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A b s t r a c t .  It has become good practice to expect authors of new model 
checking algorithms to provide not only rigorous evidence of the al- 
gorithms correctness, but also evidence of their practical significance. 
Though the rules for determining what is and what is not a good proof 
of correctness are clear, no comparable rules are usually enforced for de- 
termining the soundness of the data that is used to support the claim 
for practical significance. We consider here how we can flag the more 
common types of omission. 

1 Introduct ion  

Most of us will have experienced the phenomenon that  a 'Friday afternoon dis- 
covery'  falls apart  when reconsidered more carefully in the early morning light. 
Not all compelling ideas are logically sound, not all sound ideas are also rele- 
vant,  and few ideas tha t  survive these two filters can actually make a significant 
difference in practice. One could say tha t  the purpose of science is to help us 
perform this filtering process in a reliable and systematic manner.  We know how 
to discover the logical flaws in our reasoning, to filter out the ideas that  are 
not correct. "To intercept the ideas that  are (perhaps temporari ly)  not relevant, 
we rely on program committees,  editorial boards, and grant committees.  Tha t  
leaves practical significance. 

How do we convince ourselves that  an idea can have practical impact?  This 
is, of course, not a new problem, and it is not without solution. Wha t  makes 
this problem of interest is that  its solution is so seldomly used. 

In this paper  we will look at experiments  that  are meant  to demonstra te  
practical  significance and critique them. Drawing examples for this purpose from 
the l i terature would make for a far too enjoyable paper.  The s t rawman example 
used here is therefore strictly made-up  for this purpose. 

2 A Strawman Algor i thm 

Let us look at a simple example of a proposed improvement  of the search algo- 
r i thm used in the model checker SPIN. SPIN implements an on-the-fly procedure 
for LTL model checking tha t  is based on explicit s tate enumerat ion by a nested 
depth-first search, as detailed in, for instance, [6]. The improvement  we will con- 
sider here is to perform a semi-stateless search, maintaining only the depth-first 
stack as a t empora ry  holding place for visited states, but no statespace. This 
was called a stack-search or Type 3 algori thm in the taxonomy of [3]. 
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2.1 C o r r e c t n e s s  a n d  R e l e v a n c e  

The correctness of the algorithm follows from the fact that  a classic depth-first 
search will visit all the states in a graph that  are reachable from given start  node, 
independent of whether the reached nodes are marked as visited or not. If the 
marking is used, the successors of each reachable state are expanded only once. 
If no marking is used this may happen more than once, but the search is still 
guaranteed to terminate. Since SPIN's model checking procedure relies only on 
reachability, its scope is unaffected by such a change. Furthermore, SPIN's partial 
order reduction strategy [5] can be expected to reduce the overhead introduced 
by possibly multiple visits to the same states. 

The new algorithm is meant to reduce the memory requirements of a search. 
Memory is reduced to the requirements for the stack alone. In many cases, the 
maximum depth of the stack needed to traverse a graph is considerably smaller 
than the number of nodes in that  graph. It is possible, though,  that  all reachable 
states appear in a single execution sequence, and hence would all appear in 
sequence on the stack. Even in this case we can expect a small memory savings 
because we avoid the need for the hashtables that  are normally used to store the 
states that  are removed from the stack. 

2 . 2  P r a c t i c a l  Va lue  

We now have a description of a new algorithm, a persuasive argument for its 
logical correctness and relevance. With that ,  we have arguably passed two of the 
three filters. Next, we will try to show that  the algorithm is also of practical 
value. 

The data  from a comparison of the behavior of the algorithm compared to a 
standard search is given in Table 1. The test data  is for SPIN models of a leader 
election protocol [2], the classic alternating bit protocol [1], and a model of the 
X.21 protocol, e.g., [10], all verified using partial  order reduction [5] combined 
with either a standard search algorithm, or the stack search algorithm using only 
the depth-first search stack but no statespace to store previously visited states. 

