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Abstract. We demonstrate the limitations of various ordered representations that 
have been considered in the literature for symbolic model checking including 
BDDs [3], *-BMDs [6], HDDs [15], MTBDDs [13] and EVBDDs [25]. We intro- 
duce a lower bound technique that applies to a broad spectrum of such functional 
representations. Using an abstraction that encompasses all these representations, 
we apply this technique to show exponential size bounds for a wide range of 
integer and boolean functions that arise in symbolic model checking in the defi- 
nition and implicit exploration of the state spaces. We give the first examples of 
integer functions including integer division, remainder, high/low-order words of 
multiplication, square root and reciprocal that require exponential size in all these 
representations. Finally, we show that there is a simple regular language that re- 
quires exponential size to be represented by any *-BMD, even though BDDs can 
represent any regular language in linear size. 

1 Introduction 

Model checking, proposed in [ 14], is a verification technique for determining whether a 
given property expressed as a temporal logic formula is satisfied by a system specifica- 
tion ([ 17] is an excellent source of references.) One of the major bottlenecks of model 
checking is the state explosion problem, i.e. the exponential growth in the number of 
states relative to the size of the system being verified. 

Symbolic methods [9, 29, 8] have successfully combated this problem in many in- 
stances. Central to these methods is an underlying representation for various boolean 
and integer functions, and predicates combining such functions in arbitrary ways, in 
order to encode and implicitly explore state spaces. Ideally, these representations must 
satisfy certain important properties. First, they must be able to concisely represent the 
functions that occur in the definition of the components of the system being verified 
and arise in the implicit exploration of the state spaces. It is also necessary to combine 
these representations efficiently in order for composing boolean functions and integer 
functions using boolean and arithmetic operators, respectively. Finally, there should be 
efficient algorithms for testing various properties such as equivalence of representa- 
tions and detecting satisfying assignments for boolean functions (more generally, find- 
ing roots of equations and inequalities involving boolean and integer functions). 

BDDs (Ordered Binary Decision Diagrams) [3] are generalizations of decision trees 
to directed acyclic graphs, where the queries are made in some fixed order. Because they 
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are canonical, easy to manipulate, and compactly represent many boolean functions that 
are natural components of circuit designs, they have been useful in many instances for 
equivalence testing of circuit designs against their specification. After their importance 
to symbolic model checking was realized, various optimizations and heuristics [8] have 
resulted in enormously successful BDD-based verification packages. 

The main drawback of BDDs is in concisely representing some important functions, 
particularly integer functions such as multiplication which requires exponential size [4]. 
Therefore other extensions and alternatives, e.g [13, 29, 6, 15], have been proposed to 
overcome some of the limitations of BDDs (see [5] for references to the "alphabet 
soup" of various representation schemes). *-BMDs [6] and HDDs [15] are two notable 
examples that are able to efficiently represent multiplication and other integer functions. 
They have been used to verify and identify errors in SRT division circuits [7, 16] sim- 
ilar to the one used in the Intel Pentium chip. *-BMDs obtain some of their power by 
treating the outputs of integer functions as a whole rather than splitting them into bits 
and have been used for verifying many arithmetic circuit designs that were previously 
intractable [6]. HDDs combine many of the advantages of BDDs and *-BMDs and thus 
have been successfully incorporated into verification packages, e.g. [11]. 

However, none of these representations are satisfactory for verifying general sys- 
tems. A common feature of all the verification approaches is that the system is evaluated 
in a bottom-up manner to represent its transition relation. Therefore, the complexity of 
the various components that arise in this bottom-up evaluation limits the success of a 
representation scheme. Such components typically include many other integer functions 
such as division, reciprocal etc. and predicates such as linear equalities, e.g. xy =- c. An- 
other issue, which arises in verifying arithmetic circuits, is that the outputs are truncated, 
e.g. certain multiplication circuits require that both the high-order and low-order words 
of the product be represented efficiently. 1 This research is aimed at understanding the 
effectiveness of these representations in dealing with these functions and predicates. 

We show that none of the representations referred to above, including recently de- 
fined representations [ 12], can represent a variety of specific integer and boolean func- 
tions concisely. Our specific results include 

- Exponential bounds in the *-BMD and HDD representation for natural integer 
functions such as division (D/v), remainder (Mod), high-order word (HiMult) and 
low-order word (LoMult) of multiplication, integer square root (Sqrt), and recipro- 
cal (lnv). These are the first theoretical results that show the limitations of *-BMDs 
and HDDs in representing integer functions. Some of the functions listed above are 
natural components of microprocessor instruction sets that need to be verified. 

- