
Verifying Systems with Infinite but Regular
State Spaces

Pierre Wolper, Bernard Boigelot*

Universit@ de LiSge
Institut Montefiore, B28

B-4000 LiSge Sart-Tilman, Belgium
{pw ,boigelot } ~montef iore .ulg. ac .be

Abs t rac t . Thanks to the development of a number of efficiency en-
hancing techniques, state-space exploration based verification, and in
particular model checking, has been quite successful for finite-state sys-
tems. This has prompted efforts to apply a similar approach to systems
with infinite state spaces. Doing so amounts to developing algorithms for
computing a symbolic representation of the infinite state space, as op-
posed to requiring the user to characterize the state space by assertions.
Of course, in most cases, this can only be done at the cost of forgoing
any general guarantee of success. The goal of this paper is to survey a
number of results in this area and to show that a surprisingly common
characteristic of the systems that can be analyzed with this approach is
that their state space can be represented as a regular language.

1 I n t r o d u c t i o n

If a system is finite-state, its set of reachable states can, at least in theory, always
be computed. The sometimes "theoretical" nature of this possibility comes from
the fact that , even for simple systems, finite state spaces can be much too large
to be computed with any realistic amount of resources. This is not surprising
since, for instance, s tate reachability for a concurrent system is a PSPACE-
complete problem. In spite of such rather discouraging complexity results, much
effort has been devoted to making state-space exploration practically feasible.
These efforts have been quite successful and techniques such as symbolic ver-
ification [BCM+92] or partial-order methods [Val92, WG93] are quite effective
and tools based upon them are in regular use.

For infinite-state systems, even the theoretical possibility of exploring the
state space disappears. Indeed, except for severely restricted classes of systems,
most problems about reachable states become undecidable. This has long been
taken as evidence tha t infinite-state systems had to be handled by "assertional"
methods in which the user is requested to characterize the system behavior by
logical assertions, the validity of which is then established by a formal proof.
However, undecidabili ty only excludes perfectly general algorithmic solutions,

* "Charg@ de Recherches" (Post-Doctoral Researcher) for the National Fund for Sci-
entific Research (Belgium).

89

not solutions that work on restricted cases or for which termination is not guar-
anteed. Note that this situation is to some extent similar to the one for finite-state
systems. Indeed, in the latter case high complexity excludes always efficient algo-
rithmic solutions, but years of experimental work have confirmed the existence
of solutions that work perfectly well on many practically relevant instances.

Work on the algorithmic verification of infinite-state systems has thus pro-
ceeded in two directions. The first is the study of classes of infinite-state sys-
tems that are decidable, e.g. [BS95, FWW97]. In general such classes are some-
what artificial and practical examples of systems that fall within them are hard
to find. There are fortunately exceptions to this rule, for instance timed au-
tomata [AD94], which have been used as the basis of exploited verification tools.
The second direction is to consider a larger class of systems, but to be satisfied
with a semi-algorithmic solution, i.e., an algorithmic solution that is allowed to
give up or run forever on some instances.

In this paper, we will consider examples of both categories in the context of
closed systems whose infinite state space originates from the possibility of exe-
cuting arbitrarily long computations with unbounded data. The focus on closed
systems is typical of many verification approaches and allows us to use a simple
semantical model. Furthermore, by eliminating the possibility of reading arbi-
trarily large values, it restricts the source of the infinite number of states to
arbitrarily long computations. We will also limit our focus to the problem of
computing a representation of the set of reachable states of the system. Indeed,
this allows the verification of many properties of the state space such as reacha-
bility of a given state or t ruth of an invariant. Furthermore, once the reachable
states can be computed, other verification problems can often also be solved.
For instance, model checking for linear-time safety properties reduces to teacha-
bility, and model checking of general linear-time temporal properties reduces to
repeated teachability [VW86].

The first class of systems we will consider are finite-state systems with one
pushdown stack. This is a decidable class for which the state space can always
be algorithmically computed. Concretely, we will show that a finite-automaton
representation of reachable states (control state and stack content) can simply
and easily be computed [FWW97]. Next, we will turn to finite-state systems
communicating through unbounded message queues. This is an undecidable class
and thus only semi-algorithmic solutions are possible. The approach we will
consider represents queue contents by finite au tomata and focuses on cycles in
the control graph in order to finitely generate infinite state spaces [BW94, BG96,
BGWW97].