Appl ica t ion  S tanda rd  Search Stack Search Rat io  (see tex t )  
States Depth States Depth Memory Time 

Alternating Bit 11 9 11 9 0.45 1.0 
Leader Election 108 125 108 125 0.54 1.0 

X21 model 29 21 79 31 0.42 2.7 

T a b l e  1. Comparison between Standard Search and Stack Search 

With a conventional storage discipline, using hashed table-lookup, the mem- 
ory requirements for the standard search are determined by the number of states 
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reached plus the m a x i m u m  depth of the stack. In the stack search it is deter- 
mined only by the latter.  The entry in the one-before last column is therefore 
calculated as the ratio of the number  of states reached with the stack search and 
the sum of the number  of states reached in the s tandard search and the depth of 
the stack. For the relative t ime requirements, the ratio given in the last column 
is calculated as the number  of states visited in the stack search divided by the 
number  of states visited in the s tandard search. In both cases, a ratio less than 
one indicates a gain, and a rat io  greater than one indicates overhead. 

The focus in evaluating the stack search method is on the amount  of overhead 
it could introduce in revisits to old states, that  are avoided in the s tandard 
algorithm. The measurements  in Table 1 indicate tha t  it is indeed not unusual 
for the stack to gather all the reachable states in a single execution: in two of 
the three tests performed this phenomenon is observed. The measurements  also 
show that  the concern about  the overhead introduced by the stack search is less 
serious than  feared: in the first two tests the overhead was absent. Only in the 
third test did the overhead cause the number  of states reached that  is reported 
to increase. 

2.3 T e s t  Q u a l i t y  

The measurements  appear  to confirm the central assumption about  the behavior 
of the new algorithm. But do they really? In most cases we cannot judge the 
validity of a conclusion by other means, as in this case, so we have to rely on 
the data.  But even if we could not tell by other means that  the conclusion was 
invalid, could we at least see tha t  the experiments reported here do not constitute 
a valid test of the stack search algori thm? We can. The s t rawman demonstrat ion 
above indeed has many  flaws. 

- R e p r o d u c i b i l i t y  We have not s tated how the experiments were performed. 
Can a peer reproduce the results given the data? Are all the models used 
in the public domain and accessible to colleagues? Which system was used 
to perform the experiments? How was the s tandard search modified into 
a stack search, or was a new search engine written from scratch for these 
experiments? 

- T e s t  S e l e c t i o n  How were the tests chosen? Are the results representative? 
What  precautions were taken to make sure that  this is so? What  would 
trigger worse behavior? Is it predictable in which cases we get good and in 
which cases we get bad behavior from the new algori thm? Is the mechanism 
that  accounts for the outcome of the tests fully understood and reported? 

- S c o p e  a n d  C o n t r o l s  The test provides isolated da ta  points, but  does not 
give the context needed to properly interpret them. Can the paramete r  that  
was changed between the two algori thms also be varied more gradually? 
(The parameter  is arguably the number  of  states that  is saved in a statespace 
cache, and it could be varied from all to none.) The  test fails to provide all 
results for the controlled parameter .  
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- I n t e r p r e t a t i o n  Is the da ta  clearly separated from the tester 's  interpreta- 
tion? In the example,  the computat ion of the ratios from the last two columns 
in Table 1 conceals the real measurements  of memory  and time. How can we 
be sure that  no data  was lost or accidentily misrepresented? Note tha t  in a 
s tandard search the stack only needs to maintain a pointer to a state that  
appears  elsewhere in the statespace. The cost of maintaining a stack in the 
s tandard search, therefore, is less than in a stack search. The memory  ratios 
in Table 1, therefore, are probably too optimistic. 

A rigorous testing procedure has the same purpose as a formal correctness proof: 
it is intended to help us catch bugs in our reasoning. Without  any discipline or 
controls, we are generally mot ivated to collect only supporting evidence for the 
quality of a proposed new algorithm. A meaningful test asks us to go against 
our best judgement  and to undertake a targeted a t t empt  scrutinize the validity 
of our work. A meaningful test is, in a way, the documentat ion of a serious, 
scrupulously objective, verifiable, and hopefully failed, a t t empt  to f i nd  f a u l t  
with our work. Clearly, the data  reported in Table 1 has none of these qualities. 

3 The Test Hypothesis  

A good test is not the random collection of data  from measurements:  it is a tar- 
geted a t t empt  to check a specific claim, or hypothesis. In model checking appli- 
cations the hypothesis is typically about  the relative performance of algorithms. 
The hypothesis should be specific enough that  it can predict the outcome of the 
measurements  before they are done. The prediction must  be specific enough that  
it can clearly distinguish r andom luck in the outcome of a test f rom a match  of 
the theory. 

