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Abstract. As a pedagogical exercise in ACL2, we formalize and prove 
the correctness of a write invalidate cache scheme. In our formalization, 
an arbitrary number of processors, each with its own local cache, interact 
with a global memory via a bus which is snooped by the caches. 

1 O n g o i n g  I n d u s t r i a l  A p p l i c a t i o n s  o f  A C L 2  

The ACL2 theorem proving system is finding use in industrial-scale verification 
projects. Two significant projects which have been reported previously are 

- the mechanical verification of the floating-point division microcode for the 
AMD-K5r~[6], and 

- the ACL2 modeling of the Motorola CAP digital signal processor and its 
use to prove that  a pipeline hazard detection predicate was correct and that  
several DSP microcode applications were correct [1]. 

The abstract  of a recent talk given by David Russinoff of Advanced Micro 
Devices, Inc., summarizes the current AMD work with ACL2: 

Formal design verification at AMD has focused on the elementary 
arithmetic floating point operations, beginning with the FDIV and FSQRT 
instructions of the AMD-K5 T M  processor, and continuing with the FADD, 
FSUB, FHUL, FDIV, and FSQRT instructions of the AMD-K7 T M  processor, 
which is currently under development. 

Design-level mathematical  models of all of these operations have been 
rigorously proved to comply with behavioral specifications derived from 
IEEE Standard 754 and the Intel Pentium Family User's Manual. Every 
step of each proof (with one minor exception in the case of FSQRT) has 
been formally encoded in the logic of ACL2 and mechanically checked 
with the ACL2 prover. 

In this talk, we shall briefly describe the results of this project: 
- a reusable general theory of floating point representation, rounding, 

and logical operations on bit vectors; 
- an automatic  translator from AMD's RTL language (essentially a 

subset of Verilog) to ACL2; 
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- several design flaws that were exposed by our analysis and ultimately 
corrected after surviving extensive testing; 

- the proofs of correctness of the operations listed above. 

This monumental work is reported in [8]. To corroborate the ACL2 RTL trans- 
lation, AMD executed the ACL2 translation on a test suite of 80 million floating 
point problems and compared the results to their standard RTL simulation. The 
bugs found by Russinoff's proofs were not uncovered by this extensive test suite. 

ACL2 is being used to model microprocessors at several industrial sites. For 
example, at Rockwell-Collins, Inc., ACL2 is being used experimentally to provide 
an executable model of JEM1, the world's first silicon Java Virtual Machine [2]. 

In addition, [9] describes an ACL2 model of a microprocessor with multiple, 
out-of-order instruction issue with a reorder buffer, speculative execution and 
exceptions. Proofs are being done to relate this model to a more conventional 
ISA model. While this work is not industrial scale, the microprocessor is more 
complicated than many academic models studied. 

Finally, ACL2 is being used at EDS, Inc., in the verification of "renovation 
rules" used in COGEN 2000 TM, an in-house, proprietary suite of tools used at 
EDS CIO Services to renovate legacy COBOL code that is not "Year 2000 com- 
pliant." Roughly speaking, the problem is how to use given fixed-width data 
fields to encode the dates in a 100-year window so that commonly used relations 
are correctly and efficiently implemented. Matt Kaufmann, in [4], describes how 
he used ACL2 to verify that certain rules were correct. In fact, he describes an 
environment in ACL2 that can be used conveniently to verify newly proposed 
transformation rules and to simplify date manipulation expressions. 

2 W h a t  is A C L 2 ?  

"ACL2" stands for "A Computational Logic for Applicative Common Lisp." The 
logic is both an applicative programming language and a first order mathemat- 
ical logic[5]. Technically, the programming language is an extension of a subset 
of applicative Common Lisp. In addition, "ACL2" is the name we use for the 
implemented system[l]. The system provides an execution environment for the 
programming language and a theorem proving environment for the logic. 

The theorem prover's behavior is determined by rules in its data base. The 
rules are determined by the theorems the system has proved already. The user 
can guide the system to deep proofs by presenting it with an appropriate se- 
quence of lemmas to prove. The user is not responsible for soundness, since no 
rule can be entered into the system's data base until it (or more accurately, its 
corresponding formula) has been proved as a theorem. 