The last class of systems we will consider is that of finite-state systems aug-
mented with a number of integer variables. The traditional way to represent
sets of integer values is to use arithmetic constraints. Here, we will turn to an
alternative representation with potential computat ional advantages: finite au-
tomata operating on the binary (or in general base-r) encodings of integer vec-
tors. This representation is as expressive as Presburger arithmetic, but is much
more computationally oriented, just like BDDs [Bry92] are a computationally-
oriented representation of Boolean functions. With this representation, the effect

90

of repeating a cycle of linear operations can often be computed and, furthermore,
a natural characterization of cycles for which this computat ion is possible has
been given [Boi98].

2 Modeling Infinite-State Systems

We consider systems tha t can be modeled as extended automata, i.e., s ta te ma-
chines with a finite control and possibly infinite data. In most cases, an extended
au tomaton will be obtained from a higher level representation of the system, for
instance a concurrent program. The class of systems that can be modeled by
extended au toma ta is thus quite large.

An extended au tomaton A is a tuple (C, co, M, mo, Op, A), where

- C is a finite set of control locations;
- M is a (possibly infinite) memory domain;
-- Op C 2 M - M is a set of memory operations;
- A C_ C × Op × C is a finite set of transitions;
- co is an initial control location, and mo is an initial memory content.

A state of A is an element of C x M, i.e., a pair (c ,m) composed of a
control location c and a memory content m. The initial s tate is (co, too). A
state (c', m ') is directly reachable from a state (c, m) if there exists a transit ion
(cl ,0, c2) E A such tha t cl = e, c2 = e' and m ' = ~(m). For this, we use
the notat ion (c, m) :=~ (c', m') . Furthermore, we denote by :=~* the reflexive
and transitive closure of ==~. A state (e', m ') is reachable from a state (e, m) if
(c, m) :=~* (c', m') . The reachable states of A are those that are reachable from
the initial state.

The main problem we will address in subsequent sections is that of computing
a representation of the set of reachable states of various classes of extended
automata.

3 Pushdown Systems

A pushdown system is a system composed of a finite control associated with an
unbounded stack over a finite a lphabet ~ . Such a system can be modeled by
a pushdown automaton, i.e., an extended au tomaton A = (C, co, M, m0, Op, A)
whose memory domain M -- ~* is the set of all the potential stack contents, and
whose set of memory operations Op contains the two slack operations a+ and a_
for every a E Z. These operations are defined by a+(w) = wa and a_(wa) = w
for every w C Z* (the value of a_ (w) is not defined if w does not end with the
symbol a).

I t is known (see for instance [Cau92]) that the set of reachable states of a
pushdown au tomaton is regular, or more precisely, that for each control location
c E C, the memory contents m E M for which (c, m) is a reachable state form
a regular set. In [FWW97], a very simple construction of a finite au tomaton ac-
cepting the possible stack contents for each control location is given and is shown

91

to be implementable in O(n3), n being the size of the pushdown automaton. This
construction is the following. Given a stack alphabet S and a pushdown automa-
ton A = (C, co, M, mo, Op, A) over Z , one constructs the teachability automaton
of A, which is the finite-state automaton Ar = (Qr, E'r, At, qr °, Fr) such that

- The set of states Qr is identical to C;
- The input alphabet S~ is identical to Z;
- The transition relation Ar C Q, × (Z'r U {C}) × Q. is the smallest relation

that satisfies the following conditions, where A* denotes the reflexive and
transitive closure of A~, and ~ denotes the empty word:

• If (q, a+, q') • A, then (q, a, q') • At, and
• If (q, a_, q') • A and (q", a, q) • A*, then (q", e, q') • A, ;

- The initial state qO is co;
- All the states are accepting, i.e., we have F~ = Qr.

The relation between A and A, is given by the following theorem.

T h e o r e m 1. A state (q, w) is reachable in a pushdown automaton A if and only
i f the state q is reachable in the teachability automaton A~ through the word w.

In other words, the stack contents with which a control location c is reachable
are exactly the words accepted by Ar when c is taken as the unique accepting
state. It follows that A~ represents exactly and effectively the set of reachable
states of A. The automaton A, can then be used to check properties of the
system than are reducible to reachability properties. Furthermore, in [FWW97]
it is shown how repeated teachability and hence temporal logic model checking
can be handled with related constructions.