So where does the hypothesis itself come from? It  can be based on a critical 
insight into the nature of a prior algorithm, or, it can be based on measurements ,  
which, in this case only, are more or less randomly performed. The first type 
of measurements  are not ' tes ts '  since they are not intended to test anything 
in particular.  There is a fundamental  difference between a measurement  and a 
test. 1 

- M e a s u r e m e n t s  are intended to collect empirical da ta  without bias. The 
da ta  generally suggests a hypothesis tha t  can explain the da ta  tha t  was 
obtained. The  quality of such a hypothesis is determined by its predictive 
power: the hypothesis should predict the outcome of a new set of tests in 
which some paramete r  is changed. The hypothesis should also firmly identify 
specific results as a contradiction to the hypothesis itself, which, if observed, 
would cause the hypothesis itself to fall. Tha t  is: in advance of new exper- 
iments it should be possible to identify clearly what specific results would 
contradict  the hypothesis itself. 

1 In this paper we use the term experiment if either a measurement or a test is meant. 
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- T e s t s  are meant  to challenge the hypothesis. They are intended to be a seri- 
ous a t t empt  to determine if results that  would contradict the hypothesis can 
be obtained [8, 9]. They are n o t  a t t empts  to further support  the hypothesis: 
tha t  support  is already available in the da ta  tha t  inspired the hypothesis to 
begin with. 

We frequently tend to use a measurement when a test is called for. The  sample 
measurements  for the stack search algori thm are an example of such an omission. 

Wha t  are the properties of a true test? A test can offer support  for a hypoth-  
esis by recording the outcome of a serious a t t empt  to discover contradictions to 
the results it predicts or implies. In a sense, a test therefore is intended to work 
just  like a model checker: it a t t empts  to find a counter-example to a correctness 
claim, and from its failure to do so we may  draw some tentative (though rarely 
definitive) conclusions. 

We can only test a hypothesis if it can indeed be contradicted: Popper ' s  
classic criterion for distinguishing a scientifically meaningful s ta tement  [8, 9] 
from a non-scientific one. A good test, then, must  have the following identifiable 
components:  

- H y p o t h e s i s  - The hypothesis is based on easily obtainable support ing data,  
which are obtained by more or less random, but certainly unbiased, measure- 
ments.  The hypothesis must  have a predictive power and should, if it can 
survive meaningful challenges, provide insight or knowledge. The hypothesis 
can, for instance, postulate  a specific cause of complexity in model checking 
applications. Removing tha t  cause then should result in a visible reduction 
of the complexity. The  failure to observe such a relation would contradict 
the hypothesis. 

- T e s t  S e t u p  - A clear description of how the tests were performed with 
sufficient detail tha t  the tests can be repeated, and challenged, by peers. 

- T e s t  D a t a  - The test da ta  must  give an uninterpreted description of the 
results of a series of controlled experiments tha t  are meant  to seriously and 
thoroughly challenge the validity of the hypothesis. 

- I n t e r p r e t a t i o n  - Da ta  and the interpretat ion of data  must  be clearly sep- 
arated,  so tha t  in principle it would be possible for peers to reach differ- 
ent conclusions based on the same raw data.  The interpretat ion concludes 
whether the hypothesis survived or failed the tests, or it could conclude tha t  
the outcome is inconclusive and requires a different set of challenges. 

To evaluate the validity of a conclusion drawn from the tests, all four pieces of 
the test description are generally needed. 

4 A p p l i c a t i o n  

Let us now return to the stack search example and test its performance,  rather 
than measure it. We can take the data  from Table 1 as an initial set of mea- 
surements.  We now first describe a mot ivat ion for a hypothesis to be tested, and 
then the hypothesis itself. 
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M o t i v a t i o n  - The statespace used in a reachability analysis can be seen as a 
way to optimize the search process by preventing the renewed exploration of 
the successors of previously explored states. Part ial  order reduction reduces the 
number  of times that  previously explored states are revisited, and therefore 
the reliance on the statespace is also diminished. The statespace increases the 
memory  requirements in order to decrease the t ime requirements of the search. 
By examining the properties of a stack search in combination with part ial  order 
reduction, we can check if this trade-off needs to be re-assessed. 

