
On Checking Model Checkers

Gerard J. Holzmann
gerard@research.bell-labs.com

Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

A b s t r a c t . It has become good practice to expect authors of new model
checking algorithms to provide not only rigorous evidence of the al-
gorithms correctness, but also evidence of their practical significance.
Though the rules for determining what is and what is not a good proof
of correctness are clear, no comparable rules are usually enforced for de-
termining the soundness of the data that is used to support the claim
for practical significance. We consider here how we can flag the more
common types of omission.

1 Introduct ion

Most of us will have experienced the phenomenon that a 'Friday afternoon dis-
covery' falls apart when reconsidered more carefully in the early morning light.
Not all compelling ideas are logically sound, not all sound ideas are also rele-
vant, and few ideas tha t survive these two filters can actually make a significant
difference in practice. One could say tha t the purpose of science is to help us
perform this filtering process in a reliable and systematic manner. We know how
to discover the logical flaws in our reasoning, to filter out the ideas that are
not correct. "To intercept the ideas that are (perhaps temporari ly) not relevant,
we rely on program committees, editorial boards, and grant committees. Tha t
leaves practical significance.

How do we convince ourselves that an idea can have practical impact? This
is, of course, not a new problem, and it is not without solution. Wha t makes
this problem of interest is that its solution is so seldomly used.

In this paper we will look at experiments that are meant to demonstra te
practical significance and critique them. Drawing examples for this purpose from
the l i terature would make for a far too enjoyable paper. The s t rawman example
used here is therefore strictly made-up for this purpose.

2 A Strawman Algor i thm

Let us look at a simple example of a proposed improvement of the search algo-
r i thm used in the model checker SPIN. SPIN implements an on-the-fly procedure
for LTL model checking tha t is based on explicit s tate enumerat ion by a nested
depth-first search, as detailed in, for instance, [6]. The improvement we will con-
sider here is to perform a semi-stateless search, maintaining only the depth-first
stack as a t empora ry holding place for visited states, but no statespace. This
was called a stack-search or Type 3 algori thm in the taxonomy of [3].

62

2.1 C o r r e c t n e s s a n d R e l e v a n c e

The correctness of the algorithm follows from the fact that a classic depth-first
search will visit all the states in a graph that are reachable from given start node,
independent of whether the reached nodes are marked as visited or not. If the
marking is used, the successors of each reachable state are expanded only once.
If no marking is used this may happen more than once, but the search is still
guaranteed to terminate. Since SPIN's model checking procedure relies only on
reachability, its scope is unaffected by such a change. Furthermore, SPIN's partial
order reduction strategy [5] can be expected to reduce the overhead introduced
by possibly multiple visits to the same states.

The new algorithm is meant to reduce the memory requirements of a search.
Memory is reduced to the requirements for the stack alone. In many cases, the
maximum depth of the stack needed to traverse a graph is considerably smaller
than the number of nodes in that graph. It is possible, though, that all reachable
states appear in a single execution sequence, and hence would all appear in
sequence on the stack. Even in this case we can expect a small memory savings
because we avoid the need for the hashtables that are normally used to store the
states that are removed from the stack.

2 . 2 P r a c t i c a l Va lue

We now have a description of a new algorithm, a persuasive argument for its
logical correctness and relevance. With that , we have arguably passed two of the
three filters. Next, we will try to show that the algorithm is also of practical
value.

The data from a comparison of the behavior of the algorithm compared to a
standard search is given in Table 1. The test data is for SPIN models of a leader
election protocol [2], the classic alternating bit protocol [1], and a model of the
X.21 protocol, e.g., [10], all verified using partial order reduction [5] combined
with either a standard search algorithm, or the stack search algorithm using only
the depth-first search stack but no statespace to store previously visited states.

Appl ica t ion S tanda rd Search Stack Search Rat io (see tex t)
States Depth States Depth Memory Time

Alternating Bit 11 9 11 9 0.45 1.0
Leader Election 108 125 108 125 0.54 1.0

X21 model 29 21 79 31 0.42 2.7

T a b l e 1. Comparison between Standard Search and Stack Search

With a conventional storage discipline, using hashed table-lookup, the mem-
ory requirements for the standard search are determined by the number of states

63

reached plus the m a x i m u m depth of the stack. In the stack search it is deter-
mined only by the latter. The entry in the one-before last column is therefore
calculated as the ratio of the number of states reached with the stack search and
the sum of the number of states reached in the s tandard search and the depth of
the stack. For the relative t ime requirements, the ratio given in the last column
is calculated as the number of states visited in the stack search divided by the
number of states visited in the s tandard search. In both cases, a ratio less than
one indicates a gain, and a rat io greater than one indicates overhead.

