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Abs t rac t .  Thanks to the development of a number of efficiency en- 
hancing techniques, state-space exploration based verification, and in 
particular model checking, has been quite successful for finite-state sys- 
tems. This has prompted efforts to apply a similar approach to systems 
with infinite state spaces. Doing so amounts to developing algorithms for 
computing a symbolic representation of the infinite state space, as op- 
posed to requiring the user to characterize the state space by assertions. 
Of course, in most cases, this can only be done at the cost of forgoing 
any general guarantee of success. The goal of this paper is to survey a 
number of results in this area and to show that a surprisingly common 
characteristic of the systems that can be analyzed with this approach is 
that their state space can be represented as a regular language. 

1 I n t r o d u c t i o n  

If a system is finite-state, its set of reachable states can, at least in theory, always 
be computed.  The sometimes "theoretical" nature of this possibility comes from 
the fact that ,  even for simple systems, finite state spaces can be much too large 
to be computed with any realistic amount  of resources. This is not surprising 
since, for instance, s tate  reachability for a concurrent system is a PSPACE- 
complete problem. In spite of such rather discouraging complexity results, much 
effort has been devoted to making state-space exploration practically feasible. 
These efforts have been quite successful and techniques such as symbolic ver- 
ification [BCM+92] or partial-order methods [Val92, WG93] are quite effective 
and tools based upon them are in regular use. 

For infinite-state systems, even the theoretical possibility of exploring the 
state space disappears. Indeed, except for severely restricted classes of systems, 
most  problems about  reachable states become undecidable. This has long been 
taken as evidence tha t  infinite-state systems had to be handled by "assertional" 
methods in which the user is requested to characterize the system behavior by 
logical assertions, the validity of which is then established by a formal proof. 
However, undecidabili ty only excludes perfectly general algorithmic solutions, 
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not solutions that  work on restricted cases or for which termination is not guar- 
anteed. Note that  this situation is to some extent similar to the one for finite-state 
systems. Indeed, in the latter case high complexity excludes always efficient algo- 
rithmic solutions, but  years of experimental work have confirmed the existence 
of solutions that  work perfectly well on many practically relevant instances. 

Work on the algorithmic verification of infinite-state systems has thus pro- 
ceeded in two directions. The first is the study of classes of infinite-state sys- 
tems that  are decidable, e.g. [BS95, FWW97]. In general such classes are some- 
what artificial and practical examples of systems that  fall within them are hard 
to find. There are fortunately exceptions to this rule, for instance timed au- 
tomata  [AD94], which have been used as the basis of exploited verification tools. 
The second direction is to consider a larger class of systems, but  to be satisfied 
with a semi-algorithmic solution, i.e., an algorithmic solution that  is allowed to 
give up or run forever on some instances. 

In this paper, we will consider examples of both categories in the context of 
closed systems whose infinite state space originates from the possibility of exe- 
cuting arbitrarily long computations with unbounded data. The focus on closed 
systems is typical of many verification approaches and allows us to use a simple 
semantical model. Furthermore, by eliminating the possibility of reading arbi- 
trarily large values, it restricts the source of the infinite number of states to 
arbitrarily long computations. We will also limit our focus to the problem of 
computing a representation of the set of reachable states of the system. Indeed, 
this allows the verification of many properties of the state space such as reacha- 
bility of a given state or t ruth of an invariant. Furthermore, once the reachable 
states can be computed, other verification problems can often also be solved. 
For instance, model checking for linear-time safety properties reduces to teacha- 
bility, and model checking of general linear-time temporal  properties reduces to 
repeated teachability [VW86]. 

The first class of systems we will consider are finite-state systems with one 
pushdown stack. This is a decidable class for which the state space can always 
be algorithmically computed. Concretely, we will show that  a finite-automaton 
representation of reachable states (control state and stack content) can simply 
and easily be computed [FWW97]. Next, we will turn to finite-state systems 
communicating through unbounded message queues. This is an undecidable class 
and thus only semi-algorithmic solutions are possible. The approach we will 
consider represents queue contents by finite au tomata  and focuses on cycles in 
the control graph in order to finitely generate infinite state spaces [BW94, BG96, 
BGWW97]. 

The last class of systems we will consider is that  of finite-state systems aug- 
mented with a number of integer variables. The traditional way to represent 
sets of integer values is to use arithmetic constraints. Here, we will turn to an 
alternative representation with potential computat ional  advantages: finite au- 
tomata  operating on the binary (or in general base-r) encodings of integer vec- 
tors. This representation is as expressive as Presburger arithmetic, but is much 
more computationally oriented, just  like BDDs [Bry92] are a computationally- 
oriented representation of Boolean functions. With this representation, the effect 
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of repeating a cycle of linear operations can often be computed and, furthermore,  
a natural  characterization of cycles for which this computat ion is possible has 
been given [Boi98]. 

