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Abs t rac t .  We discuss the formal methods efforts for LOCK6, a secure 
operating system. We emphasize how the process of formal methods fit 
into the development process as a whole, and discuss the lessons learned 
from our experience. 

1 Introduct ion  

In this paper we discuss the formal methods efforts performed on the devel- 
opment effort of LOCK6, a secure operating system partially developed under 
contract to the U.S. Government.  We describe from a high level the high assur- 
ance processes used, the motivations behind these processes, and the lessons we 
learned during the experience. 

LOCK6 was an effort to create a new highly secure operating system, with 
a POSIX compliant interface. While the system itself has been deployed, the 
assurance component of the work was not completed because the original cus- 
tomer stopped funding for the project, and the new customer was not interested 
in funding the remaining assurance tasks. The reasons behind the original cus- 
tomer dropping funding were unrelated to the formal methods involved with the 
project. 

The basic design of LOCK6 incorporated much of the operating system tech- 
nology developed at Secure Computing over the past 10 years. Some of these 
technologies include the LOCK operating system [Say89], an operating system 
developed as a proof of concept that  an operating system could be formally 
proved correct. Another collection of technologies were developed in the DTOS 
program, and some of its spinoff programs [Min95, FM93, Cor97, Fin96, CL98]. 
The pr imary goal of DTOS was to incorporate strong security mechanisms into 
the Mach micro kernel. Many of the architectural concepts and formal model- 
ing techniques developed on DTOS were directly incorporated into the LOCK6 
effort. 

The  pr imary goal of the LOCK6 effort was to create a B3+ operating system. 
B3 is defined in the Trusted Computing Security Evaluation Criteria [Cen85] 
(also known informally as the Orange Book). For a product to achieve B3 status, 
it has to have the following assurance evidence: 

1. a complete formal model of the security policy 
2. an informal model of the system 
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3. convincing arguments (informal proofs) that  the model satisfies the security 
policy 

4. evidence that  the system model matches the system implementation 

For LOCK6, the "+" in B3+ refers to additional additional assurance tasks 
that  we performed. We created a formal model of the system suitable for per- 
forming a noninterference analysis. Noninterference is a characterization of a 
multi-level secure system. More accurately, it is a characterization of a model 
of a multi-level secure system. A model that  satisfies noninterference is a model 
that  contains no information flows from higher classification levels to lower clas- 
sification levels. Noninterference was a large driver in the formal methods effort. 
Noninterference requires a detailed model because noninterference is not closed 
under refinement [McL94]. Consequently if anything is left out of the model, it 
could potentially be used as a means to illicitly downgrade information between 
levels. Thus, all error codes and all passed parameters need to be included in the 
model. We completely specified the operating system interface in the LOCK6 
modeling efforts. 

Developing an operating system to go through a B3 TCSEC evaluation re- 
quires a great deal of documentation. The five primary areas of assurance doc- 
umentat ion developed for LOCK6 include a formal security policy model, an 
informal system model, a formal system model, informal proofs that the models 
satisfy the security policy, and evidence that  the models correspond to the code. 
A significant effort was made to minimize the amount  of documentation pro- 
duced. A primary goal in our software development process is for the assurance 
evidence to be a byproduct of the development process. On previous projects at 
Secure Computing this was not the case. Assurance analysts would work largely 
independently of the designers, and have a parallel set of documentation. Later 
in the paper we will describe in more detail the five main areas of assurance 
documentat ion and how these documents fit into the development process. 

The lessons learned from our experience are common and summarized below. 

1. Formalizing natural language statements find mistakes and ambiguities. 
2. Tightly linking the development and assurance processes is very beneficial. 
3. Modeling is a significantly different skill from programming. 
4. Table-based specifications are easy to grasp. 
5. Good tools are important.  
6. Good means of inter-team communication are necessary. 

2 T h e  S y s t e m  A r c h i t e c t u r e  a n d  A s s u r a n c e  D o c u m e n t s  

2.1 Basic  S y s t e m  Archi tec ture  

The basic architecture of LOCK6 has a Supervisor that provides interprocess 
communication (IPC), virtual memory, hardware interrupt, thread, and process 
management  services. It is the only component to execute in privileged mode 
on the processor. Servers executing in unprivileged mode provide device, file 
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system, network, security, audit and logging services. Each of these servers has 
an interface that is built upon the IPC services provided by the Supervisor. One 
advantage of this approach is that  with different servers operating in isolated 
address spaces, we are guaranteed that  the servers can only interact through the 
IPC interface. No "back door" (accidental or intentional) manipulation of global 
data  structures can occur. This removes one of the major concerns in secure 
system development. 

2.2 F o r m a l  S e c u r i t y  Po l i cy  M o d e l  

The formal security policy model describes at a high level what it means for 
the system to be secure. The basic policy was a multi-level secure (MLS) policy 
[Cen85] that  included noninterference [FHOT89, Rus92, Fin90], with a manda- 
tory non-hierarchical access control policy (aka Type Enforcement [BK85]), in- 
corporated RBAC [SCFY96, Hof97] (Role based Access control) and also in- 
cluded Unix mode bits. 