The focus in evaluating the stack search method is on the amount of overhead
it could introduce in revisits to old states, that are avoided in the s tandard
algorithm. The measurements in Table 1 indicate tha t it is indeed not unusual
for the stack to gather all the reachable states in a single execution: in two of
the three tests performed this phenomenon is observed. The measurements also
show that the concern about the overhead introduced by the stack search is less
serious than feared: in the first two tests the overhead was absent. Only in the
third test did the overhead cause the number of states reached that is reported
to increase.

2.3 T e s t Q u a l i t y

The measurements appear to confirm the central assumption about the behavior
of the new algorithm. But do they really? In most cases we cannot judge the
validity of a conclusion by other means, as in this case, so we have to rely on
the data. But even if we could not tell by other means that the conclusion was
invalid, could we at least see tha t the experiments reported here do not constitute
a valid test of the stack search algori thm? We can. The s t rawman demonstrat ion
above indeed has many flaws.

- R e p r o d u c i b i l i t y We have not s tated how the experiments were performed.
Can a peer reproduce the results given the data? Are all the models used
in the public domain and accessible to colleagues? Which system was used
to perform the experiments? How was the s tandard search modified into
a stack search, or was a new search engine written from scratch for these
experiments?

- T e s t S e l e c t i o n How were the tests chosen? Are the results representative?
What precautions were taken to make sure that this is so? What would
trigger worse behavior? Is it predictable in which cases we get good and in
which cases we get bad behavior from the new algori thm? Is the mechanism
that accounts for the outcome of the tests fully understood and reported?

- S c o p e a n d C o n t r o l s The test provides isolated da ta points, but does not
give the context needed to properly interpret them. Can the paramete r that
was changed between the two algori thms also be varied more gradually?
(The parameter is arguably the number of states that is saved in a statespace
cache, and it could be varied from all to none.) The test fails to provide all
results for the controlled parameter .

64

- I n t e r p r e t a t i o n Is the da ta clearly separated from the tester 's interpreta-
tion? In the example, the computat ion of the ratios from the last two columns
in Table 1 conceals the real measurements of memory and time. How can we
be sure that no data was lost or accidentily misrepresented? Note tha t in a
s tandard search the stack only needs to maintain a pointer to a state that
appears elsewhere in the statespace. The cost of maintaining a stack in the
s tandard search, therefore, is less than in a stack search. The memory ratios
in Table 1, therefore, are probably too optimistic.

A rigorous testing procedure has the same purpose as a formal correctness proof:
it is intended to help us catch bugs in our reasoning. Without any discipline or
controls, we are generally mot ivated to collect only supporting evidence for the
quality of a proposed new algorithm. A meaningful test asks us to go against
our best judgement and to undertake a targeted a t t empt scrutinize the validity
of our work. A meaningful test is, in a way, the documentat ion of a serious,
scrupulously objective, verifiable, and hopefully failed, a t t empt to f i nd f a u l t
with our work. Clearly, the data reported in Table 1 has none of these qualities.

3 The Test Hypothesis

A good test is not the random collection of data from measurements: it is a tar-
geted a t t empt to check a specific claim, or hypothesis. In model checking appli-
cations the hypothesis is typically about the relative performance of algorithms.
The hypothesis should be specific enough that it can predict the outcome of the
measurements before they are done. The prediction must be specific enough that
it can clearly distinguish r andom luck in the outcome of a test f rom a match of
the theory.

So where does the hypothesis itself come from? It can be based on a critical
insight into the nature of a prior algorithm, or, it can be based on measurements ,
which, in this case only, are more or less randomly performed. The first type
of measurements are not ' tes ts ' since they are not intended to test anything
in particular. There is a fundamental difference between a measurement and a
test. 1

- M e a s u r e m e n t s are intended to collect empirical da ta without bias. The
da ta generally suggests a hypothesis tha t can explain the da ta tha t was
obtained. The quality of such a hypothesis is determined by its predictive
power: the hypothesis should predict the outcome of a new set of tests in
which some paramete r is changed. The hypothesis should also firmly identify
specific results as a contradiction to the hypothesis itself, which, if observed,
would cause the hypothesis itself to fall. Tha t is: in advance of new exper-
iments it should be possible to identify clearly what specific results would
contradict the hypothesis itself.