H y p o t h e s i s  - The stack search saves memory  over a s tandard search, at the 
expense of potentially increasing the t ime requirements. A larger increase in 
t ime requirements is predicted to be correlated with a larger decrease in mem-  
ory requirements. Specifically, reductions in memory  requirements of one order 
of magni tude or more are predicted to be linked to an increase in the t ime 
requirements by no more than  an order of magnitude.  

This hypothesis fails if, for instance, we can establish that  there are cases 
where the stack search uses more memory  than the s tandard search, or (more 
likely) if we can show that  in a set of reasonable applications a reduction in 
memory  of less than an order of magni tude is combined with an increase of t ime 
by more than an order of magnitude.  

T e s t  S e t u p  - In the following, a "standard search" is the classic depth-first 
search algori thm with both  a search stack and a statespace. The  search stack 
contains (pointers to) states on the pa th  that  leads from the initial system state 
to the currently explored state. The statespace is assumed here to be imple- 
mented with hashed table-lookup. A "stack search" is the same algori thm that  
operates without the statespace store. This can be implemented,  at least for 
the purposes of the tests that  follow, by adapt ing the statespace storage routine 
( h s t o r e  in SPIN) to pretend that  states that  were found in the statespace store 
(and outside the search stack) where newly created. The Appendix shows the 
specific code fragment  that  is modified for these tests. 

To test the hypothesis, we will first check if we really understand the mecha- 
nism that  controls the tradeoff between the two resources that  are at stake here: 
memory  and time. We will t ry to create a simple model for which the stack 
search algori thm is predicted to perform optimally, giving memory  savings with- 
out t ime penalty. We will also try to create a model for which the stack search 
should exhibit worst case performance,  giving minimal  memory  reduction in re- 
turn for maximal  t ime penalty. To accomplish this we must  (according to the 
hypothesis) control the number  of revisits to previously visited states. If  we can 
avoid revisits entirely we should observe best case performance, if we can secure 
a maximal ly  connected statespace, or something close to it, we should observe 
worst case performance. The Appendix gives the PROMELA source for the two 
models tha t  were used to trigger b e s t  c a s e  and w o r s t  c a s e  performance.  

D a t a  - Table 2 gives the results of the experiments performed with the best 
and worst case test models as input. Instead of given est imated ratios for the 
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t ime requirements, we give memory  use in Megabytes, and seconds of runtime 
measured on an 180 MHz SGI workstation, with 64 Mbytes of memory.  For the 
memory  requirements of a stack search the amount  of memory  used for the state 
space is subtracted f rom the amount  of memory  that  is reported (see Appendix).  

Appl icat ion  Standard Search Stack Search 
States Depth Memory Time States Depth Memory Time 

Reached Max. Mbyte Sec. Reached Max. Mbyte Sec. 
Best Case 2047 30 1.25 0.09 2047 30 0.14 0.10 
Worst Case 124 20 1.25 0.06 23,694,800 20 0.15 218.89 

T a b l e  2. Best and Worst Case Performance of Stack Search Algori thm 

I n t e r p r e t a t i o n  - The m em ory  reduction achieved is not as large as might be 
expected, because of a small overhead that  goes to unrelated da ta  structures 
used in the model  checking process. The t ime penal ty  for the best case test is 
negligible, but  for the worst case test it is beyond the m a x i m u m  predicted by 
the hypothesis. We will consider these first two tests to be inconclusive and defer 
judgement  until we can determine how likely it is to observe best or worst case 
performance in average practical applications. 

A d d i t i o n a l  T e s t s  - Performing extra tests is complicated by the fact that  it 
is somewhat  rare to find a larger application that  can be run to completion 
with the stack search algorithm, so severe is the runt ime overhead. A runtime 
overhead of three orders of magnitude,  for instance, turns one minute of runtime 
into one day. Five orders of magni tude overhead, turns one minute  into three 
months.  This restricts us to only relatively small models to gather more data.  
The test results for three realistic applications for which the stack search does 
complete within a reasonable amount  of t ime are given in Table 3. 

Appl icat ion  Standard Search Stack Search 
States Depth Memory Time States Depth Memory Time 

Reached Max. Mbyte Sec. Reached Max. Mbyte Sec. 
Ring (Appendix) 466 18 1.25 0.10 16,469,100 18 0.14 251.32 
URP model [4] 1,363 146 1.35 0.13 26,018,900 146 0.15 1080.58 
DTP model [4] 16,459 526 3.30 0.63 79,308,200 549 0.20 1562.81 

T a b l e  3. Additional Tests of the Stack Search Algori thm 
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I n t e r p r e t a t i o n  - The hypothesis as it was formulated for these tests has failed. 
The additional experiments show an increase of runtime well beyond what is 
allowed by the hypothesis. A reduction in memory use of approximately one 
order of magnitude is paired with an increase of runtime by more than an order 
of magnitude in all tests, except the one test that was deliberately constructed 
to behave well. 