2 Modeling Infinite-State Systems 

We consider systems tha t  can be modeled as extended automata, i.e., s ta te  ma-  
chines with a finite control and possibly infinite data.  In most  cases, an extended 
au tomaton  will be obtained from a higher level representation of the system, for 
instance a concurrent program. The  class of systems that  can be modeled by 
extended au toma ta  is thus quite large. 

An extended au tomaton  A is a tuple (C, co, M, mo, Op, A), where 

- C is a finite set of control locations; 
- M is a (possibly infinite) memory domain; 
-- Op C 2 M - M  is  a set of memory operations; 
- A C_ C × Op × C is a finite set of transitions; 
- co is an initial control location, and mo is an initial memory content. 

A state of A is an element of C x M,  i.e., a pair (c ,m)  composed of a 
control location c and a memory  content m. The  initial s tate is (co, too). A 
state (c', m ' )  is directly reachable from a state (c, m) if there exists a transit ion 
(cl ,0,  c2) E A such tha t  cl = e, c2 = e' and m '  = ~(m). For this, we use 
the notat ion (c, m) :=~ (c', m' ) .  Furthermore,  we denote by :=~* the reflexive 
and transitive closure of ==~. A state (e', m ' )  is reachable from a state (e, m) if 
(c, m) :=~* (c', m' ) .  The reachable states of A are those that  are reachable from 
the initial state. 

The  main problem we will address in subsequent sections is that  of computing 
a representation of the set of reachable states of various classes of extended 
automata. 

3 Pushdown Systems 

A pushdown system is a system composed of a finite control associated with an 
unbounded stack over a finite a lphabet  ~ .  Such a system can be modeled by 
a pushdown automaton, i.e., an extended au tomaton  A = (C, co, M, m0, Op, A) 
whose memory  domain M -- ~* is the set of all the potential  stack contents, and 
whose set of memory  operations Op contains the two slack operations a+ and a_ 
for every a E Z.  These operations are defined by a+(w) = wa and a_(wa)  = w 
for every w C Z* (the value of a_ (w) is not defined if w does not end with the 
symbol  a). 

I t  is known (see for instance [Cau92]) that  the set of reachable states of a 
pushdown au tomaton  is regular, or more precisely, that  for each control location 
c E C, the memory  contents m E M for which (c, m) is a reachable state form 
a regular set. In [FWW97], a very simple construction of a finite au tomaton  ac- 
cepting the possible stack contents for each control location is given and is shown 
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to be implementable in O(n3), n being the size of the pushdown automaton.  This 
construction is the following. Given a stack alphabet S and a pushdown automa- 
ton A = (C, co, M, mo, Op, A )  over Z ,  one constructs the teachability automaton 
of A, which is the finite-state automaton Ar = (Qr, E'r, At, qr °, Fr) such that  

- The set of states Qr is identical to C; 
- The input alphabet S~ is identical to Z; 
- The transition relation Ar C Q, × (Z'r U {C}) × Q. is the smallest relation 

that  satisfies the following conditions, where A* denotes the reflexive and 
transitive closure of A~, and ~ denotes the empty word: 

• If (q, a+, q') • A, then (q, a, q') • At,  and 
• If (q, a_,  q') • A and (q", a, q) • A*, then (q", e, q') • A, ;  

- The initial state qO is co; 
- All the states are accepting, i.e., we have F~ = Qr. 

The relation between A and A, is given by the following theorem. 

T h e o r e m  1. A state (q, w) is reachable in a pushdown automaton A if  and only 
i f  the state q is reachable in the teachability automaton A~ through the word w.  

In other words, the stack contents with which a control location c is reachable 
are exactly the words accepted by Ar when c is taken as the unique accepting 
state. It follows that  A~ represents exactly and effectively the set of reachable 
states of A. The automaton A, can then be used to check properties of the 
system than are reducible to reachability properties. Furthermore, in [FWW97] 
it is shown how repeated teachability and hence temporal  logic model checking 
can be handled with related constructions. 

4 Q u e u e  S y s t e m s  

A queue system is a system composed of a finite control together with one or 
several unbounded FIFO channels (also called queues) containing elements of fi- 
nite alphabets. ]t is a very common model of distributed systems communicating 
through unbounded queues. Such a system can be modeled by a queue automa- 
ton, which is an extended automaton A = ( C, co, M, m0, Op, A )  satisfying the 
following. 