1 In this paper we use the term experiment if either a measurement or a test is meant.

65

- T e s t s are meant to challenge the hypothesis. They are intended to be a seri-
ous a t t empt to determine if results that would contradict the hypothesis can
be obtained [8, 9]. They are n o t a t t empts to further support the hypothesis:
tha t support is already available in the da ta tha t inspired the hypothesis to
begin with.

We frequently tend to use a measurement when a test is called for. The sample
measurements for the stack search algori thm are an example of such an omission.

Wha t are the properties of a true test? A test can offer support for a hypoth-
esis by recording the outcome of a serious a t t empt to discover contradictions to
the results it predicts or implies. In a sense, a test therefore is intended to work
just like a model checker: it a t t empts to find a counter-example to a correctness
claim, and from its failure to do so we may draw some tentative (though rarely
definitive) conclusions.

We can only test a hypothesis if it can indeed be contradicted: Popper ' s
classic criterion for distinguishing a scientifically meaningful s ta tement [8, 9]
from a non-scientific one. A good test, then, must have the following identifiable
components:

- H y p o t h e s i s - The hypothesis is based on easily obtainable support ing data,
which are obtained by more or less random, but certainly unbiased, measure-
ments. The hypothesis must have a predictive power and should, if it can
survive meaningful challenges, provide insight or knowledge. The hypothesis
can, for instance, postulate a specific cause of complexity in model checking
applications. Removing tha t cause then should result in a visible reduction
of the complexity. The failure to observe such a relation would contradict
the hypothesis.

- T e s t S e t u p - A clear description of how the tests were performed with
sufficient detail tha t the tests can be repeated, and challenged, by peers.

- T e s t D a t a - The test da ta must give an uninterpreted description of the
results of a series of controlled experiments tha t are meant to seriously and
thoroughly challenge the validity of the hypothesis.

- I n t e r p r e t a t i o n - Da ta and the interpretat ion of data must be clearly sep-
arated, so tha t in principle it would be possible for peers to reach differ-
ent conclusions based on the same raw data. The interpretat ion concludes
whether the hypothesis survived or failed the tests, or it could conclude tha t
the outcome is inconclusive and requires a different set of challenges.

To evaluate the validity of a conclusion drawn from the tests, all four pieces of
the test description are generally needed.

4 A p p l i c a t i o n

Let us now return to the stack search example and test its performance, rather
than measure it. We can take the data from Table 1 as an initial set of mea-
surements. We now first describe a mot ivat ion for a hypothesis to be tested, and
then the hypothesis itself.

66

M o t i v a t i o n - The statespace used in a reachability analysis can be seen as a
way to optimize the search process by preventing the renewed exploration of
the successors of previously explored states. Part ial order reduction reduces the
number of times that previously explored states are revisited, and therefore
the reliance on the statespace is also diminished. The statespace increases the
memory requirements in order to decrease the t ime requirements of the search.
By examining the properties of a stack search in combination with part ial order
reduction, we can check if this trade-off needs to be re-assessed.

H y p o t h e s i s - The stack search saves memory over a s tandard search, at the
expense of potentially increasing the t ime requirements. A larger increase in
t ime requirements is predicted to be correlated with a larger decrease in mem-
ory requirements. Specifically, reductions in memory requirements of one order
of magni tude or more are predicted to be linked to an increase in the t ime
requirements by no more than an order of magnitude.

This hypothesis fails if, for instance, we can establish that there are cases
where the stack search uses more memory than the s tandard search, or (more
likely) if we can show that in a set of reasonable applications a reduction in
memory of less than an order of magni tude is combined with an increase of t ime
by more than an order of magnitude.

T e s t S e t u p - In the following, a "standard search" is the classic depth-first
search algori thm with both a search stack and a statespace. The search stack
contains (pointers to) states on the pa th that leads from the initial system state
to the currently explored state. The statespace is assumed here to be imple-
mented with hashed table-lookup. A "stack search" is the same algori thm that
operates without the statespace store. This can be implemented, at least for
the purposes of the tests that follow, by adapt ing the statespace storage routine
(h s t o r e in SPIN) to pretend that states that were found in the statespace store
(and outside the search stack) where newly created. The Appendix shows the
specific code fragment that is modified for these tests.