Collections of definitions and theorems can be assembled into "books." The 
user can instruct the system to include a book into the data base, thereby adding 
all the (non-local) rules contained in the book. Books thus provide both a scoping 
mechanism and a way to take advantage of the work of others. 
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3 A Write Invalidate Cache Example  

In the rest of this paper  we present a formal model of a write invalidate cache 
scheme and prove it correct. Write invalidate schemes are known not to scale 
efficiently to large numbers  of processors. But  this is a simple problem that  is 
familiar to many  readers. Furthermore,  at first sight, it may not seem to lend 
itself to Common Lisp modeling. By choosing this example,  we hope to arose 
the reader 's  curiosity while illustrating ACL2. 

Our model is based on the discussion on page 658 of [3]. Our model includes 
an arbi t rary  number  of processors, each with its own local cache connected via a 
bus to one global memory.  Fundamentally,  a cache is a table of "cache lines", each 
of which is associated with an address and contains a value and a flag indicating 
whether the cache line is valid - i.e., whether the value for the given address 
is consistent with the value assigned by the global memory.  Each processor can 
send its cache read and write requests, receiving some response. The cache's 
behavior on a read request depends on whether it contains a valid cache line for 
the requested address. If  it does, it responds with the associated value. If it does 
not, the cache sends a read request on the bus, waits for the reply, constructs a 
new cache line containing the resulting value, and then responds to the processor 
with the value obtained from memory.  The cache's behavior on a write request is 
to update  (or create) the appropr ia te  cache line, send a write request on the bus, 
and respond to the processor with the value written. All caches snoop the bus. 
Read requests are ignored. Write requests cause the other caches to invalidate 
the corresponding cache line, if any. We model the read/wri te  actions of the 
individual processors as interleaved atomic actions. 

To specify this system we construct a cache-free model in which the inter- 
leaved actions are played directly against the global memory. We prove tha t  the 
response to every read /wr i te  action is the same in the two models. The proof 
requires less than  10 seconds on a Sun Ultra 2 (177 MHz). 

For pedagogical purposes,  we have divided our work on this problem into 
three books, discussed in turn  below. These books are available at h t tp : / /www.-  
cs .utexas .edu/users /moore/publ icat ions/wri te- inval idate-cache/ index.html .  

4 Util it ies 

In the " u t i l i t i e s "  book we define some generic functions and predicates for 
dealing with problems of this sort. Fundamental  to our formalization is the 
notion of an association list. Each element in an association list (or alist) is a 
pair consisting of a key and a datum. The key is said to be bound to the datum. If  
no key in an Mist is bound twice, we say the alist has unique keys. The function 
f e t c h  fetches the da tum associated with a key in an alist. The  function d e p o s i t  
binds a given key to a given da tum in a given alist. 

A memory is an alist binding addresses to values. 
A cache is an alist binding addresses to pairs of the form (value flag). Such 

pairs are called lines. A line is said to be valid if f lag is on. A cache is ok with 
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respect to a memory if every valid cache line has as its value the value of the 
corresponding address in the memory. 

A named cache is a processor identifier and a cache. In a slight abuse of 
terminology, we call a list of such pairs simply a caches list. Note that  a caches 
list is itself an Mist in which each key is a processor identifier and each datum a 
cache. 

An event is a pair consisting of a processor identifier and an action. We call 
the processor identifier of an event the agent. An action is a list either of the 
form (READ addr) or (WRITE addr val). A list of events is appropriate with 
respect to a caches list if each agent has an associated cache, i.e., if the set of 
agents of the events is a subset of the keys of the caches list. 

The concepts mentioned above are formalized with functions named appro- 
priately. To save space we do not exhibit those definitions here. 

The " u t i l i t i e s "  book contains fifteen theorems relating these concepts in 
various ways. Most of the theorems tell us how the various concepts are affected 
by deposits. For example, 

(defthm cache-okp-deposit2 
(implies (and (cache-okp cache mem)  

(unique-keysp cache) ) 
(cache-okp (deposit addr ( l i s t  any nil)  cache) 

(deposit addr val rnem)))  ) . 

Informally, this theorem tells us that  if cache is ok with respect to mere (i.e., 
every line with a true flag contains the correct value), and the cache has unique 
keys, then invalidating the (first) line for addr produces a cache tha t  is ok with 
respect to a memory in which addr has been changed. We do not mention the 
others but  they are stated entirely in terms of the concepts enumerated above, 
plus ACL2 primitives. 

ACL2 requires less than  4 seconds to  admit all the definitions and prove all 
the theorems in the " u t i l i t i e s "  book. This is called certifying the book. No 
hints are required, but  the order in which the theorems are proved is important.  

