such positions).

Now consider some r with @, = V and assume that whenever S visits s,_1
then it visits both ¢, and u, before any further visit to s,_1. In L(U), this can
be written S |= ¢, with 1), given by

by (‘:ﬁ’*’G(A,_1 = (=B,_1UzT) A (—|Br,1Uxf)).

Let g0 = N | Qr = V}: if S satisfies 1), then V(S) is closed in the sense of
Lemma 9. ‘

Now, whenever S visits a L]-state, we say it agrees with the current valuation
v if v [= {; ;. This too can be written in L(U), using the fact that the current
valuation for z, cannot be changed without first visiting the B,-state. For i =
1,....m,for j=1,... k;, let
Glzf = G-L!Vv-LIUB,] ifl;; = x,,

def r

Yij = , .
Gzl = G-L!Vv-LIUB,] ifl; ; = —x,.

A

Lemma 10. Let op 2 oA (Aly AJy i) Then Tp,so = wp iff P is valid.

Proof. It S |= ¢p then V(S) is closed and correct for P so that P is valid.
Conversely, if P is valid, there exists a validating V (Lemma 9). We can build an
infinite path S starting from sg s.t. V(S) = V and S | ¢p: from a lexicographical
enumeration of V, S is easily constructed so that S |=). Then, to ensure
S E ¢p, between any visit to s, and to the next w,, we choose to visit Lf -states
validated by the current valuation v, which is possible because v |= P,.

Now, because |Tp| and |pp| are in O(| P|), and because th(¢p) < 2 (and using
Proposition 2), we get

Corollary 11. QBF <, MC(L2(U)) <, MC(L§ (V)).

Corollary 12. MC(L2/(U)) and MC(L%(U)) are PSPACE-hard.

6 Bounding the temporal height

In this section we investigate the complexity of satisfiability and model-checking
when the temporal height is bounded. From Section 5, we already know that
MC(L2(U)) is PSPACE-hard.

Elimination of X We show how problems for L(X,...) can be transformed into
problems for L(...). Say a formula ¢ has inner-nexts if the only occurrences of X
are in subformulas of the form XX...XA (where A is a propositional variable).
Assume ¢ has inner-nexts, with at most & nested X and that T is a Kripke
structure. It is possible to partially unfold 7" into a Kripke structure T where a

state 5 (in T*) codes for a state so in T with the k next states si, ..., s already
chosen. We can now replace all XA in ¢ by new propositions A? and label T* so
that A® € €(3) iff A € €(s;). Finally, T, s |= ¢ iff T*5 |= F for some 3 starting
with s. Because the size of T* is in O(]T'|¥) and |*| is in O(|¢|), we have

Proposition 13. [DS97] MC(LE(X,...)) <, MC(LE(...)) for any fized k > 0.

As a corollary, MC(LE(X)) is in P and MC(LF(F,X)) is in NP for any
fixed k > 0. MC(LL(F)) is NP-hard as can be seen from the proof for L¥(F)
in [SC85]. Hence for k > 1, MC(LE(F, X)) is NP-complete. Elimination of X can
also be performed for satisfiability. If ¢ is satisfiable, then ¢* is. Now if " is
satisfiable, it is perhaps satisfiable in a model that is not a S* for some S. But
we can express the fact that a given model is a S¥ with an L2 (F,X) formula.
Then ¢ is satisfiable iff ©* A G(/\;L:1 /\f:1 AL & XAé._l) is. Actually, by using
systematically the standard renaming techniques (the operator G propagates
the constraints of renaming), we can show that SAT(L(H)) <, SAT(L2(H)) for
H e {{F},{F,X},{U},{U,X}}. As a corollary, SAT (L2 (F,X)) and SAT(L2(U))
are PSPACE-hard. Tt is worth observing that [Spa93,DFR97] have another
proof that SAT (L (F, X)) is PSPACE-hard.

Temporal height less or equal to 1: upper bounds in NP Below temporal height
2, the upper bounds can be improved. For any ¢ € Ll (U,X), one can show
that ¢ is satisfiable iff ¢ is satisfied in a model S = sg, s1,... such that for
any ¢,7 > 1+ | ¢ |, for A € P(p), A € €(s;) iff A € €(s;). As a corollary, for
H € {{F},{F,X},{U},{U,X}}, SAT(LL(H)) is in NP. Since those fragments
contain the propositional calculus, NP-hardness is immediate. Now let us turn
to model-checking when the temporal height is at most 1. We already know
that MC(LL(F)) is NP-hard [SC85]. We can also show that MC(LL (U, X)) is
in NP [DS97]. As a corollary, for H € {{F}, {F,X},{U},{U,X}}, MC(LL(H)) is
NP-complete.

7 Concluding remarks

In the paper we have investigated the complexity of satisfiability and model-
checking for all fragments of PLTL obtained (1) by bounding the number of
atomic propositions, (2) the temporal height, and (3) restricting the temporal
operators one allows.

Our results take advantage of a few general techniques that might be reused
to tackle similar problems for other temporal logics. Most of the time, these
techniques are used to strengthen earlier hardness results so that they also apply
to specific fragments. In some cases we develop specific arguments showing that
the complexity really decreases under the identified threshold values.

