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A b s t r a c t .  As digital designs grow evermore complex and design cycles 
become ever shorter, traditional informal methods of design verification 
are proving inadequate. Design teams are increasingly turning to formal 
techniques to address this "verification crunch". The theorem prover, 
with its emphasis on establishing correctness, is arguably the dream de- 
sign verification tool; however, theorem provers are rarely used in digital 
design. Much like automotive industry "concept cars", theorem provers 
provide a compelling vision of the future, but in the real world of in- 
dustrial design they have proven to be difficult to drive and expensive 
to maintain. We suggest ways that the theorem prover "concept cars" 
of today can be adapted to become the "off-road vehicles" necessary 
to negotiate the rough-and-tumble terrain of digital design in the 21st 
century. 

1 I n t r o d u c t i o n  

The relentless march of semiconductor process technology over the last thir ty  
years has given engineers exponentially increasing transistor budgets at constant 
recurring cost. This has encouraged increased functional integration onto a single 
die, as well as increased architectural sophistication of the functional units them- 
selves. In CPU design, we have seen integration of memory  management  units, 
floating point units, cache, etc., as well as increased word length, pipelining, 
superscalar execution, and other architectural enhancements in the CPU core 
itself. Higher-end CPU designs now routinely encompass ten million transistors. 
Additionally, the lifetimes of designs are decreasing - Intel Pentium production 
lasted only two years - thus pressuring engineers to reduce design cycle time. 

The  increased scope of a typical digital chip design project, coupled with 
the desire for decreased cycle time, has caused design teams to increase in both  
size and number.  I t  is not uncommon for a large company to be engaged in the 
design of several generations of a product  simultaneously, with large teams of 
engineers working on each generation. 

Not surprisingly, this rough-and-tumble environment has led to a number  of 
uncaught design flaws. The most  famous of these flaws is the Intel Pentium FDIV 
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bug, although it is hardly alone; the errata sheet for a modern microprocessor 
may have more than one hundred entries. 

Obviously, traditional simulation-based design verification has not kept up 
with the scale or pace of modern digital design. Increasingly, designers speak of 
a "verification crunch", and many design teams have looked to formal verifica- 
tion methods for help. Refutation-based techniques such as model checking are 
currently in use in a number of locations, and have been effective in finding some 
bugs. However, engineers aspire to create perfect designs; a verification tool that  
could establish that  a design faithfully implements its specification would be 
ideal. In addition, the mere act of creating an unambiguous specification would 
have enormous benefit to the designers of the multiple upwardly compatible 
generations of a product, as well as to the user community. 

Such correctness tools exist, in the form of theorem provers such as PVS 
[14] and ACL2 [10]. These tools have been used in the verification of industrial- 
scale designs [6, 5, 11, 12, 2, 15] but have not enjoyed much mainstream use. The 
reasons for the lack of success of theorem provers include: 

- Insufficient automation 
- Inefficient executability of formal models 
- Lack of integration with the engineering environment 

- Unfamiliar syntax and semantics 
- Lack of support for digital design languages (e.g., VHDL, Verilog) 
- Lack of infrastructure for reasoning about digital design (e.g., bitvectors) 
- Sometimes gaping holes in basic mathematical libraries 
- Speed, especially as a function of model size 

To make an automotive analogy, theorem provers are much like "concept 
cars" that  provide a compelling vision of the future but are difficult to drive 
and expensive to maintain in the real world. What  is needed is an "off-road 
vehicle" to negotiate the rough-and-tumble terrain of digital design. In the next 
sections, we describe adaptations of theorem prover technology that  can trans- 
form the theorem prover into a real-world digital design tool, such as might be 
used during our group's recent development of the JEM1 [9, 18]. We are cur- 
rently evaluating many of these adaptations in the Rockwell Collins engineering 
design environment, using real development projects as our testbed. 

2 I n c r e a s i n g  A u t o m a t i o n  

Mistakes in proof development and changes to system design and specifica- 
tion are inevitable for real verifications. It is crucial that  proofs we construct 
about our systems be robust in the face of changes. Large programming projects 
use software engineering techniques to make software robust despite inevitable 
changes. So too must large machine-checked proof projects use techniques to 
develop robust proofs. We've learned this lesson the hard way by building fragile 
proofs. For example, in the AAMP-FV verification effort a change was made in 
the formM model related to memory address decoding [11]. This change caused 
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every previously-constructed instruction correctness proof to fail although the 
change had little to do with the substance of most of the proofs. 

We are working toward more robust proofs by relying on automated proof 
techniques. An important advance in this area is the interpreter style of proofs 
that has been used in a variety of verification projects, including [1,3, 4, 13, 16]. 
This approach involves specifying the semantics of a computer system with an 
interpreter and deriving symbolic results using automatic reasoning. We have 
adapted this approach for use in PVS [17] and believe that its usefulness tran- 
scends the particularities of different theorem proving systems. 