5 C a c h e  S y s t e m  

In the "system" book, we define our model of the write invalidate cache system. 
A cache system state, csys, is a pair consisting of a caches list and a memory. 
We say that  p is a processor of csys if p is bound in the caches list of csys. We 
define a good cache system state with 

(defun good-csysp (csys) 
(and (unique-keysp (caches csys))  

(every-cache-uniqae-keysp (caches csys)) 
(every-cache-okp (caches csys) (mem csys)))). 

The semantics of an action by a processor on its cache and the memory is 
formalized by 
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(defun do-action (action cache mere) 
( le t  ((op (car action)) 

(addr (cadr action)) 
(val (caddr action))) 

(case op 
(READ 
(let* ((line (fetch addr cache)) 

(oldval (car line)) 
(validp (cadr l ine)))  

(cond 
((and line validp) 

(my oldval cache ni l ) )  
(t (let ((memval  (fetch addr mern)))  

(my memval 
(deposit addr ( l i s t  rnemval t )  cache) 
(list 'READ addr ) ) ) ) ) ) )  

(otherwise ; WRITE 
(my val 

(deposit addr ( l i s t  val t )  cache) 
( l i s t  'WRITE addr val) ) ) ) ) ) 

This function returns three results packaged together using ACL2's "multiple 
values" facility. The first of the three values is the response to the processor. 
The second is the new version of the local cache. The third is the message sent 
to the bus. We now paraphrase the definition above. Recall that an action is 
of the form (READ addr) or (WRITE addr val) .  Consider first the case where 
the operation is READ. If the cache has the corresponding line and it is valid, 
then respond with the value, do not change the cache, and send no message. 
Otherwise, respond with the value from memory, change the cache accordingly, 
and send the READ request on the bus. (In an implementation, they are done in 
the opposite temporal order, but that is not relevant here.) In the case where 
the operation is a WRITE, respond with the written value, change the cache 
accordingly and send the WRITE request on the bus. 

Here is how a cache snoops the bus: 

(defun snoop (msg cache) 
(¢ond 
((null  msg) cache) 
(t  ( le t  ((op (car msg))  

(addr (cadr msg) ) ) 
(case op 

(READ cache) 
(otherwise ; WRITE 

( let* ((line (fetch addr cache)) 
(vat (car l ine)) 

(validp (cadr l ine)))  
(coati ((and line validp) 

(deposit addr 
(list val nil) 
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cache) ) 
( t  c a c h e ) ) ) ) ) ) ) ) ) .  

We can paraphrase this: If there is no message on the bus, do not change the 
cache. If the message is a READ, do not change the cache. Otherwise (the message 
is a WRITE), if the cache contains a lined marked valid, invalidate it. 

We similarly define (new-morn msg m e m )  to describe how memory changes 
in response to a message on the bus. 

Here is how the system state, csys, is changed by a single action performed 
by a processor p. 

(defun step-csys (p action csys) 
( le t  ((cache (fetch p (caches CSyS)))) 

(my-let (response cache' rnsg) 
(do-action action cache (mem csys)) 
(my response 

(csys (deposit p 
cache' 
(snoop-others p 

ms9 
(caches csys))) 

(new-mem msg (mem csys ) ) ) ) ) ) )  

This function returns two values. The first is the response of p's cache to the 
action. The second is a modified system state. We compute this as follows. 
First, do the action on p's cache, obtaining three results which are bound to 
the variables response, cache' and msg, respectively. 1 The first is the response 
of the cache to the action, the second is the new cache for p, and the third is the 
message sent to the bus. The modified system state is then built with c sys  from 
a modified list of caches and a modified memory. The modified list of caches is 
obtained by letting the other caches snoop the message and then depositing p's 
new cache into the p slot. The modified memory is obtained via new-mere. We 
leave the simple subroutine s n o o p - o t h e r s  to the reader; it calls snoop on every 
cache in the caches except p's. 

Finally, here is how we run a sequence of events. 

