
An ACL2 Proof of Write Invalidate Cache
Coherence

J Strother Moore 1

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
moore@cs.utexas.edu

Abstract. As a pedagogical exercise in ACL2, we formalize and prove
the correctness of a write invalidate cache scheme. In our formalization,
an arbitrary number of processors, each with its own local cache, interact
with a global memory via a bus which is snooped by the caches.

1 O n g o i n g I n d u s t r i a l A p p l i c a t i o n s o f A C L 2

The ACL2 theorem proving system is finding use in industrial-scale verification
projects. Two significant projects which have been reported previously are

- the mechanical verification of the floating-point division microcode for the
AMD-K5r~[6], and

- the ACL2 modeling of the Motorola CAP digital signal processor and its
use to prove that a pipeline hazard detection predicate was correct and that
several DSP microcode applications were correct [1].

The abstract of a recent talk given by David Russinoff of Advanced Micro
Devices, Inc., summarizes the current AMD work with ACL2:

Formal design verification at AMD has focused on the elementary
arithmetic floating point operations, beginning with the FDIV and FSQRT
instructions of the AMD-K5 T M processor, and continuing with the FADD,
FSUB, FHUL, FDIV, and FSQRT instructions of the AMD-K7 T M processor,
which is currently under development.

Design-level mathematical models of all of these operations have been
rigorously proved to comply with behavioral specifications derived from
IEEE Standard 754 and the Intel Pentium Family User's Manual. Every
step of each proof (with one minor exception in the case of FSQRT) has
been formally encoded in the logic of ACL2 and mechanically checked
with the ACL2 prover.

In this talk, we shall briefly describe the results of this project:
- a reusable general theory of floating point representation, rounding,

and logical operations on bit vectors;
- an automatic translator from AMD's RTL language (essentially a

subset of Verilog) to ACL2;

30

- several design flaws that were exposed by our analysis and ultimately
corrected after surviving extensive testing;

- the proofs of correctness of the operations listed above.

This monumental work is reported in [8]. To corroborate the ACL2 RTL trans-
lation, AMD executed the ACL2 translation on a test suite of 80 million floating
point problems and compared the results to their standard RTL simulation. The
bugs found by Russinoff's proofs were not uncovered by this extensive test suite.

ACL2 is being used to model microprocessors at several industrial sites. For
example, at Rockwell-Collins, Inc., ACL2 is being used experimentally to provide
an executable model of JEM1, the world's first silicon Java Virtual Machine [2].

In addition, [9] describes an ACL2 model of a microprocessor with multiple,
out-of-order instruction issue with a reorder buffer, speculative execution and
exceptions. Proofs are being done to relate this model to a more conventional
ISA model. While this work is not industrial scale, the microprocessor is more
complicated than many academic models studied.

Finally, ACL2 is being used at EDS, Inc., in the verification of "renovation
rules" used in COGEN 2000 TM, an in-house, proprietary suite of tools used at
EDS CIO Services to renovate legacy COBOL code that is not "Year 2000 com-
pliant." Roughly speaking, the problem is how to use given fixed-width data
fields to encode the dates in a 100-year window so that commonly used relations
are correctly and efficiently implemented. Matt Kaufmann, in [4], describes how
he used ACL2 to verify that certain rules were correct. In fact, he describes an
environment in ACL2 that can be used conveniently to verify newly proposed
transformation rules and to simplify date manipulation expressions.

2 W h a t is A C L 2 ?

"ACL2" stands for "A Computational Logic for Applicative Common Lisp." The
logic is both an applicative programming language and a first order mathemat-
ical logic[5]. Technically, the programming language is an extension of a subset
of applicative Common Lisp. In addition, "ACL2" is the name we use for the
implemented system[l]. The system provides an execution environment for the
programming language and a theorem proving environment for the logic.

The theorem prover's behavior is determined by rules in its data base. The
rules are determined by the theorems the system has proved already. The user
can guide the system to deep proofs by presenting it with an appropriate se-
quence of lemmas to prove. The user is not responsible for soundness, since no
rule can be entered into the system's data base until it (or more accurately, its
corresponding formula) has been proved as a theorem.

Collections of definitions and theorems can be assembled into "books." The
user can instruct the system to include a book into the data base, thereby adding
all the (non-local) rules contained in the book. Books thus provide both a scoping
mechanism and a way to take advantage of the work of others.

31

3 A Write Invalidate Cache Example

In the rest of this paper we present a formal model of a write invalidate cache
scheme and prove it correct. Write invalidate schemes are known not to scale
efficiently to large numbers of processors. But this is a simple problem that is
familiar to many readers. Furthermore, at first sight, it may not seem to lend
itself to Common Lisp modeling. By choosing this example, we hope to arose
the reader 's curiosity while illustrating ACL2.

Our model is based on the discussion on page 658 of [3]. Our model includes
an arbi t rary number of processors, each with its own local cache connected via a
bus to one global memory. Fundamentally, a cache is a table of "cache lines", each
of which is associated with an address and contains a value and a flag indicating
whether the cache line is valid - i.e., whether the value for the given address
is consistent with the value assigned by the global memory. Each processor can
send its cache read and write requests, receiving some response. The cache's
behavior on a read request depends on whether it contains a valid cache line for
the requested address. If it does, it responds with the associated value. If it does
not, the cache sends a read request on the bus, waits for the reply, constructs a
new cache line containing the resulting value, and then responds to the processor
with the value obtained from memory. The cache's behavior on a write request is
to update (or create) the appropr ia te cache line, send a write request on the bus,
and respond to the processor with the value written. All caches snoop the bus.
Read requests are ignored. Write requests cause the other caches to invalidate
the corresponding cache line, if any. We model the read/wri te actions of the
individual processors as interleaved atomic actions.

To specify this system we construct a cache-free model in which the inter-
leaved actions are played directly against the global memory. We prove tha t the
response to every read /wr i te action is the same in the two models. The proof
requires less than 10 seconds on a Sun Ultra 2 (177 MHz).

For pedagogical purposes, we have divided our work on this problem into
three books, discussed in turn below. These books are available at h t tp : / /www.-
cs .utexas .edu/users /moore/publ icat ions/wri te- inval idate-cache/ index.html .

4 Util it ies

In the " u t i l i t i e s " book we define some generic functions and predicates for
dealing with problems of this sort. Fundamental to our formalization is the
notion of an association list. Each element in an association list (or alist) is a
pair consisting of a key and a datum. The key is said to be bound to the datum. If
no key in an Mist is bound twice, we say the alist has unique keys. The function
f e t c h fetches the da tum associated with a key in an alist. The function d e p o s i t
binds a given key to a given da tum in a given alist.

A memory is an alist binding addresses to values.
A cache is an alist binding addresses to pairs of the form (value flag). Such

pairs are called lines. A line is said to be valid if f lag is on. A cache is ok with

32

respect to a memory if every valid cache line has as its value the value of the
corresponding address in the memory.

A named cache is a processor identifier and a cache. In a slight abuse of
terminology, we call a list of such pairs simply a caches list. Note that a caches
list is itself an Mist in which each key is a processor identifier and each datum a
cache.

An event is a pair consisting of a processor identifier and an action. We call
the processor identifier of an event the agent. An action is a list either of the
form (READ addr) or (WRITE addr val). A list of events is appropriate with
respect to a caches list if each agent has an associated cache, i.e., if the set of
agents of the events is a subset of the keys of the caches list.

The concepts mentioned above are formalized with functions named appro-
priately. To save space we do not exhibit those definitions here.

The " u t i l i t i e s " book contains fifteen theorems relating these concepts in
various ways. Most of the theorems tell us how the various concepts are affected
by deposits. For example,

(defthm cache-okp-deposit2
(implies (and (cache-okp cache mem)

(unique-keysp cache))
(cache-okp (deposit addr (l i s t any nil) cache)

(deposit addr val rnem)))) .

Informally, this theorem tells us that if cache is ok with respect to mere (i.e.,
every line with a true flag contains the correct value), and the cache has unique
keys, then invalidating the (first) line for addr produces a cache tha t is ok with
respect to a memory in which addr has been changed. We do not mention the
others but they are stated entirely in terms of the concepts enumerated above,
plus ACL2 primitives.

ACL2 requires less than 4 seconds to admit all the definitions and prove all
the theorems in the " u t i l i t i e s " book. This is called certifying the book. No
hints are required, but the order in which the theorems are proved is important.

5 C a c h e S y s t e m

In the "system" book, we define our model of the write invalidate cache system.
A cache system state, csys, is a pair consisting of a caches list and a memory.
We say that p is a processor of csys if p is bound in the caches list of csys. We
define a good cache system state with

(defun good-csysp (csys)
(and (unique-keysp (caches csys))

(every-cache-uniqae-keysp (caches csys))
(every-cache-okp (caches csys) (mem csys)))).

The semantics of an action by a processor on its cache and the memory is
formalized by

33

(defun do-action (action cache mere)
(le t ((op (car action))

(addr (cadr action))
(val (caddr action)))

(case op
(READ
(let* ((line (fetch addr cache))

(oldval (car line))
(validp (cadr l ine)))

(cond
((and line validp)

(my oldval cache ni l))
(t (let ((memval (fetch addr mern)))

(my memval
(deposit addr (l i s t rnemval t) cache)
(list 'READ addr)))))))

(otherwise ; WRITE
(my val

(deposit addr (l i s t val t) cache)
(l i s t 'WRITE addr val))))))

This function returns three results packaged together using ACL2's "multiple
values" facility. The first of the three values is the response to the processor.
The second is the new version of the local cache. The third is the message sent
to the bus. We now paraphrase the definition above. Recall that an action is
of the form (READ addr) or (WRITE addr val) . Consider first the case where
the operation is READ. If the cache has the corresponding line and it is valid,
then respond with the value, do not change the cache, and send no message.
Otherwise, respond with the value from memory, change the cache accordingly,
and send the READ request on the bus. (In an implementation, they are done in
the opposite temporal order, but that is not relevant here.) In the case where
the operation is a WRITE, respond with the written value, change the cache
accordingly and send the WRITE request on the bus.

Here is how a cache snoops the bus:

(defun snoop (msg cache)
(¢ond
((null msg) cache)
(t (le t ((op (car msg))

(addr (cadr msg)))
(case op

(READ cache)
(otherwise ; WRITE

(let* ((line (fetch addr cache))
(vat (car l ine))

(validp (cadr l ine)))
(coati ((and line validp)

(deposit addr
(list val nil)

34

cache))
(t c a c h e))))))))) .

We can paraphrase this: If there is no message on the bus, do not change the
cache. If the message is a READ, do not change the cache. Otherwise (the message
is a WRITE), if the cache contains a lined marked valid, invalidate it.

We similarly define (new-morn msg m e m) to describe how memory changes
in response to a message on the bus.

Here is how the system state, csys, is changed by a single action performed
by a processor p.

(defun step-csys (p action csys)
(le t ((cache (fetch p (caches CSyS))))

(my-let (response cache' rnsg)
(do-action action cache (mem csys))
(my response

(csys (deposit p
cache'
(snoop-others p

ms9
(caches csys)))

(new-mem msg (mem csys)))))))

This function returns two values. The first is the response of p's cache to the
action. The second is a modified system state. We compute this as follows.
First, do the action on p's cache, obtaining three results which are bound to
the variables response, cache' and msg, respectively. 1 The first is the response
of the cache to the action, the second is the new cache for p, and the third is the
message sent to the bus. The modified system state is then built with c sys from
a modified list of caches and a modified memory. The modified list of caches is
obtained by letting the other caches snoop the message and then depositing p's
new cache into the p slot. The modified memory is obtained via new-mere. We
leave the simple subroutine s n o o p - o t h e r s to the reader; it calls snoop on every
cache in the caches except p's.

Finally, here is how we run a sequence of events.

(defun run-csys (events csys)
(cond ((endp events) ni l)

(t (le t ((p (car (car events)))
(action (cadr (car events))))

(my-let (response csys')
(step-csys p action csys)
(cons (cons p response)

(run-esys (cdr events) e s y s ')))))))

Recall than an event consists of a processor identifier and an action. The function
above returns a history of every processor that performed an action and the

1 In this paper we sometimes use primed variable names, as in cache'. ACL2 does not
permit such names. Our actual text uses a caret instead of a prime.

35

response to the action. I t should be obvious how this is done: If the list of
events is empty, re turn the empty list. Otherwise, step the system once with the
indicated processor and action. Obtain two values, a response and a new state.
Pair the processor and its response and cons tha t pair onto the result of running
the rest of the events on the new state.

Also in this book we prove two key theorems. Both are invariants about the
state, say csys' , produced as the second value by s t e p - c s y s on some state csys.
The first invariant is tha t if csys is a good state then so is csys' . The second
invariant is tha t if events is appropr ia te with respect to the caches in csys, it is
appropr ia te with respect to those in csys' . One can regard our formalization and
proof of these invariants as simple discipline: if a system is thought to enjoy an
invariant, say so and prove it. In fact, we use both invariants in our correctness
proof below.

