
A Formal Method Experience at
Secure Computing Corporation

John Hoffman and Charlie Payne

Secure Computing Corporation
{john_hoffman,charlie_payne} @securecomputing.com

Abs t rac t . We discuss the formal methods efforts for LOCK6, a secure
operating system. We emphasize how the process of formal methods fit
into the development process as a whole, and discuss the lessons learned
from our experience.

1 Introduct ion

In this paper we discuss the formal methods efforts performed on the devel-
opment effort of LOCK6, a secure operating system partially developed under
contract to the U.S. Government. We describe from a high level the high assur-
ance processes used, the motivations behind these processes, and the lessons we
learned during the experience.

LOCK6 was an effort to create a new highly secure operating system, with
a POSIX compliant interface. While the system itself has been deployed, the
assurance component of the work was not completed because the original cus-
tomer stopped funding for the project, and the new customer was not interested
in funding the remaining assurance tasks. The reasons behind the original cus-
tomer dropping funding were unrelated to the formal methods involved with the
project.

The basic design of LOCK6 incorporated much of the operating system tech-
nology developed at Secure Computing over the past 10 years. Some of these
technologies include the LOCK operating system [Say89], an operating system
developed as a proof of concept that an operating system could be formally
proved correct. Another collection of technologies were developed in the DTOS
program, and some of its spinoff programs [Min95, FM93, Cor97, Fin96, CL98].
The pr imary goal of DTOS was to incorporate strong security mechanisms into
the Mach micro kernel. Many of the architectural concepts and formal model-
ing techniques developed on DTOS were directly incorporated into the LOCK6
effort.

The pr imary goal of the LOCK6 effort was to create a B3+ operating system.
B3 is defined in the Trusted Computing Security Evaluation Criteria [Cen85]
(also known informally as the Orange Book). For a product to achieve B3 status,
it has to have the following assurance evidence:

1. a complete formal model of the security policy
2. an informal model of the system

50

3. convincing arguments (informal proofs) that the model satisfies the security
policy

4. evidence that the system model matches the system implementation

For LOCK6, the "+" in B3+ refers to additional additional assurance tasks
that we performed. We created a formal model of the system suitable for per-
forming a noninterference analysis. Noninterference is a characterization of a
multi-level secure system. More accurately, it is a characterization of a model
of a multi-level secure system. A model that satisfies noninterference is a model
that contains no information flows from higher classification levels to lower clas-
sification levels. Noninterference was a large driver in the formal methods effort.
Noninterference requires a detailed model because noninterference is not closed
under refinement [McL94]. Consequently if anything is left out of the model, it
could potentially be used as a means to illicitly downgrade information between
levels. Thus, all error codes and all passed parameters need to be included in the
model. We completely specified the operating system interface in the LOCK6
modeling efforts.

Developing an operating system to go through a B3 TCSEC evaluation re-
quires a great deal of documentation. The five primary areas of assurance doc-
umentat ion developed for LOCK6 include a formal security policy model, an
informal system model, a formal system model, informal proofs that the models
satisfy the security policy, and evidence that the models correspond to the code.
A significant effort was made to minimize the amount of documentation pro-
duced. A primary goal in our software development process is for the assurance
evidence to be a byproduct of the development process. On previous projects at
Secure Computing this was not the case. Assurance analysts would work largely
independently of the designers, and have a parallel set of documentation. Later
in the paper we will describe in more detail the five main areas of assurance
documentat ion and how these documents fit into the development process.

The lessons learned from our experience are common and summarized below.

1. Formalizing natural language statements find mistakes and ambiguities.
2. Tightly linking the development and assurance processes is very beneficial.
3. Modeling is a significantly different skill from programming.
4. Table-based specifications are easy to grasp.
5. Good tools are important.
6. Good means of inter-team communication are necessary.

2 T h e S y s t e m A r c h i t e c t u r e a n d A s s u r a n c e D o c u m e n t s

2.1 Basic S y s t e m Archi tec ture

The basic architecture of LOCK6 has a Supervisor that provides interprocess
communication (IPC), virtual memory, hardware interrupt, thread, and process
management services. It is the only component to execute in privileged mode
on the processor. Servers executing in unprivileged mode provide device, file

5]

system, network, security, audit and logging services. Each of these servers has
an interface that is built upon the IPC services provided by the Supervisor. One
advantage of this approach is that with different servers operating in isolated
address spaces, we are guaranteed that the servers can only interact through the
IPC interface. No "back door" (accidental or intentional) manipulation of global
data structures can occur. This removes one of the major concerns in secure
system development.