4 Q u e u e S y s t e m s

A queue system is a system composed of a finite control together with one or
several unbounded FIFO channels (also called queues) containing elements of fi-
nite alphabets.]t is a very common model of distributed systems communicating
through unbounded queues. Such a system can be modeled by a queue automa-
ton, which is an extended automaton A = (C, co, M, m0, Op, A) satisfying the
following.

- The memory domain M is of the form Z~ × ~ × . . . × ~*, where n > 0
represents the number o f queues of A, and each ~i is the finite queue alphabet
of the i-th queue of A (this queue is usually denoted qi). For simplicity,
we assume that the different queue alphabets are distinct. Each element
(w l , . . . , w~) of M associates a content wi to each queue qi of the system
and is called a queue-set content.

- The set of memory operations Op contains the two queue operations qi!a
and qi?a for each queue qi and symbol a E ~i . The send operation qi!a
is defined by (qi!a)(wl , wn) = (wl , . . ., wi -1 , wia, wi+l , w,) . The re-
ceive operation qi?a is defined by (qi?a)(wl , . . ., wi -1 , awl, wi+l, . . ., wn) --=
(w l , . . . , w~) (this operation is not defined if the content of qi does not start
with the symbol a).

92

Unsurprisingly, computing the set of reachable states of a queue automaton,
or more precisely, a finite and effective representation of this set, is in general
impossible. It is indeed well known that queue automata for which there is more
than one symbol in at least one queue alphabet can simulate arbitrary Turing
machines.

This does not, however, exclude partial algorithmic approaches to computing
the set of reachable states of queue systems. One such approach relies upon the
concept of recta-transition introduced in [BW94] and applied to queue systems
in [BG96]. A meta-transit ion is a derived transition that in one step generates a
potentially infinite set of states. Precisely, a meta-transition is a triple (c, f , cl),
where c, c ~ E C are the origin and the destination locations and f : M -+
2 M is the memory function of the meta-transition. The memory function must
be such that , for every set U C C × M of reachable states of A, its image
U ~ = {(c ~,m') 1 (3m E M)((c ,m) E U A m ~ E f (m))} by the meta-transition
only contains reachable states. A particular class of meta-transitions are the
cycle meta-transitions. These correspond to the arbitrarily repeated execution
of a given cycle in the control graph (C, A) of A. The origin and destination
locations of a cycle meta-transition are thus the origin of the cycle. Its memory
function maps any memory content ra to the set of values that can be obtained
by applying any number of times the sequence of operations a labeling the cycle.
In other words, the memory function of a cycle transition computes the image
of memory contents by the closure ~* of the sequence of operations of the cycle.

To compute the reachable states of a queue automaton, one can thus proceed
by augmenting the automaton with a finite set of recta-transitions and then
exploring the state space of the augmented automaton. By the definition of
meta-transitions, this state space is guaranteed to be identical to the one of the
original automaton. While exploring the augmented automaton, one follows both
transitions and meta-transitions, each time expanding the set of known reachable
states. The search terminates when a stable set is obtained. Of course, there is no
guarantee that this will eventually happen, but the fact that a meta-transition
can produce in one step an infinite number of states makes termination possible,
even when the number of reachable states is infinite.

Applying this method requires the ability to represent possibly infinite sets
of states, and to perform operations on represented sets. Since queue au tomata
have a finite control, a simple idea consists of associating to each control location
a set of corresponding queue-set contents represented with the help of a specific
representation system. The Queue Decision Diagram, or QDD [BG96], is such
a symbolic representation system. It relies on an encoding scheme which maps
every queue-set content (w l , . . . , w~) onto the concatenation wl- w2 .-- wn of the
individual queue contents. Given a set U C_ M of queue-set contents, a QDD A
representing U is simply a finite-state automaton accepting all the encodings of
the elements of U.

Of course, QDDs cannot represent all the subsets of M. The following the-
orem, which appears in [BGWW97], characterizes exactly the sets of queue-set
contents tha t can be represented by a QDD.

93

T h e o r e m 2 . A set U C_ M is representable by a QDD if and only i f it can be
expressed as a finite union of Cartesian products of regular languages over the
queue alphabets.