- The memory domain M is of the form Z~ × ~ × . . .  × ~*,  where n > 0 
represents the number  o f  queues of A, and each ~i is the finite queue alphabet 
of the i-th queue of A (this queue is usually denoted qi). For simplicity, 
we assume that  the different queue alphabets are distinct. Each element 
( w l , . . . ,  w~) of M associates a content wi to each queue qi of the system 
and is called a queue-set content.  

- The set of memory operations Op contains the two queue operations qi!a 
and qi?a for each queue qi and symbol a E ~i . The send operation qi!a 
is defined by (qi!a)(wl  . . . .  , wn)  = (wl ,  . . ., wi -1 ,  wia, wi+l . . . .  , w,) .  The re- 
ceive operation qi?a is defined by (qi?a)(wl ,  . . ., wi -1 ,  awl, wi+l, . . ., wn) --= 
( w l , . . . ,  w~) (this operation is not defined if the content of qi does not start  
with the symbol a). 
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Unsurprisingly, computing the set of reachable states of a queue automaton,  
or more precisely, a finite and effective representation of this set, is in general 
impossible. It is indeed well known that queue automata  for which there is more 
than one symbol in at least one queue alphabet can simulate arbitrary Turing 
machines. 

This does not, however, exclude partial algorithmic approaches to computing 
the set of reachable states of queue systems. One such approach relies upon the 
concept of recta-transition introduced in [BW94] and applied to queue systems 
in [BG96]. A meta-transit ion is a derived transition that  in one step generates a 
potentially infinite set of states. Precisely, a meta-transition is a triple (c, f ,  cl), 
where c, c ~ E C are the origin and the destination locations and f : M -+ 
2 M is the memory function of the meta-transition. The memory function must 
be such that ,  for every set U C C × M of reachable states of A, its image 
U ~ = {(c ~,m') 1 (3m E M)( (c ,m)  E U A m ~ E f (m) )}  by the meta-transition 
only contains reachable states. A particular class of meta-transitions are the 
cycle meta-transitions. These correspond to the arbitrarily repeated execution 
of a given cycle in the control graph (C, A) of A. The origin and destination 
locations of a cycle meta-transition are thus the origin of the cycle. Its memory 
function maps any memory content ra to the set of values that  can be obtained 
by applying any number of times the sequence of operations a labeling the cycle. 
In other words, the memory function of a cycle transition computes the image 
of memory contents by the closure ~* of the sequence of operations of the cycle. 

To compute the reachable states of a queue automaton,  one can thus proceed 
by augmenting the automaton with a finite set of recta-transitions and then 
exploring the state space of the augmented automaton.  By the definition of 
meta-transitions, this state space is guaranteed to be identical to the one of the 
original automaton.  While exploring the augmented automaton,  one follows both 
transitions and meta-transitions, each time expanding the set of known reachable 
states. The search terminates when a stable set is obtained. Of course, there is no 
guarantee that  this will eventually happen, but  the fact that  a meta-transition 
can produce in one step an infinite number of states makes termination possible, 
even when the number of reachable states is infinite. 

Applying this method requires the ability to represent possibly infinite sets 
of states, and to perform operations on represented sets. Since queue au tomata  
have a finite control, a simple idea consists of associating to each control location 
a set of corresponding queue-set contents represented with the help of a specific 
representation system. The Queue Decision Diagram, or QDD [BG96], is such 
a symbolic representation system. It relies on an encoding scheme which maps 
every queue-set content ( w l , . . . ,  w~) onto the concatenation wl- w2 .-- wn of the 
individual queue contents. Given a set U C_ M of queue-set contents, a QDD A 
representing U is simply a finite-state automaton accepting all the encodings of 
the elements of U. 

Of course, QDDs cannot represent all the subsets of M. The following the- 
orem, which appears in [BGWW97], characterizes exactly the sets of queue-set 
contents tha t  can be represented by a QDD. 
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T h e o r e m 2 .  A set U C_ M is representable by a QDD if and only i f  it can be 
expressed as a finite union of Cartesian products of regular languages over the 
queue alphabets. 

A positive point of QDDs is that they can easily be manipulated algorithmi- 
cally. First, computing the union, intersection, complement and difference of sets 
represented as QDDs simply amounts to performing the corresponding operation 
over finite-state automata. This is a consequence of the fact that the encoding 
scheme that has been chosen maps every queue-set content onto a unique and 
unambiguous word over Z~. Z~ . . .  S~. Second, it has been shown in [BG96] that 
one can always compute the effect of a transition of a queue automaton on a set 
represented as a QDD: 

T h e o r e m  3. Let U C M be a set represented by a QDD. Given a queue qi and 
a symbol a E Si ,  one can compute QDDs representing the sets (qi!a)(U) and 

In order to compute the set of reachable states of a queue automaton with the 
help of QDDs, one must also be able to add meta-transitions to the automaton. 
Selecting cycles that are suitable for meta-transitions can be done thanks to the 
following result, which appears in [BGWW97] and is proved in [Boi98]. 