2.2 F o r m a l S e c u r i t y Po l i cy M o d e l

The formal security policy model describes at a high level what it means for
the system to be secure. The basic policy was a multi-level secure (MLS) policy
[Cen85] that included noninterference [FHOT89, Rus92, Fin90], with a manda-
tory non-hierarchical access control policy (aka Type Enforcement [BK85]), in-
corporated RBAC [SCFY96, Hof97] (Role based Access control) and also in-
cluded Unix mode bits.

The policy is first specified in English as requirements that are incorporated
into the requirements database tool used for the project. The security policy is
essentially a requirements document for the system, and the database tool is
used to track all requirements. Thus, the security policy requirements are all fed
directly into the requirements documents for the system, and the security policy
is written at the same time the system requirements documents are written.

Writing security policies is as difficult as writing any requirements document.
In addition, for various programmatic reasons, the policy we wrote had many
different authors. We found formalizing the policy a very useful exercise. Formal-
izing requirements helps to resolve the ambiguity inherent in English specifica-
tions. Our formalization effort caused numerous changes to the English when we
realized how ambiguous it was and how many disagreements there were as to the
meaning. Unambiguous English is of course impossible to write, but the process
of formalizing the policy assisted in its clarification. For a point of reference, the
English version of the policy was 100 pages long, and the English with the PVS
formalizations interspersed was 150 pages long.

Placing requirements directly from the policy into the requirements process
was first at tempted at SCC in the LOCK6 effort. Most security requirements as
written are untestable (e.g. No high level process shall be able to send data to a
low level process unless it has special permission). Allocating this requirement
through appropriate parts of the system raised visibility of these security re-
quirements to developers. And the usual requirements traceability process made
it easier to determine if the security requirements had been satisfied. This was
a significant cultural shift for the testing staff, to accept requirements that may
be untestable.

2.3 I n f o r m a l M o d e l

The informal model is an English statement of the interface of the operating
system as seen by a client process. The model is a finite state machine, that

52

contains an abstraction of the system data structures. All parameters are spec-
ified for each system call. All possible return values are completely described in
a stylized English and tabular format.

The model was created by developers with assistance from assurance per-
sonnel as part of the detailed design process of the system. The portion of the
informal model that corresponded to each server was directly incorporated into
the design documentation for the component, and was maintained by the appro-
priate developer. The model emulated the system design, in that each component
was a stand-alone model. All 180 entry points into the operating system were
modeled, with the informal model running roughly 500 pages long.

Putting developers in charge of the informal model greatly facilitated com-
munication between the teams. One of the techniques we used to facilitate de-
veloper buy-in was to use a table-based approach. We found tables generally
easier to read and understand than a more functionally oriented specification.
An unfortunate consequence of our table based approach was that the tools we
used to maintain the document were too cumbersome. ISTEX was used as the
document production system, and the tables were too complicated to easily edit.
In the future we intend to adopt better documentation strategies to facilitate
this portion of the process.

Because we had developer buy-in, the developers owned the informal model.
Developer ownership meant the model was maintained better than in the past,
in part because it was used extensively by the developers. Inclusion of the model
in the design documentation meant that while the document was larger than
it may have been in the past, it reduced the redundancy between model and
design, and consequently reduced the overall size of the documentation. This
is one case where having a detailed model sufficient for noninterference greatly
facilitated the process.

Developers found abstraction difficult to grasp, and defining detailed guide-
lines for how to abstract the model proved to be quite difficult. Having a model
with significant abstraction would have made the model less useful for develop-
ers, who used the model as a reference during debugging. The informal model
was the best description of the system outside of the code itself, and was a very
effective means of communication between teams who needed to quickly under-
stand the detailed operations of the entry points. Many developers found that
the act of creating the model clarified the design. It forced them to think through
the design completely, much as formalizing the policy helped clarify the security
requirements.

2.4 Formal Mode l

The formal model is the informal model translated into a formal language.
Once the informal model was complete and agreed upon by developers and

the assurance group, the developers began coding and the assurance group be-
gan formalizing the model. If ambiguity was found in the informal model, the
design was checked and (if it existed) the code was reviewed. If the behavior of
the system was appropriate, a bug report was filed against both the informal

53

and formal models to reflect the behavior of the system. If the system behavior
was incorrect or undesirable, then a bug report was filed against the code. The
entire model was written in PVS [Owr95, Owr93]. We made extensive use of sub-
typing within PVS. Typechecking the specifications found many of the common
specification errors of incomplete bounds checking, and missed cases. However,
few of these cases were missed in the code.