ACL2 requires the user to s tate seven lemmas to lead it to the proofs of these
two invariants. ACL2 uses less than 4 seconds to certify the " s y s t e m " book.

6 C o r r e c t n e s s

To specify what it is for the cache system to be correct, we define a model
in which the processors interact directly with the memory. In this cache-free
model, the s ta te is simply the memory. An action evokes a response from memory
and possibly changes memory, as described by the two values returned by the
following function.

(defun step-mere (action mem)
(let ((op (car action))

(addr (cadr action))
(val (caddr action)))

(case op
(READ (my (fe tch addr rnem) mern))
(otherwise ; WRITE

(my val (deposi t addr val m e m))))))

If the action is a READ, the response is the associated value in the memory and
no change is visited upon the memory. If the action is a WRITE, the response is
the value wri t ten and the memory is changed by depositing tha t value at the
associated address.

To run a sequence of events against a memory we use:

(deftm run-mem (events mere)
(cond ((endp events) n i l)

(t (l e t ((p (car (car events)))
(action (cadr (car events))))

(my-let (response mere ')
(step-raem action mem)
(cons (cons p response)

(run-mem (cdr events) m e r e '))))))) .

36

The correctness of the cache system is given by

(defthm cache - sys t em-correc t
(impl ies (and (good-csysp csys)

(appropriate-even~sp events (caches csys)))
(equal (run-csys events csys)

(run-mem events (mem c s y s))))) ,

which may be paraphrased as follows. Suppose csys is a good cache system state
and every agent in events is a processor in the system. Then running events

in the cache system csys produces the same history of processor/responses as
running the same events in the simple shared memory model, starting from the
initial memory in csys.

We now illustrate how to interact with ACL2 to lead it to interesting proofs.
The main idea is to use ACL2 to help us decide how to proceed. We start by
asking it to prove the conjecture above, without actually expecting it to succeed!
However, it is helpful when trying prove theorems about functions like run-csys
and run-mere to "disable" the two step functions, s t ep -csys and step-mere, be-
cause they introduce case analysis and make the failed proof attempt hard to
decipher. By "disable" we mean to attempt the proof without using the defini-
tions of those two functions. This will help us identify what we need to prove
about them. We similarly disable good-csysp during the proof attempt.

The proof attempt proceeds by an induction on the structure of events .

In the inductive step, the variable csys above is replaced by the cache system
state returned as the second value of s t e p - c s y s . The two previously mentioned
invariants in the "system" book are sufficient to relieve the g o o d - c s y s p and
a p p r o p r i a t e - e v e n t s p hypotheses of the induction hypothesis. Nevertheless, the
proof attempt runs on for many seconds and eventually starts causing a lot of
garbage collections. We abort the proof attempt and really look at the output
for the first time.

A subgoal near the beginning of the aborted proof attempt reads 2

(IMPLIES (AND ...
(G00D-CSYSP CSYS)
(BOUND P (CACHES CSYS))
...)

(EQUAL (MV-NTH 0 (STEP-CSYS P ACTION CSYS))

(MV-NTH 0 (STEP-MEM ACTION (MEM CSYS))))) .

A little further down is another subgoal with similar hypotheses and the conclu-
sion:

(EQUAL (RUN-MEM EVENTS
(MEN (MV-NTH 1 (STEP-CSYS P ACTION CSYS))))

(RUN-MEM EVENTS
(MV-NTH i (STEP-MEM ACTION (MEN CSYS))))) .

2 In the actual output, the variable EVENTS3 is used for P and EVENTS5 is used for
ACTION. We have changed the names to make the formulas more suggestive.

37

These two subgoals suggest the need for the following two lemmas.

(defthm mv-nth-O-step-csys
(implies (and (good-csysp csys)

(bound p (caches csys)))
(equal (mv-nth 0 (step-csys p action csys))

(mv-nth 0 (step-mem action (mem c s y s)))))) .

and

(defthm mv-nth-l-step-csys
(implies (and (good-csysp csys)

(bound p (caches csys)))
(equal (mem (mv-nth 1 (step-csys p action csys)))

(mv-nth 1 (step-mem action (mem c s y s)))))) .