To test the hypothesis, we will first check if we really understand the mecha-
nism that controls the tradeoff between the two resources that are at stake here:
memory and time. We will t ry to create a simple model for which the stack
search algori thm is predicted to perform optimally, giving memory savings with-
out t ime penalty. We will also try to create a model for which the stack search
should exhibit worst case performance, giving minimal memory reduction in re-
turn for maximal t ime penalty. To accomplish this we must (according to the
hypothesis) control the number of revisits to previously visited states. If we can
avoid revisits entirely we should observe best case performance, if we can secure
a maximal ly connected statespace, or something close to it, we should observe
worst case performance. The Appendix gives the PROMELA source for the two
models tha t were used to trigger b e s t c a s e and w o r s t c a s e performance.

D a t a - Table 2 gives the results of the experiments performed with the best
and worst case test models as input. Instead of given est imated ratios for the

67

t ime requirements, we give memory use in Megabytes, and seconds of runtime
measured on an 180 MHz SGI workstation, with 64 Mbytes of memory. For the
memory requirements of a stack search the amount of memory used for the state
space is subtracted f rom the amount of memory that is reported (see Appendix).

Appl icat ion Standard Search Stack Search
States Depth Memory Time States Depth Memory Time

Reached Max. Mbyte Sec. Reached Max. Mbyte Sec.
Best Case 2047 30 1.25 0.09 2047 30 0.14 0.10
Worst Case 124 20 1.25 0.06 23,694,800 20 0.15 218.89

T a b l e 2. Best and Worst Case Performance of Stack Search Algori thm

I n t e r p r e t a t i o n - The m em ory reduction achieved is not as large as might be
expected, because of a small overhead that goes to unrelated da ta structures
used in the model checking process. The t ime penal ty for the best case test is
negligible, but for the worst case test it is beyond the m a x i m u m predicted by
the hypothesis. We will consider these first two tests to be inconclusive and defer
judgement until we can determine how likely it is to observe best or worst case
performance in average practical applications.

A d d i t i o n a l T e s t s - Performing extra tests is complicated by the fact that it
is somewhat rare to find a larger application that can be run to completion
with the stack search algorithm, so severe is the runt ime overhead. A runtime
overhead of three orders of magnitude, for instance, turns one minute of runtime
into one day. Five orders of magni tude overhead, turns one minute into three
months. This restricts us to only relatively small models to gather more data.
The test results for three realistic applications for which the stack search does
complete within a reasonable amount of t ime are given in Table 3.

Appl icat ion Standard Search Stack Search
States Depth Memory Time States Depth Memory Time

Reached Max. Mbyte Sec. Reached Max. Mbyte Sec.
Ring (Appendix) 466 18 1.25 0.10 16,469,100 18 0.14 251.32
URP model [4] 1,363 146 1.35 0.13 26,018,900 146 0.15 1080.58
DTP model [4] 16,459 526 3.30 0.63 79,308,200 549 0.20 1562.81

T a b l e 3. Additional Tests of the Stack Search Algori thm

68

I n t e r p r e t a t i o n - The hypothesis as it was formulated for these tests has failed.
The additional experiments show an increase of runtime well beyond what is
allowed by the hypothesis. A reduction in memory use of approximately one
order of magnitude is paired with an increase of runtime by more than an order
of magnitude in all tests, except the one test that was deliberately constructed
to behave well.

To explain these results, we can observe that the stack search is really a
special case of a caching strategy with a zero-size cache. With shrinking cache
size the depth-first search incurs exponentially rising costs. It is known [4] that
when state caching is used in combination with a partial order reduction strategy,
the exponential effect sets in for smaller cache sizes, but does not disappear.
To understand and measure these effects more precisely we could now add a
parameter to our test implementation of the stack search method, that denies
the presence of a state in the statespace only with a certain test-controlled
probability. The above experiments, however, will suffice for the purposes of this
paper.

5 C o n c l u s i o n

Many papers on model checking algorithms contain a section with experimental
data. We have considered how, in an ideal world, such a section would be written.

A well-known dictum says: "A program without a specification cannot be
proven correct; it can neither be right nor wrong." We can paraphrase this as:
"A test without a hypothesis cannot succeed or fail." For a test to be able to
succeed, it must also be able to fail, and either result can be of interest. But to
succeed or fail, a test needs to have a precisely stated purpose. The purpose of
a well-designed test is not to confirm, but to challenge our presumptions.