The table at the end of this section contains the results of the full paper and
some general conclusions can be read. In most cases no reduction in complex-
ity occurs when two propositions are allowed, or when temporal height two is

allowed. Moreover in most cases, for equal fragments, satisfiability and model-
checking belong to the same complexity class. See the table for some exceptions.

n,k <w Model-Checking Satisfiability
L(.) LE(.) P P
LT p NP-complete
L(F) NP-complete [SC85] NP-complete [NO8O]
L(F) L, (F) NP-complete NP-complete
L5 (F) NP-complete NP-complete
L(F) P P
L(V) PSPACE-complete [SC85]| PSPACE-complete [SC85,HR83]
L2 (V) PSPACE-complete PSPACE-complete
L(V) L,(U) NP-complete NP-complete
L5 (V) PSPACE-complete PSPACE-complete
LY (V) P P
L(X) NP-complete NP-complete
L(X) LE(X) P NP-complete
LY (X) NP-complete NP-complete
L(F,X) |PSPACE-complete [SC85]| PSPACE-complete [SC85,HR83]
L(F, X) LZTF(F, X) NP-complete PSPACE-complete [Har85,Spa93]
’ L, (F,X) NP-complete NP-complete
LY (F, X) PSPACE-complete PSPACE-complete
L(U,X) |PSPACE-complete [SC85]| PSPACE-complete [SC85,HR&3]
L(U, X) L2 (U, X) PSPACE-complete PSPACE-complete [Har85,Spa93]
' LS (U, X) NP-complete NP-complete
LY (U, X) PSPACE-complete PSPACE-complete

The frequent preservation of lower bounds when fragments are taken into
account does not explain the alleged simplicity of “simple practical applications”.
The fact that LY(U) (only one proposition) is in P can be used inside a PLTL
verifier as an efficient method for a few special cases, but it is too restricted for
practical applications. The fact that MC(LE (F, X)) is in NP has more potential
explanatory power, but NP-hardness is still intractable. The fact that LX (U, X)
is in P really means that the complexity depends at least on the number of
propositions or the temporal height. This dependence must be scrutinized in
more details.

Understanding and taming the complexity of linear temporal logics remains
an important issue and the present work can be seen as some steps in this
direction. The ground is open for further investigations. We think future work
could investigate

— different, finer definitions of fragments (witness [EES90]) that can be inspired
by practical examples, or that aim at defeating one of our hardness proofs,
e.g. forbidding the renaming technique we use in section 6,

— other problems that are important for verification: module checking, seman-
tic entailment, ...,

— other complexity measures: e.g. average complexity, or separated complexity
measure for models and formulas,

— restrictions on the models rather than the formulas.

Acknowledgments. We thank B. Bérard, E. A. Emerson, F. Laroussinie, M.
Reynolds, A. Zanardo, and the anonymous referees for their suggestions.

References

[CL93]

C.C. Chen and I.P. Lin. The computational complexity of satisfiability of tem-
poral Horn formulas in propositional linear-time temporal logic. Information
Processing Letters, 45:131-136, 1993.

[DFR97] C. Dixon, M. Fisher, and M/ Reynolds. Execution and proof in a horn-clause

[DS97]

[EES90]

[EL87]

[Eme90]

[Hal95]

[Har85]
[HRS3]

[Joh90]

[Lam83]
[MP92]
[NOSO]
[SC85)
[Spa93]

[Wol83]

temporal logic. In ICTL’97, 1997. To appear.

S. Demri and Ph. Schnoebelen. The complexity of propositional linear tem-
poral logics in simple cases. Technical Report LSV-97-11, Lab. Specification
and Verification, ENS de Cachan, Cachan, France, December 1997.

Allen Emerson, Michael Evangelist, and Jai Srinivasan. On the limits of
efficient temporal decidability. In LICS-5, pages 464-475. IEEE Computer
Society Press, 1990.

E.A. Emerson and C.-L. Lei. Modalities for model checking: branching time
logic strikes back. Science of Computer Programming, 8(3):275-306, 1987.
A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 996-1072. Elsevier Science Publishers
B.V., 1990.

J.Y. Halpern. The effect of bounding the number of primitive propositions and
the depth of nesting on the complexity of modal logic. Artificial Intelligence,
75(2):361-372, 1995.

D. Harel. Recurring dominoes: making the highly undecidable highly under-
standable. Annals of Discrete Mathematics, 24:51-72, 1985.

J.Y. Halpern and H. Reif. The propositional dynamic logic of deterministic,
well-structured programs. Theoretical Computer Science, 27:127-165, 1983.
D. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. A, Algorithms and Complex-
ity, pages 68-161. North-Holland, 1990.

L. Lamport. What good is temporal logic? In Proc. IFIP 9th World Computer
Congress on Information Processing, pages 657-668. North-Holland, 1983.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specifications. Springer, 1992.

A. Nakamura and H. Ono. On the size of refutation Kripke models for some
linear modal and tense logics. Studia Logica, 39(4):325-333, 1980.

A. Sistla and E. Clarke. The complexity of propositional linear temporal logic.
Journal of the ACM, 32(3):733-749, 1985.

E. Spaan. Complexity of Modal Logics. PhD thesis, ILLC, Amsterdam Uni-
versity, 1993.

P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72-99, 1983.