What do these two formidable looking conjectures say? The first hypothesis
of each lemma requires that csys be a good cache system state. The second
hypothesis requires that p be one of the processors in csys. The two lemmas
equate a left-hand side term with a right-hand side term. To read the left-hand
sides, it is helpful to know that mv-nth is the ACL2 function used to retrieve
a value from a "multiple values" tuple. Also, recall that step-csys returns two
values, the response of the processor's cache to an action and a new cache system
state, while step-mere returns the cache-free response and the new memory. But
now it is easy to interpret the two lemmas. The first says that the response of
p roces~ r p's cache to an action is the same as memory's response. The second
says that the memory produced by the cache system is that of the simple system.

These two lemmas are easy to prove, by expanding the definitions of the two
step functions and using the results in the " u z i l i t i e s " book.

With these two lemmas in the data base, ACL2 proves the correctness theo-
rem. ACL2 requires less than 2 seconds to certify the " c o r r e c t n e s s " book. The
total t ime to certify all three books is 9.05 seconds.

7 Conclus ions

The simplicity of this example hides several important observations. First, we
are talking here about an "infinite state" system: there are an arbi t rary number
of processors, a cache can be arbitrari ly large, addresses and data values are
arbitrari ly large, and the memory is arbitrarily large. The proof is made easier
by these infinities, not harder.

Second, interaction with the theorem prover helps the informed user find
proofs. Here is some advice for the new user. Simple theorems are usually proved
quickly. Keep ACL2 on a "short leash." Either it succeeds within a few seconds
or it should be aborted. Treat the first response as "yes, I believe the fact you
just told me." Treat the second as "no, I don' t believe it." In the case of a "no,"
look at the output to determine what obvious fact you know that ACL2 does
not. Sometimes you will think "But I've already told it this fact!" Most likely,

38

you did, but it is unable to use that "old" fact because some hypothesis could
not be relieved or some term does not actually match. Given what you've told
it, what is it missing? Once you realize what ACL2 is missing, formulate the new
fact as a lemma and get ACL2 to say "yes" by continuing this dialog. When the
system says "yes" to the lemma, return to the original conjecture again and see
if ACL2 agrees with it now. Unfortunately, the ACL2 interface does not make
it at all obvious that such a structured dialog is being conducted. We illustrate
this dialog approach in the source files for these books, available on the web.

Third, the proof described here takes virtually no time. The "bottleneck," if
there is one, is the time it takes the user to model the cache system and explain
why it is correct. To the extent that the explanation is simple, the proof is simple
and quick. In this case, the explanation is simple: The cache system is always
in a good state with appropriate events. These are the two invariants in the
"sys tem" book. Furthermore, in such a state, the response and new memory
produced by an action in the cache system are the same as those produced
by the simple system. These are the two lemmas noted in the " c o r r e c t n e s s "
book. These facts are obvious to anyone familiar with the design. Stating them
requires familiarity with the language of ACL2 and the user's own model of the
cache system. Their proofs are easily constructed by the dialog method described
above.

R e f e r e n c e s

1. B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems about Commercial Mi-
croprocessors. In Proceedings of Formal Methods in Computer-Aided Design (FM-
CAD'96), M. Srivas and A. Camilleri (eds.), Springer-Verlag, November, 1996, pp.
275-293.

2. D. A. Greve and M. M. Wilding Stack-based Java a back-to-future step", Electronic
Engineering Times, Jan. 12, 1998, pp. 92.

3. J. Hennessy and D. Paterson, Computer Architecture A Quantitative Approach,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, 1996.

4. M. Kaufmann. ACL2 Support for Verification Projects. In 15th International Con-
]erenee on Automated Deduction (CADE) (to appear, 1998).

5. M. Kanfmann and J S. Moore. An Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. In IEEE Transactions on Software Engineering 23(4),
April, 1997, pp. 203-213.

6. J S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked Proof of the
Correctness of the Kernel of the AMD5K86 Floating-Point Division Algorithm,
IEEE Transactions on Computers (to appear). See URL http://devil.ece.utexas-
.edu:80/,~lynch/divide/divide.html for a preliminary draft.

7. J S. Moore. Symbolic Simulation: An ACL2 Approach. 1998. (submitted for publi-
cation)

8. D. M. Russinoff. A Mechanically Checked Proof of IEEE Compliance of the Float-
ing Point Multiplication, Division, and Square Root Algorithms of the AMD-K7 T M

Processor URL http ://www. onr. com/user/russ/david/kT-div-sqrt, html.
9. J. Sawada, W. Hunt, Jr., Processor Verification with Precise Exceptions and Spec-

ulative Execution, Computer Aided Verification 1998, Lecture Notes in Computer
Science, Springer Verlag, 1998 (to appear).