The basic framework of the formal model utilized SCC's composability frame-
work [Cor97] began as part of the DTOS program, and was later extended as
part of the Composability program. This framework borrows heavily from the
Abadi-Lamport work [AL93] and allows the modeler to specify several different
"components" (in our case, servers) that interact through an interface (in our
case, IPC). Initially we had intended the supervisor to be modeled as another
server. This created problems, because each server uses IPC to supply an in-
terface to other servers and client processes. Thus, there were essentially two
different layers of abstraction residing simultaneously in the model. This caused
confusion among developers examining the model and among testers who needed
to create test harnesses for the system. We began to address this problem using
refinement techniques. We started to create a high level abstraction of IPC that
could be invoked by the other servers in modeling their outcalls, and interfaces.

Much of the formal model was complete when the funding for the project was
cut. It was quite a large model; on the order of 15K lines of specification. The
large size was due to two significant factors: the size of the interface, and the level
of detail in the model. One of the design goals of LOCK6 was to create a POSIX
compliant interface. POSIX supports a rather robust collection of operations,
and while we were able to push a significant portion of the POSIX processing into
clients (who made use of libraries), the interface was still quite extensive. Since
we wrote our specifications to support a noninterference analysis, all inputs,
outputs, and error codes had to be specified. This made both the informal and
formal models quite large, and potentially impossible to analyze. It should be
noted however, that PVS is quite good at proving state invariants, and we believe
that all of the invariant proofs necessary for a thorough analysis of the system
would have been executed with a minimum of human interaction. This would
have added a great deal of confidence to the otherwise informal proofs.

It is interesting to note how small a role the formal tools has played in this
discussion. Good tools are crucial, and we found PVS to be a good tool if the
user has sufficient sophistication. But much of the work associated with this
development and formal methods effort went into aspects that were completely
independent of the tool set. It is interesting to note also that experience with
previous generations of verification environments made signing up for complete
formal proofs appear much riskier than we now believe it would have been. PVS
is a very robust system and has a number of features that cause us to believe that
we would have been able to successfully formally prove many of the statements
we had originally intended to prove informally. These features include the ability
to create proof strategies, and the ability to automatically rerun proofs.

54

2.5 Formal Model Based Testing

Formal model-based testing is an orange book requirement for A1 systems (A1
systems are considered more secure than B3 systems). In this testing, the code
is tested against a formal design level model to ensure the model and the system
are consistent. Formal model-based testing checks that all required behaviors are
exhibited, and that no undesirable behaviors occur.

Due to the cut in funding we were unable to complete the formal model based
testing. However, we did create a process and tested it on some of the smaller
components of the system. Test cases were developed from the tables in the
informal model. Each test case was translated into a PVS theorem, and proven.
Each test case was also translated into code, and a test harness was created
to dump the server data structures before and after the test ran. These data
structures were then compared to ensure only the appropriate portions changed.

We found the model to code correspondence to be difficult to establish. At-
though our model was detailed, the code had far more detail than the model.
Separating the PVS analysis from the code testing allows the two activities to
proceed in parallel. This was very useful since the implementat ion was changing
far more rapidly than the model. The informal model proved to be more readily
understandable to the testers than the formal model, and it was easier to create
the test cases from. We also found that specific proof strategies were needed
to allow us to repeatedly rerun the proofs. PVS has many high level powerful
proof commands, but often ran quite slow on our specifications. Some mod-
est customization of these proof commands created significant improvements in
performance.

3 C o n c l u s i o n s

Some of the lessons learned by our recent (albeit incomplete) effort in formal
methods showed us that developer buy in and ownership is crucial. The LOCK6
assurance effort was on track to complete under budget once the funding was
cut. A critical reason was that developers owned the informal model and used it.
Thus it was in their interest to keep it maintained and current. The bug tracking
and fixing process was set up such that changes to the informal model spawned
change requests to the formal model. It was therefore possible to always know
the delta between the informal and formal models. This is something tha t in
previous programs had been quite difficult.

Useful incorporation of formal methods into software development requires a
very ma tu re development process. Extensive and detailed communicat ion must
occur between many different teams, and these communication channels must be
very clearly defined and rigorously followed in order to avoid extensive rework
and confusion. This is perhaps not too surprising, since it has been long been
argued in the communi ty that formal methods only make sense in a ma tu re
environment.

We did not work hard enough to add additional abstraction to the formal
model. The formal model was at too low a level of detail to make it analyzable.