A positive point of QDDs is that they can easily be manipulated algorithmi-
cally. First, computing the union, intersection, complement and difference of sets
represented as QDDs simply amounts to performing the corresponding operation
over finite-state automata. This is a consequence of the fact that the encoding
scheme that has been chosen maps every queue-set content onto a unique and
unambiguous word over Z~. Z~ . . . S~. Second, it has been shown in [BG96] that
one can always compute the effect of a transition of a queue automaton on a set
represented as a QDD:

T h e o r e m 3. Let U C M be a set represented by a QDD. Given a queue qi and
a symbol a E Si , one can compute QDDs representing the sets (qi!a)(U) and

In order to compute the set of reachable states of a queue automaton with the
help of QDDs, one must also be able to add meta-transitions to the automaton.
Selecting cycles that are suitable for meta-transitions can be done thanks to the
following result, which appears in [BGWW97] and is proved in [Boi98].

T h e o r e m 4 . Given a queue automaton A and a cycle in its control graph (C, A)
labeled by the sequence of operations ~ E Op*, it is decidable whether the closure
a* preserves the representable nature of sets of queue-set contents, i.e., whether
~r*(U) is always representable by a QDD whenever U is representable by a QDD.

Note that in particular, the necessary and sufficient condition presented
in [BGWW97] implies that for every sequence ~r in which the queue operation
only involves a single queue, a* always preserves the representability of sets of
queue-set contents.

The fact that a meta-transition preserves representability is not sufficient.
One also needs to be able to effectively compute its effect. The required result
is given by the following theorem.

T h e o r e m 5 . I f ~ E Op* is a sequence of queue operations such that a*(U) is
representable for every representable set U C_ M, then one can compute a QDD
representing cr*(U) given a QDD representing U.

An algorithm implementing this computation is presented in [Boi98].

5 L i n e a r I n t e g e r S y s t e m s

A linear integer system is a system composed of a finite control together with
one or several unbounded integer variables on which linear operations are per-
formed. Such a system can be modeled by a linear integer automaton, which is
an extended automaton A = (C, co, M, rn0, Op, A) satisfying the following.

94

- Its memory domain M is Z ~, where n > 0 represents the number of vari-
ables of A (these variables are usually denoted xl, z 2 , . . . , xn). Each element
(v l , . . . , v~) of M is called a variable-set content and associates one value vi
to each variable zi of the system.

- Its set of memory operations Op contains all functions M --+ M of the form
P x < q --+ x := T x + b , where P E z m x n , q E Zm,m E N , T E Z nxn
and b E Z n. The linear system P x < q is the guard of the operation and
expresses a condition that must be satisfied by the variable vector x =
(x l , . . . , xn) for the operation to be defined. The linear transformation x :=
T x + b is the assignment of the operation and expresses the transformation
undergone by the variable values when the operation is performed.

It is well known that linear integer systems that have at least two variables
can simulate two-counter machines and are therefore as expressive as Turing
machines. As a consequence, one cannot in general compute the set of reachable
states of a linear integer automaton.

One can however follow the same semi-algorithmic approach as in Section 4,
adding meta-transitions to the system and then exploring the resulting aug-
mented linear integer automaton. This requires the ability to represent possibly
infinite subsets of Z n, to apply linear operations to represented sets (for com-
puting the effect of a transition), and to apply the repetition of linear operations
to represented sets (for computing the effect of meta-transitions).

There are many ways of representing sets of integer vectors, but we will
adopt an automaton-based representation that is far from new since it can be
found in [Biic60], but has only recently been investigated as a potentially usable
representation [WB95, BC96, BBR97, BRW98]. It consists of representing the
elements of the vector in binary (or some other base) and then viewing the result
as a word. Sets of vectors thus become languages and can be recognized by finite
automata.

Precisely, given an integer vector v -= (Vl , . . . , Vn) and an integer base r > 1,
one encodes each positive component vi as a finite word ap-lap-2 . . .ao over the

p-1 alphabet (0 , . . . , r - 1}, such that vi -=- ~ i=o a~r*. If vi < 0, then the encoding
of vi consists of the last p digits of the encoding of rP + vi (the number rp + vi is
called the r 's complement of vi). The number of digits p is not fixed, but chosen
identical for each vi and such that - r p-] < vi < r p-1. An encoding of v is then
obtained by grouping together the digits that share the same position in the
encodings of the vi. The encoding of v can be viewed either as a tuple of words
of identical length over the alphabet { 0 , . . . , r - 1}, or as a single word over the
alphabet { 0 , . . . , r - 1} ~. The latter corresponds to simultaneously reading all
digits at a given position and is the one we adopt. Every vector in Z ~ has an
infinite number of possible encodings, the length of the shortest being determined
by the component with the highest magnitude.