T h e o r e m 4 .  Given a queue automaton A and a cycle in its control graph (C, A) 
labeled by the sequence of operations ~ E Op*, it is decidable whether the closure 
a* preserves the representable nature of sets of queue-set contents, i.e., whether 
~r*(U) is always representable by a QDD whenever U is representable by a QDD. 

Note that in particular, the necessary and sufficient condition presented 
in [BGWW97] implies that for every sequence ~r in which the queue operation 
only involves a single queue, a* always preserves the representability of sets of 
queue-set contents. 

The fact that a meta-transition preserves representability is not sufficient. 
One also needs to be able to effectively compute its effect. The required result 
is given by the following theorem. 

T h e o r e m 5 .  I f  ~ E Op* is a sequence of queue operations such that a*(U) is 
representable for every representable set U C_ M,  then one can compute a QDD 
representing cr*(U) given a QDD representing U. 

An algorithm implementing this computation is presented in [Boi98]. 

5 L i n e a r  I n t e g e r  S y s t e m s  

A linear integer system is a system composed of a finite control together with 
one or several unbounded integer variables on which linear operations are per- 
formed. Such a system can be modeled by a linear integer automaton, which is 
an extended automaton A = (C, co, M, rn0, Op, A )  satisfying the following. 
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- Its memory domain M is Z ~, where n > 0 represents the number of vari- 
ables of A (these variables are usually denoted xl, z 2 , . . . ,  xn). Each element 
( v l , . . . ,  v~) of M is called a variable-set content and associates one value vi 
to each variable zi of the system. 

- Its set of memory operations Op contains all functions M --+ M of the form 
P x  < q --+ x := T x + b ,  where P E z m x n , q  E Zm,m E N , T  E Z nxn 
and b E Z n. The linear system P x  < q is the guard of the operation and 
expresses a condition that  must be satisfied by the variable vector x = 
( x l , . . . ,  xn) for the operation to be defined. The linear transformation x := 
T x  + b is the assignment of the operation and expresses the transformation 
undergone by the variable values when the operation is performed. 

It is well known that linear integer systems that  have at least two variables 
can simulate two-counter machines and are therefore as expressive as Turing 
machines. As a consequence, one cannot in general compute the set of reachable 
states of a linear integer automaton.  

One can however follow the same semi-algorithmic approach as in Section 4, 
adding meta-transitions to the system and then exploring the resulting aug- 
mented linear integer automaton.  This requires the ability to represent possibly 
infinite subsets of Z n, to apply linear operations to represented sets (for com- 
puting the effect of a transition), and to apply the repetition of linear operations 
to represented sets (for computing the effect of meta-transitions). 

There are many ways of representing sets of integer vectors, but  we will 
adopt an automaton-based representation that  is far from new since it can be 
found in [Biic60], but  has only recently been investigated as a potentially usable 
representation [WB95, BC96, BBR97, BRW98]. It consists of representing the 
elements of the vector in binary (or some other base) and then viewing the result 
as a word. Sets of vectors thus become languages and can be recognized by finite 
automata.  

Precisely, given an integer vector v -= (Vl , . . . ,  Vn) and an integer base r > 1, 
one encodes each positive component vi as a finite word ap-lap-2 . . .ao  over the 

p-1 alphabet ( 0 , . . . ,  r -  1}, such that  vi -=- ~ i=o  a~r*. If vi < 0, then the encoding 
of vi consists of the last p digits of the encoding of rP + vi (the number rp + vi is 
called the r 's  complement of vi). The number of digits p is not fixed, but chosen 
identical for each vi and such that  - r  p- ]  < vi < r p-1. An encoding of v is then 
obtained by grouping together the digits that  share the same position in the 
encodings of the vi. The encoding of v can be viewed either as a tuple of words 
of identical length over the alphabet { 0 , . . . ,  r - 1}, or as a single word over the 
alphabet { 0 , . . . ,  r -  1} ~. The latter corresponds to simultaneously reading all 
digits at a given position and is the one we adopt. Every vector in Z ~ has an 
infinite number of possible encodings, the length of the shortest being determined 
by the component with the highest magnitude. 