(defun run-csys (events csys) 
(cond ((endp events) ni l )  

(t ( le t  ((p (car (car events))) 
(action (cadr (car events))))  

(my-let (response csys') 
(step-csys p action csys) 
(cons (cons p response) 

(run-esys (cdr events) e s y s ' ) ) ) ) ) ) )  

Recall than an event consists of a processor identifier and an action. The function 
above returns a history of every processor that  performed an action and the 

1 In this paper we sometimes use primed variable names, as in cache'. ACL2 does not 
permit such names. Our actual text uses a caret instead of a prime. 
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response to the action. I t  should be obvious how this is done: If  the list of 
events is empty, re turn the empty  list. Otherwise, step the system once with the 
indicated processor and action. Obtain two values, a response and a new state. 
Pair the processor and its response and cons tha t  pair onto the result of running 
the rest of the events on the new state. 

Also in this book we prove two key theorems. Both are invariants about  the 
state, say csys' ,  produced as the second value by s t e p - c s y s  on some state  csys. 
The first invariant is tha t  if csys is a good state then so is csys' .  The second 
invariant is tha t  if events  is appropr ia te  with respect to the caches in csys,  it is 
appropr ia te  with respect to those in csys' .  One can regard our formalization and 
proof of these invariants as simple discipline: if a system is thought  to enjoy an 
invariant, say so and prove it. In fact, we use both  invariants in our correctness 
proof  below. 

ACL2 requires the user to s tate  seven lemmas to lead it to the proofs of these 
two invariants. ACL2 uses less than  4 seconds to certify the " s y s t e m "  book. 

6 C o r r e c t n e s s  

To specify what  it is for the cache system to be correct, we define a model 
in which the processors interact directly with the memory. In this cache-free 
model, the s ta te  is simply the memory. An action evokes a response from memory  
and possibly changes memory,  as described by the two values returned by the 
following function. 

(defun step-mere (action mem) 
( let ( (op (car action)) 

(addr (cadr action)) 
(val (caddr action))) 

(case op 
(READ (my ( fe tch  addr rnem) mern) ) 
(otherwise ; WRITE 

(my val (deposi t  addr val m e m ) ) ) ) ) )  

If  the action is a READ, the response is the associated value in the memory  and 
no change is visited upon the memory. If  the action is a WRITE, the response is 
the value wri t ten and the memory  is changed by depositing tha t  value at  the 
associated address. 

To run a sequence of events against a memory  we use: 

(deftm run-mem (events mere) 
(cond ((endp events) n i l )  

(t ( l e t  ((p (car (car events))) 
(action (cadr (car events)))) 

(my-let  (response mere ' )  
(step-raem action mem)  
(cons (cons p response) 

(run-mem (cdr events) m e r e ' ) ) ) ) ) ) ) .  
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The correctness of the cache system is given by 

(defthm cache - sys t em-correc t  
( impl ies  (and (good-csysp csys)  

(appropriate-even~sp events (caches csys) ) )  
(equal (run-csys events csys) 

(run-mem events (mem c s y s ) ) ) ) )  , 

which may be paraphrased as follows. Suppose csys  is a good cache system state 
and every agent in events  is a processor in the system. Then running events  

in the cache system csys  produces the same history of processor/responses as 
running the same events  in the simple shared memory model, starting from the 
initial memory in csys.  

We now illustrate how to interact with ACL2 to lead it to interesting proofs. 
The main idea is to use ACL2 to help us decide how to proceed. We start by 
asking it to prove the conjecture above, without actually expecting it to succeed! 
However, it is helpful when trying prove theorems about functions like run-csys  
and run-mere to "disable" the two step functions, s t ep -csys  and step-mere, be- 
cause they introduce case analysis and make the failed proof attempt hard to 
decipher. By "disable" we mean to attempt the proof without using the defini- 
tions of those two functions. This will help us identify what we need to prove 
about them. We similarly disable good-csysp during the proof attempt. 

The proof attempt proceeds by an induction on the structure of events .  

In the inductive step, the variable csys above is replaced by the cache system 
state returned as the second value of s t e p - c s y s .  The two previously mentioned 
invariants in the "system" book are sufficient to relieve the g o o d - c s y s p  and 
a p p r o p r i a t e - e v e n t s p  hypotheses of the induction hypothesis. Nevertheless, the 
proof attempt runs on for many seconds and eventually starts causing a lot of 
garbage collections. We abort the proof attempt and really look at the output 
for the first time. 

A subgoal near the beginning of the aborted proof attempt reads 2 

(IMPLIES (AND ... 
(G00D-CSYSP CSYS) 
(BOUND P (CACHES CSYS)) 
...) 

(EQUAL (MV-NTH 0 (STEP-CSYS P ACTION CSYS)) 

(MV-NTH 0 (STEP-MEM ACTION (MEM CSYS))))) . 