Example1. A representation of the vector (3 , - 1) in base 2 is (0011, 1111) or
(0, 1)(0, 1)(1, 1)(1, 1).

Given a set U C_ Z ~ of vectors, a Number Decision Diagram, or NDD [WB95,
Boi98] representing U is simply a finite-state automaton accepting all the en-

95

codings of all the elements of U. The following results, due to Biichi [Biic60],
Cobham [Cob69] and Semenov [Sem77], characterize precisely the sets of integer
vectors that can be represented by NDDs:

T h e o r e m 6. A set U C Z ~ is representable by an NDD in a base r > 1 i f and
only if it can be defined in the first-order theory (Z ,+ , <, Vr), where Vr is a
function that maps every nonzero integer onto the highest power o f t dividing it.

T h e o r e m 7. A set U C Z '~ is representable by an NDD in any base if and
only if it can be defined in Presburger arithmetic, i.e., in the first-order theory
(z,+,,<).

An important corollary of Theorem 7 is that any vector transformation that
can be expressed in Presburger arithmetic can be applied to sets of integer vectors
represented as NDDs. In particular, one can always compute the image of such
a set by any linear operation that belongs to Op. It is thus possible to compute
the effect of a transition of a linear integer automaton on a set of variable-set
values represented as an NDD.

In order to compute the set of reachable states of a linear integer automaton
with the help of NDDs, one must also be able to add meta-transitions to the
automaton. Selecting cycles that are suitable for recta-transitions can be done
thanks to the following result, which is proved in [Boi98].

T h e o r e m 8 . Given a sequence ~ E Op* of linear integer operations without
guards, it is decidable whether the closure ct* preserves the representable nature
of sets of integer vectors. Moreover, i f ~* preserves the representable nature of
sets of integer vectors, then any sequence ~r ~ obtained by adding guards to the
operations composing c~ is such that (cr')* preserves the representable nature of
sets of integer vectors.

Very roughly, the criterion under which a sequence of linear operations pre-
serves representability is that the eigenvalues of the matr ix corresponding to the
transformation defined by the sequence are same-order roots of a power of the
base used for the representation.

Computing the effect of a meta-transit ion on a represented set of variable-
set values can be done thanks to the following result, which is fully developed
in [Boi98].

T h e o r e m 9 . I f cr I E Op* is a sequence of linear integer operations such that the
corresponding guardless linear integer operation cr has a closure that preserves
the representable nature of sets of integer vectors, then one can compute an NDD
representing (¢')*(U) from ~' and an NOD representing V C_ Z ~.

6 C o n c l u s i o n s

For many years, there has been a dichotomy in verification approaches: algo-
rithmic methods for finite-state systems, proof-based methods for infinite-state

96

systems. This dichotomy has not been absolute, but when algorithmic methods
have been proposed for infinite-state systems, it has usually been for restricted
classes for which most problems are decidable. For instance, much research has
been devoted to Petri nets, which sit interestingly close to the limit of decidabil-
ity [EN94].

Most of the results presented in this paper are linked to a different start-
ing point: consider undecidable classes, but be satisfied with partial algorithmic
solutions. There are two strong reasons for doing so. The first is that for a veri-
fication approach to be usable in an industrial setting it has to be supported by
tools that do most of the work. Hence, methods that at least a t tempt to provide
results without user intervention are essential. The second reason is that there
is little practical benefit from focusing on decidable classes of systems. Indeed,
the high complexity of all meaningful verification problems has as consequence
that , even for perfectly decidable classes, solutions are anyway only partial from
a practical point of view. No verification tool is guaranteed to succeed on any
but the most trivial instances and, often, the only way to know if a tool can
handle a particular instance is to run the tool. Since the ideas presented in this
paper lead to tools for infinite-state systems with a perfectly similar behavior,
there is no reason to, a priori, doubt their acceptability for practical use. The
determining factor will be how often they succeed on the program instances for
which verification is indeed needed.