The policy is first specified in English as requirements that are incorporated 
into the requirements database tool used for the project. The security policy is 
essentially a requirements document for the system, and the database tool is 
used to track all requirements. Thus, the security policy requirements are all fed 
directly into the requirements documents for the system, and the security policy 
is written at the same time the system requirements documents are written. 

Writing security policies is as difficult as writing any requirements document. 
In addition, for various programmatic reasons, the policy we wrote had many 
different authors. We found formalizing the policy a very useful exercise. Formal- 
izing requirements helps to resolve the ambiguity inherent in English specifica- 
tions. Our formalization effort caused numerous changes to the English when we 
realized how ambiguous it was and how many disagreements there were as to the 
meaning. Unambiguous English is of course impossible to write, but the process 
of formalizing the policy assisted in its clarification. For a point of reference, the 
English version of the policy was 100 pages long, and the English with the PVS 
formalizations interspersed was 150 pages long. 

Placing requirements directly from the policy into the requirements process 
was first at tempted at SCC in the LOCK6 effort. Most security requirements as 
written are untestable (e.g. No high level process shall be able to send data to a 
low level process unless it has special permission). Allocating this requirement 
through appropriate parts of the system raised visibility of these security re- 
quirements to developers. And the usual requirements traceability process made 
it easier to determine if the security requirements had been satisfied. This was 
a significant cultural shift for the testing staff, to accept requirements that  may 
be untestable. 

2.3 I n f o r m a l  M o d e l  

The informal model is an English statement of the interface of the operating 
system as seen by a client process. The model is a finite state machine, that  
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contains an abstraction of the system data structures. All parameters are spec- 
ified for each system call. All possible return values are completely described in 
a stylized English and tabular format. 

The model was created by developers with assistance from assurance per- 
sonnel as part of the detailed design process of the system. The portion of the 
informal model that corresponded to each server was directly incorporated into 
the design documentation for the component, and was maintained by the appro- 
priate developer. The model emulated the system design, in that each component 
was a stand-alone model. All 180 entry points into the operating system were 
modeled, with the informal model running roughly 500 pages long. 

Putting developers in charge of the informal model greatly facilitated com- 
munication between the teams. One of the techniques we used to facilitate de- 
veloper buy-in was to use a table-based approach. We found tables generally 
easier to read and understand than a more functionally oriented specification. 
An unfortunate consequence of our table based approach was that the tools we 
used to maintain the document were too cumbersome. ISTEX was used as the 
document production system, and the tables were too complicated to easily edit. 
In the future we intend to adopt better documentation strategies to facilitate 
this portion of the process. 

Because we had developer buy-in, the developers owned the informal model. 
Developer ownership meant the model was maintained better than in the past, 
in part because it was used extensively by the developers. Inclusion of the model 
in the design documentation meant that while the document was larger than 
it may have been in the past, it reduced the redundancy between model and 
design, and consequently reduced the overall size of the documentation. This 
is one case where having a detailed model sufficient for noninterference greatly 
facilitated the process. 

Developers found abstraction difficult to grasp, and defining detailed guide- 
lines for how to abstract the model proved to be quite difficult. Having a model 
with significant abstraction would have made the model less useful for develop- 
ers, who used the model as a reference during debugging. The informal model 
was the best description of the system outside of the code itself, and was a very 
effective means of communication between teams who needed to quickly under- 
stand the detailed operations of the entry points. Many developers found that 
the act of creating the model clarified the design. It forced them to think through 
the design completely, much as formalizing the policy helped clarify the security 
requirements. 

2.4 Formal  Mode l  

The formal model is the informal model translated into a formal language. 
Once the informal model was complete and agreed upon by developers and 

the assurance group, the developers began coding and the assurance group be- 
gan formalizing the model. If ambiguity was found in the informal model, the 
design was checked and (if it existed) the code was reviewed. If the behavior of 
the system was appropriate, a bug report was filed against both the informal 
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and formal models to reflect the behavior of the system. If the system behavior 
was incorrect or undesirable, then a bug report  was filed against the code. The 
entire model was written in PVS [Owr95, Owr93]. We made extensive use of sub- 
typing within PVS. Typechecking the specifications found many of the common 
specification errors of incomplete bounds checking, and missed cases. However, 
few of these cases were missed in the code. 

The basic framework of the formal model utilized SCC's composability frame- 
work [Cor97] began as part of the DTOS program, and was later extended as 
part  of the Composability program. This framework borrows heavily from the 
Abadi-Lamport  work [AL93] and allows the modeler to specify several different 
"components" (in our case, servers) that  interact through an interface (in our 
case, IPC). Initially we had intended the supervisor to be modeled as another 
server. This created problems, because each server uses IPC to supply an in- 
terface to other servers and client processes. Thus, there were essentially two 
different layers of abstraction residing simultaneously in the model. This caused 
confusion among developers examining the model and among testers who needed 
to create test harnesses for the system. We began to address this problem using 
refinement techniques. We started to create a high level abstraction of IPC that  
could be invoked by the other servers in modeling their outcalls, and interfaces. 