To explain these results, we can observe that  the stack search is really a 
special case of a caching strategy with a zero-size cache. With shrinking cache 
size the depth-first search incurs exponentially rising costs. It is known [4] that  
when state caching is used in combination with a partial order reduction strategy, 
the exponential effect sets in for smaller cache sizes, but does not disappear. 
To understand and measure these effects more precisely we could now add a 
parameter  to our test implementation of the stack search method,  that  denies 
the presence of a state in the statespace only with a certain test-controlled 
probability. The above experiments, however, will suffice for the purposes of this 
paper. 

5 C o n c l u s i o n  

Many papers on model checking algorithms contain a section with experimental 
data. We have considered how, in an ideal world, such a section would be written. 

A well-known dictum says: "A program without a specification cannot be 
proven correct; it can neither be right nor wrong." We can paraphrase this as: 
"A test without a hypothesis cannot succeed or fail." For a test to be able to 
succeed, it must also be able to fail, and either result can be of interest. But to 
succeed or fail, a test needs to have a precisely stated purpose. The purpose of 
a well-designed test is not to confirm, but to challenge our presumptions. 

It is not hard to see the value of a self-imposed obligation to render a formal 
proof of correctness of even a trivially correct (sic) algorithm. Imposing more 
rigor in conducting a demonstration of practical significance similarly has the 
benefit of protecting us from occasionally misleading ourselves. 

The occurrence of bugs is of course not restricted to algorithms or imple- 
mentations. They can also appear in formal proofs and in the experiments we 
perform to demonstrate practical significance. That ' s  the bad news. The good 
news is: bugs don' t  like rigor. 

"Bugs are by far the largest and most successful class of entity, with 
nearly a million known species. In this respect, they outnumber all the 
other known creatures four to one. 
Prof. Snopes' "Encyclopedia of Animal Life", as quoted in [7], p. 31. 
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6 Appendix 

T e s t  S e t u p  - The experiments reported in this paper were performed with 
SPIN version 3.2.0 (http ://netlib.bell-labs. ¢om/netlib/spin/). The re- 
sults should be similar for most other versions of SPIN. A small discrepancy 
in the numbers of reached states is possible for some older versions of SPIN, due 
to the recent revision of the partial order reduction strategy described in [6]. 

S t a c k  S e a r c h  I m p l e m e n t a t i o n  - The search algorithm from the pan.  c model 
'checkers generated by SPIN on a s p i n  - a  model command was modified to 
imitate a stack search algorithm by editing the pan.  c file with the following 
script. 

/bin/ed pan.c 
/match outside stack/ 
s/. • ~trap- > tagged = (SA)?VA : (depth + 1); Lstate = trap; return 0 ; /  
w pan.c 
q 

The change is designed to be conservative, being slightly more efficient than a 
true implementation of a stack search algorithm, which would have to recreate 
and store every previously visited state on each new visit. In the version of the 
algorithm tested, the previously created state is preserved, but returned to the 
stack when revisited, by resetting its t agged  field to a non-zero value. 

B e s t  Case  Tes t  - The following PROMELA program at tempts  to trigger best- 
case performance in the stack search, by minimizing the number of revisits. 

#def ine  N 10 
byte a; chan q = [g] of  { byte, byte }; 
active [2] proctype T 0 { do :: atomic { a < N - > q!a,_pid; a + + } od } 

W o r s t  Case  Tes t  - The matching a t tempt  to trigger worst case performance, 
by maximizing the number of revisits. 

#def ine  N 4 
byte a; 
active [N] proctype T 0 { do :: a -- (a + 1)%N :: break od } 

R i n g  P r o t o c o l  - The following is the PROMELA source for the ring protocol, 
that  was used for the measurements reported in Table 3. 

#def ine  N 6 
chan ring[N] = [1] of  { byte }; 
active [g] proetype node() { ring[(_pid + 1)%N]!l;  ring[_pid]?l } 
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