Another central theme of this paper is the importance of well-adapted repre-
sentation systems for sets of values. In the finite-state case, BDDs have provided
a substantial boost to the success of verification methods. The intuition underly-
ing this paper is that representation methods with similar characteristics will be
crucial to the success of verification techniques for infinite-state systems. With
respect to this, the finite automaton, which has already proven its use for devel-
oping finite-state verification algorithms [VW86, BVW94], though probably not
the ult imate solution, might again be a very fruitful starting point.

R e f e r e n c e s

[AD94]

[BBR97]

[BC96]

[BCM+92]

[BG96]

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-236, 1994.
B. Boigelot, L. Bronne, and S. Rassart. An improved teachability analy-
sis method for strongly linear hybrid systems. In Proc. 9th Int. Conf.on
Computer Aided Verification, volume 1254 of Lecture Notes in Computer
Science, pages 167-178, Haif~, June 1997. Springer-Verlag.
A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic
and finite automata. In Proceedings of CAAP'96, number 1059 in Lecture
Notes in Computer Science, pages 30-43. Springer-Verlag, 1996.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 10 ~° states and beyond. Information and Computa-
tion, 98(2):142-170, June 1992.
B. Boigelot and P. Godefroid. Symbolic verification of communication pro-
tocols with infinite state spaces using QDDs. In Proceedings of Computer-
Aided Verification, volume 1102 of Lecture Notes in Computer Science,
pages 1-12, New-Brunswick, N J, USA, July 1996. Springer-Verlag.

97

[BGWW97]

[Boi9S]

[BRW98]

[Bry92]

[BS95]

[Bfic60]

[BVW94]

[BW94]

[Cau92]

[Cob69]

[EN94]

[FWW97]

[Sem77]

[Va192]

[vw86]

[WB95]

[WG93]

B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDD's. In Proc. of Int. Static Analysis Symposium, volume 1302 of Lec-
ture Notes in Computer Science, pages 172-186, Paris, September 1997.
Springer-Verlag.
B. Boigelot. Symbolic Methods]or Exploring Infinite State Spaces. PhD
thesis, Universit6 de Liege, 1998.
B. Boigelot, S. Rassart, and P. Wolper. On the expressiveness of real and
integer arithmetic automata, to appear in Proc. ICALP'98, 1998.
R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, 1992.
O. Burkart and B. Steffen. Composition, decomposition and model check-
ing of pushdown processes. Nordic Journal of Computing, 2(2):89-125,
1995.
J .R . Biichi. Weak second-order arithmetic and finite automata.
Zeitschrift Math. Logik und Grundlagen der Mathematik, 6:66-92, 1960.
O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. In Computer Aided Verifica-
tion, Proc. 6th Int. Workshop, volume 818 of Lecture Notes in Computer
Science, pages 142-155, Stanford, California, June 1994. Springer-Verlag.
full version available from authors.
B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In
Computer Aided Verification, Proc. 6th Int. Conference, volume 818 of Lec-
ture Notes in Computer Science, pages 55-67, Stanford, California, June
1994. Springer-Verlag.
D. Caucal. On the regular structure of prefix rewriting. Theoretical Com-
puter Science, 106:61-86, 1992.
A. Cobham. On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory, 3:186-192, 1969.
J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey.
Bulletin of the EATCS, 52:245-262, 1994.
A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems (extended abstract). Presented at Infin-
ity'97 (Bologna), Electronic notes in theoretical computer science, August
1997.
A. L. Semenov. Presburgerness of predicates regular in two number sys-
tems. Siberian Mathematical Journal, 18:289-299, 1977.
A. Valmari. A stubborn attack on state explosion. Formal Methods in
System Design, 1:297-322, 1992.
M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic in
Computer Science, pages 322-331, Cambridge, June 1986.
P. Wolper and B. Boigelot. An automata-theoretic approach to presburger
arithmetic constraints. In Proc. Static Analysis Symposium, volume 983
of Lecture Notes in Computer Science, pages 21-32, Glasgow, September
1995. Springer-Verlag.
P. Wolper and P. Godefroid. Partial-order methods for temporal verifica-
tion. In Proc. CONCUR '93, volume 715 of Lecture Notes in Computer
Science, pages 233-246, Hildesheim, August 1993. Springer-Verlag.