Much of the formal model was complete when the funding for the project was 
cut. It was quite a large model; on the order of 15K lines of specification. The 
large size was due to two significant factors: the size of the interface, and the level 
of detail in the model. One of the design goals of LOCK6 was to create a POSIX 
compliant interface. POSIX supports a rather robust collection of operations, 
and while we were able to push a significant portion of the POSIX processing into 
clients (who made use of libraries), the interface was still quite extensive. Since 
we wrote our specifications to support a noninterference analysis, all inputs, 
outputs, and error codes had to be specified. This made both the informal and 
formal models quite large, and potentially impossible to analyze. It should be 
noted however, that  PVS is quite good at proving state invariants, and we believe 
that  all of the invariant proofs necessary for a thorough analysis of the system 
would have been executed with a minimum of human interaction. This would 
have added a great deal of confidence to the otherwise informal proofs. 

It is interesting to note how small a role the formal tools has played in this 
discussion. Good tools are crucial, and we found PVS to be a good tool if the 
user has sufficient sophistication. But much of the work associated with this 
development and formal methods effort went into aspects that were completely 
independent of the tool set. It is interesting to note also that  experience with 
previous generations of verification environments made signing up for complete 
formal proofs appear much riskier than we now believe it would have been. PVS 
is a very robust system and has a number of features that  cause us to believe that  
we would have been able to successfully formally prove many of the statements 
we had originally intended to prove informally. These features include the ability 
to create proof strategies, and the ability to automatically rerun proofs. 
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2.5 Formal Model  Based Testing 

Formal model-based testing is an orange book requirement for A1 systems (A1 
systems are considered more secure than B3 systems). In this testing, the code 
is tested against a formal design level model to ensure the model and the system 
are consistent. Formal model-based testing checks that  all required behaviors are 
exhibited, and that  no undesirable behaviors occur. 

Due to the cut in funding we were unable to complete the formal model based 
testing. However, we did create a process and tested it on some of the smaller 
components  of the system. Test cases were developed from the tables in the 
informal model. Each test case was translated into a PVS theorem, and proven. 
Each test case was also translated into code, and a test harness was created 
to dump the server data  structures before and after the test ran. These data  
structures were then compared to ensure only the appropriate  portions changed. 

We found the model to code correspondence to be difficult to establish. At- 
though our model was detailed, the code had far more detail than the model. 
Separating the PVS analysis from the code testing allows the two activities to 
proceed in parallel. This was very useful since the implementat ion was changing 
far more rapidly than the model. The informal model proved to be more readily 
understandable to the testers than the formal  model, and it was easier to create 
the test cases from. We also found that  specific proof  strategies were needed 
to allow us to repeatedly rerun the proofs. PVS has many  high level powerful 
proof  commands,  but  often ran quite slow on our specifications. Some mod- 
est customization of these proof commands  created significant improvements  in 
performance.  

3 C o n c l u s i o n s  

Some of the lessons learned by our recent (albeit incomplete) effort in formal 
methods  showed us that  developer buy in and ownership is crucial. The LOCK6 
assurance effort was on track to complete under budget once the funding was 
cut. A critical reason was that  developers owned the informal model and used it. 
Thus it was in their interest to keep it maintained and current. The bug tracking 
and fixing process was set up such that  changes to the informal model spawned 
change requests to the formal model. It  was therefore possible to always know 
the delta between the informal and formal models. This is something tha t  in 
previous programs had been quite difficult. 

Useful incorporation of formal methods into software development requires a 
very ma tu re  development process. Extensive and detailed communicat ion must  
occur between many  different teams, and these communication channels must  be 
very clearly defined and rigorously followed in order to avoid extensive rework 
and confusion. This is perhaps not too surprising, since it has been long been 
argued in the communi ty  that  formal  methods  only make sense in a ma tu re  
environment.  

We did not work hard enough to add additional abstraction to the formal 
model. The formal model was at too low a level of detail to make it analyzable. 
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However, having the detail in the informal model was important  for developers 
and testers. They could use the document to understand the exact logical con- 
ditions that  caused their error returns. If we had abstracted these out of the 
informal model, the developers would not have found it as useful. What  was 
needed was a clear criteria for how to abstract error messages in the formal 
model without abstracting out potential covert channels. Moreover, it is imper- 
ative that  the mapping between the models be clear and easy to follow. Often 
different people are required to maintain the specifications, and since a typical 
transition could take two or three pages to completely describe, the specification 
needed to match the informal model in an obvious way to facilitate comprehen- 
sion and maintenance. 

Although little testing was performed to verify the correctness of the formal 
model, we had developed tooling to perform the testing. The basic process was 
that  test cases were developed from the informal model and coded into the 
system. From each test case a PVS theorem was defined, and then proved. The 
proof of most test cases was very similar. It was our intention to develop PVS 
proof strategies that  would prove the majority of these theorems. 

As with code, specification conventions are important .  It makes reading speci- 
fications by different authors easier to read, and increases the flexibility of staffing 
and loading. 

In summary, even though some of our processes are 10 years old, there always 
seems to be significant opportunities for improvement.  
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