Example1. A representation of the vector ( 3 , - 1 )  in base 2 is (0011, 1111) or 
(0, 1)(0, 1)(1, 1)(1, 1). 

Given a set U C_ Z ~ of vectors, a Number Decision Diagram, or NDD [WB95, 
Boi98] representing U is simply a finite-state automaton accepting all the en- 
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codings of all the elements of U. The following results, due to Biichi [Biic60], 
Cobham [Cob69] and Semenov [Sem77], characterize precisely the sets of integer 
vectors that  can be represented by NDDs: 

T h e o r e m  6. A set U C Z ~ is representable by an NDD in a base r > 1 i f  and 
only if  it can be defined in the first-order theory (Z ,+ ,  <, Vr), where Vr is a 
function that maps every nonzero integer onto the highest power o f t  dividing it. 

T h e o r e m  7. A set U C Z '~ is representable by an NDD in any base if  and 
only if  it can be defined in Presburger arithmetic, i.e., in the first-order theory 
(z,+,,<). 

An important  corollary of Theorem 7 is that  any vector transformation that  
can be expressed in Presburger arithmetic can be applied to sets of integer vectors 
represented as NDDs. In particular, one can always compute the image of such 
a set by any linear operation that  belongs to Op. It is thus possible to compute 
the effect of a transition of a linear integer automaton on a set of variable-set 
values represented as an NDD. 

In order to compute the set of reachable states of a linear integer automaton 
with the help of NDDs, one must also be able to add meta-transitions to the 
automaton.  Selecting cycles that  are suitable for recta-transitions can be done 
thanks to the following result, which is proved in [Boi98]. 

T h e o r e m 8 .  Given a sequence ~ E Op* of linear integer operations without 
guards, it is decidable whether the closure ct* preserves the representable nature 
of sets of integer vectors. Moreover, i f  ~* preserves the representable nature of 
sets of integer vectors, then any sequence ~r ~ obtained by adding guards to the 
operations composing c~ is such that (cr')* preserves the representable nature of 
sets of integer vectors. 

Very roughly, the criterion under which a sequence of linear operations pre- 
serves representability is that  the eigenvalues of the matr ix corresponding to the 
transformation defined by the sequence are same-order roots of a power of the 
base used for the representation. 

Computing the effect of a meta-transit ion on a represented set of variable- 
set values can be done thanks to the following result, which is fully developed 
in [Boi98]. 

T h e o r e m 9 .  I f  cr I E Op* is a sequence of linear integer operations such that the 
corresponding guardless linear integer operation cr has a closure that preserves 
the representable nature of sets of integer vectors, then one can compute an NDD 
representing (¢')*(U) from ~' and an NOD representing V C_ Z ~. 

6 C o n c l u s i o n s  

For many years, there has been a dichotomy in verification approaches: algo- 
rithmic methods for finite-state systems, proof-based methods for infinite-state 
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systems. This dichotomy has not been absolute, but when algorithmic methods 
have been proposed for infinite-state systems, it has usually been for restricted 
classes for which most problems are decidable. For instance, much research has 
been devoted to Petri nets, which sit interestingly close to the limit of decidabil- 
ity [EN94]. 

Most of the results presented in this paper are linked to a different start- 
ing point: consider undecidable classes, but be satisfied with partial algorithmic 
solutions. There are two strong reasons for doing so. The first is that  for a veri- 
fication approach to be usable in an industrial setting it has to be supported by 
tools that  do most of the work. Hence, methods that  at least a t tempt  to provide 
results without user intervention are essential. The  second reason is that  there 
is little practical benefit from focusing on decidable classes of systems. Indeed, 
the high complexity of all meaningful verification problems has as consequence 
that ,  even for perfectly decidable classes, solutions are anyway only partial from 
a practical point of view. No verification tool is guaranteed to succeed on any 
but  the most trivial instances and, often, the only way to know if a tool can 
handle a particular instance is to run the tool. Since the ideas presented in this 
paper lead to tools for infinite-state systems with a perfectly similar behavior, 
there is no reason to, a priori, doubt their acceptability for practical use. The 
determining factor will be how often they succeed on the program instances for 
which verification is indeed needed. 

Another central theme of this paper is the importance of well-adapted repre- 
sentation systems for sets of values. In the finite-state case, BDDs have provided 
a substantial boost to the success of verification methods. The intuition underly- 
ing this paper is that  representation methods with similar characteristics will be 
crucial to the success of verification techniques for infinite-state systems. With 
respect to this, the finite automaton,  which has already proven its use for devel- 
oping finite-state verification algorithms [VW86, BVW94], though probably not 
the ult imate solution, might again be a very fruitful starting point. 
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