55

However, having the detail in the informal model was important for developers
and testers. They could use the document to understand the exact logical con-
ditions that caused their error returns. If we had abstracted these out of the
informal model, the developers would not have found it as useful. What was
needed was a clear criteria for how to abstract error messages in the formal
model without abstracting out potential covert channels. Moreover, it is imper-
ative that the mapping between the models be clear and easy to follow. Often
different people are required to maintain the specifications, and since a typical
transition could take two or three pages to completely describe, the specification
needed to match the informal model in an obvious way to facilitate comprehen-
sion and maintenance.

Although little testing was performed to verify the correctness of the formal
model, we had developed tooling to perform the testing. The basic process was
that test cases were developed from the informal model and coded into the
system. From each test case a PVS theorem was defined, and then proved. The
proof of most test cases was very similar. It was our intention to develop PVS
proof strategies that would prove the majority of these theorems.

As with code, specification conventions are important . It makes reading speci-
fications by different authors easier to read, and increases the flexibility of staffing
and loading.

In summary, even though some of our processes are 10 years old, there always
seems to be significant opportunities for improvement.

R e f e r e n c e s

[AL93] Martin Abadi and Lesli Lamport. Conjoining specifications. Technical Re-
port 118, Digital Equipment Corporation, Systems Research Center, De-
cember 1993.

[BK85] W.E. Boebert and R.Y. Kain. "A Practical Alternative to Hierarchical
Integrity Policies". In Proceedings of the 8th National Computer Security
Conference, pages 18-27, October 1985.

[Cen85] National Computer Security Center. Department of Defense Trusted Com-
puter System Evaluation Criteria. Technical report, US National Computer
Security Center, NCSC, Fort Meade, Maryland, 1985.

[CL98] Michael Carney and Brian Loe. A comparison of methods for implementing
adaptive security policies. In Seventh USENIX Security Symposium Pro-
ceedings, pages 1-14, San Antonio, TX, January 1998. USENIX Association.

[Cor97] Secure Computing Corporation. DTOS Composability Study. Technical
report, 1997. http://www.securecomputing.com/randt/HTML/technical-
docs.html.

[FHOT89] Todd Fine, Thomas Haigh, Richard O'Brien, and Dana Toups. Noninter-
ference and Unwinding for LOCK. In Proceedings of Computer Security
Foundations Workshop II, pages 22-28, Franconia, NH, Jun 1989. IEEE.

[Fin90] Todd Fine. Constructively Using Noninterference to Analyze Systems. In
IEEE Symposium on Security and Privacy, pages 162-169, Oakland, CA,
May 1990.

56

[Fin96]

[FM93]

[I-Iof97]

[McL94]

[Min95]

[Owr93]

[Owr95]

[Rus92]

[Say89]

[SCFY96]

Todd Fine. A framework for composition. In Proceedings of the Eleventh
Annual Conference on Computer Assurance, pages 199-212, June 1996.
Todd Fine and Spencer E. Minear. Assuring Distributed Trusted Mach.
In Proceedings 1EEE Computer Society Symposium on Research in Security
and Privacy, pages 206-218, May 1993.
John Hoffman. Implementing RBAC on a Type Enforced System. In Pro-
ceedings of the Thirteenth Annual Computer Security Applications Confer-
ence, pages 158-163, 1997.
John McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 1994.
Spencer E. Minear. Providing policy control over object operations in a
mach based system. In Fifth USENIX Security Symposium Proceedings,
pages 141-156, Salt Lake City, UT, June 1995. USENIX Association.
Owre, Shankar and Rushby. The PVS Specification Language (Beta
Release). User Manual, SRI International Computer Science Labora-
tory, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, June 1993.
http://www.esl.sri.com/reports/pvs-language.dvi,ps. Z.
Owre, Shankar, Rushby, Crow and Srivas. A Tutorial Introduction
to PVS. User Manual, SRI International Computer Science Labora-
tory, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, June 1995.
ht t p://www.csl.sri.com/sri-csl-fm .html.
John Rushby. Noninterference, Transitivity, and Channel-Control Security
Policies. Technical Report CSL-92-02, SRI International Computer Science
Laboratory, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, Decem-
ber 1992. http://www.csl.sri.com/c~sl-92-2.html.
Sami Saydjari. LOCK Trek: Navigating Uncharted Space. In Proceedings
of the 1EEE Symposium on Security and Privacy, Oakland, CA, 1989.
Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-
based access control models. 1EEE Computer, 29(2):38-47, February 1996.