A little further down is another subgoal with similar hypotheses and the conclu- 
sion: 

(EQUAL (RUN-MEM EVENTS 
(MEN (MV-NTH 1 (STEP-CSYS P ACTION CSYS)))) 

(RUN-MEM EVENTS 
(MV-NTH i (STEP-MEM ACTION (MEN CSYS) ) ) ) ) . 

2 In the actual output, the variable EVENTS3 is used for P and EVENTS5 is used for 
ACTION. We have changed the names to make the formulas more suggestive. 
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These two subgoals suggest the need for the following two lemmas. 

(defthm mv-nth-O-step-csys 
(implies (and (good-csysp csys) 

(bound p (caches csys))) 
(equal (mv-nth 0 (step-csys p action csys)) 

(mv-nth 0 (step-mem action (mem c s y s ) ) ) ) ) ) .  

and 

(defthm mv-nth-l-step-csys 
(implies (and (good-csysp csys) 

(bound p (caches csys))) 
(equal (mem (mv-nth 1 (step-csys p action csys))) 

(mv-nth 1 (step-mem action (mem c s y s ) ) ) ) ) ) .  

What  do these two formidable looking conjectures say? The first hypothesis 
of each lemma requires that  csys be a good cache system state. The second 
hypothesis requires that  p be one of the processors in csys. The two lemmas 
equate a left-hand side term with a right-hand side term. To read the left-hand 
sides, it is helpful to know that  mv-nth  is the ACL2 function used to retrieve 
a value from a "multiple values" tuple. Also, recall that  step-csys returns two 
values, the response of the processor's cache to an action and a new cache system 
state, while step-mere returns the cache-free response and the new memory. But 
now it is easy to interpret the two lemmas. The first says that  the response of 
p roces~ r  p's cache to an action is the same as memory's  response. The second 
says that  the memory produced by the cache system is that  of the simple system. 

These two lemmas are easy to prove, by expanding the definitions of the two 
step functions and using the results in the " u z i l i t i e s "  book. 

With these two lemmas in the data  base, ACL2 proves the correctness theo- 
rem. ACL2 requires less than 2 seconds to certify the " c o r r e c t n e s s "  book. The 
total  t ime to certify all three books is 9.05 seconds. 

7 Conclus ions  

The simplicity of this example hides several important  observations. First, we 
are talking here about  an "infinite state" system: there are an arbi t rary number 
of processors, a cache can be arbitrari ly large, addresses and data  values are 
arbitrari ly large, and the memory is arbitrarily large. The proof is made easier 
by these infinities, not harder. 

Second, interaction with the theorem prover helps the informed user find 
proofs. Here is some advice for the new user. Simple theorems are usually proved 
quickly. Keep ACL2 on a "short leash." Either it succeeds within a few seconds 
or it should be aborted. Treat  the first response as "yes, I believe the fact you 
just told me." Treat  the second as "no, I don' t  believe it." In the case of a "no," 
look at the output  to determine what obvious fact you know that  ACL2 does 
not. Sometimes you will think "But I've already told it this fact!" Most likely, 
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you did, but  it is unable to use that  "old" fact because some hypothesis could 
not be relieved or some term does not actually match. Given what you've told 
it, what is it missing? Once you realize what ACL2 is missing, formulate the new 
fact as a lemma and get ACL2 to say "yes" by continuing this dialog. When the 
system says "yes" to the lemma, return to the original conjecture again and see 
if ACL2 agrees with it now. Unfortunately, the ACL2 interface does not make 
it at all obvious that  such a structured dialog is being conducted. We illustrate 
this dialog approach in the source files for these books, available on the web. 

Third,  the proof described here takes virtually no time. The "bottleneck," if 
there is one, is the time it takes the user to model the cache system and explain 
why it is correct. To the extent that  the explanation is simple, the proof is simple 
and quick. In this case, the explanation is simple: The cache system is always 
in a good state with appropriate events. These are the two invariants in the 
"sys tem" book. Furthermore, in such a state, the response and new memory 
produced by an action in the cache system are the same as those produced 
by the simple system. These are the two lemmas noted in the " c o r r e c t n e s s "  
book. These facts are obvious to anyone familiar with the design. Stating them 
requires familiarity with the language of ACL2 and the user's own model of the 
cache system. Their  proofs are easily constructed by the dialog method described 
above. 
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