3 A c h i e v i n g  E f f i c i e n t  E x e c u t i o n  o f  F o r m a l  M o d e l s  

It is often the case when proving theorems about computer systems that one is 
faced with an expression composed entirely of functions and constants. Perhaps 
the word in memory pointed to by the PC is an "add" instruction, or the carry 
flag holds, or the microcode uses the bit mask 0xFFFF. Proofs about executable 
functions are often easier to construct because function execution can be used 
to simplify expressions. 

Using executable functions in specifications has another, easily overlooked, 
advantage. An issue that arises in formal verification work is the validation of 
the processor model used to support the reasoning. Model validation is crucial 
to ensure that formal analysis applies to the actual machine. Function execution 
provides an avenue for model validation. Model inspections can be enhanced by 
using the model to execute test vectors and comparing the results to the result 
of running the tests on the actual processor. Examples of this approach include 
the 68020 verification work [4], FM9001 verification [6], and Russinoff's recent 
floating-point verification work [15]. 

We are investigating how a model of a processor can be crafted that is 
amenable to formal microcode analysis and supports efficient simulation. We 
want the formal model to be validated by having microcode developers use it. 
We are using ACL2 for this work because its logic is a real programming lan- 
guage - an applicative subset of Common Lisp - that we hope can support 
our simulation needs. Our initial results seem promising: a prototype processor 
model written in ACL2 runs at about 90% of a similar model written in C with 
some optimizations we have developed [7]. 

The integration of simulator and analysis models has several advantages be- 
yond simpler proofs and model validation. There is potential for the integration 
of symbolic simulation results into the development cycle. We are experimenting 
with this using a PVS-based symbolic simulation system that we have developed 
[8]. The availability of symbolic results may enable us to perform regression tests 
of designs more effectively. We hope in the longer term that our creation and use 
of formally analyzable models will allow us ultimately to verify formally aspects 
of our designs. 



42 

4 I n t e g r a t i n g  w i t h  t h e  E n g i n e e r i n g  E n v i r o n m e n t  

We are currently integrating formal models as "engines" into an existing develop- 
ment and debugging environment, replacing existing simulator artifacts written 
in C. Ultimately, we would like to have only one design artifact that can be 
used for synthesis, simulation, and formal analysis. In our experience, it is not 
difficult to teach a competent engineer to use formal languages such as PVS or 
ACL2 to describe digital systems, but we would rather avoid the time spent and 
errors introduced by manual translation of the design. 

Hardware description languages such as VHDL and Verilog are commonly 
used for synthesis, but do not produce very efficient simulators, and do not have 
a formal basis. Recent work by Mark Bickford at ORA, however, promises to 
bridge the gap between VHDL and formal analysis [2]. An intriguing additional 
feature of the ORA toolset is its ability to excise an element of the design, and 
produce new VHDL with the element removed. 

5 I m p r o v i n g  t h e  H a r d w a r e  R e a s o n i n g  I n f r a s t r u c t u r e  

Many of the pioneering efforts in the use of theorem provers for industrial-scale 
digital design verification suffered from the lack of basic infrastructure needed 
to reason about hardware. For example, much effort in the AAMP-FV effort [11] 
was spent on developing an efficient bitvector library for PVS. 

Engineers do not have much patience for proving basic mathematics facts in 
order to get their work done. We note for example that although ACL2 provides 
many benefits over Nqthm, there appears to be less automatic support for basic 
arithmetic. The research community could do a great service here by consoli- 
dating the basic work that has already been done, and making it part of the 
standard distributions for the various theorem provers. 

6 I m p r o v i n g  S p e e d  a n d  S c a l a b i l i t y  

The industrial theorem proving projects using PVS that we have undertaken at 
Rockwell Collins have all managed to tax its capabilities, especially as the size 
of the model grows, or the number of repetitions of a model execution increases. 
The highly automated, GRIND-heavy operations that we tend to employ in 
order to promote proof robustness appear to be atypical of most PVS users. 
However, the PVS developers have stepped up to the challenge, and delivered 
marked improvements in performance and scalability over the past year. We look 
forward to further improvements in areas such as rewriting speed as this tool 
continues to develop. 

7 C o n c l u s i o n s  

At Rockwell Collins, we are currently exploring ways in which formal models 
can improve our computer system development work. The proofs of correctness 
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offered by theorem provers are an important  capability, and we have discovered 
other cost-effective benefits of formal model development, including creation of 
unambiguous specifications, use of formal models as efficient simulators, inte- 
gration of symbolic results into the design process, and use of symbolic results 
to aid regression testing. In the long term we hope to verify formally the most 
difficult aspects of our designs as part of the basic design cycle. 
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