It is not hard to see the value of a self-imposed obligation to render a formal
proof of correctness of even a trivially correct (sic) algorithm. Imposing more
rigor in conducting a demonstration of practical significance similarly has the
benefit of protecting us from occasionally misleading ourselves.

The occurrence of bugs is of course not restricted to algorithms or imple-
mentations. They can also appear in formal proofs and in the experiments we
perform to demonstrate practical significance. That ' s the bad news. The good
news is: bugs don' t like rigor.

"Bugs are by far the largest and most successful class of entity, with
nearly a million known species. In this respect, they outnumber all the
other known creatures four to one.
Prof. Snopes' "Encyclopedia of Animal Life", as quoted in [7], p. 31.

69

6 Appendix

T e s t S e t u p - The experiments reported in this paper were performed with
SPIN version 3.2.0 (http ://netlib.bell-labs. ¢om/netlib/spin/). The re-
sults should be similar for most other versions of SPIN. A small discrepancy
in the numbers of reached states is possible for some older versions of SPIN, due
to the recent revision of the partial order reduction strategy described in [6].

S t a c k S e a r c h I m p l e m e n t a t i o n - The search algorithm from the pan. c model
'checkers generated by SPIN on a s p i n - a model command was modified to
imitate a stack search algorithm by editing the pan. c file with the following
script.

/bin/ed pan.c
/match outside stack/
s/. • ~trap- > tagged = (SA)?VA : (depth + 1); Lstate = trap; return 0 ; /
w pan.c
q

The change is designed to be conservative, being slightly more efficient than a
true implementation of a stack search algorithm, which would have to recreate
and store every previously visited state on each new visit. In the version of the
algorithm tested, the previously created state is preserved, but returned to the
stack when revisited, by resetting its t agged field to a non-zero value.

B e s t Case Tes t - The following PROMELA program at tempts to trigger best-
case performance in the stack search, by minimizing the number of revisits.

#def ine N 10
byte a; chan q = [g] of { byte, byte };
active [2] proctype T 0 { do :: atomic { a < N - > q!a,_pid; a + + } od }

W o r s t Case Tes t - The matching a t tempt to trigger worst case performance,
by maximizing the number of revisits.

#def ine N 4
byte a;
active [N] proctype T 0 { do :: a -- (a + 1)%N :: break od }

R i n g P r o t o c o l - The following is the PROMELA source for the ring protocol,
that was used for the measurements reported in Table 3.

#def ine N 6
chan ring[N] = [1] of { byte };
active [g] proetype node() { ring[(_pid + 1)%N]!l; ring[_pid]?l }

70

References

1. Bartlett, K.A., Scantlebury, R.A., and Wilkinson, P.T. A note on reliable fuU-duplex
transmission over half-duplex lines, Comm. o] the ACM, Vol. 12, No. 5, 260-265.

2. Dolev, D., Klawe, M., and Rodeh, M., An O(n log n) unidirectional distributed
algorithm for extrema finding in a circle, Journal of Algorithms, Vol 3., 1982, pp.
245-260.

3. Holzmann, G.J., Algorithms for automated protocol verification, AT~T Technical
Journal, Vol. 69, No. 2, Feb. 1990, pp. 32-44.

4. Godefroid, P., Holzmann, G.J., and Pirottin, D., State Space Caching Revisited,
Formal Methods in System Design. Vol. 7, No. 3, Kluwer Academic PubL, 1995, pp.
1-15.

5. Holzmann, G.J., and Peled, D. An improvement in formal verification, Proc. Formal
Description Techniques, FORTE94, Chapman & Hall, pp. 197-211, October 1994.

6. Holzmann, G.J., Peled, D., and Yannakakis, M., On Nested Depth First Search, The
Spin Verification System, pp. 23-32. American Mathematical Society, June 1996.

7. Van der Linden, P., Expert C programming, Prentice Hall, 1994.
8. Popper, K.R., Logic o] scientific discovery. Basic Books. original 1934, revised edi-

tion 1959.
9. Popper, K.R., Conjectures and reJutations: the growth of scientific knowledge. Basic

Books, 1962.
10. West, C.H., and Zafiropulo, P. Automated validation of a communications protocol:

the CCITT X.21 recommendation, IBM J. Res. Develop., Vol. 22, No. 1, pp. 60-71.

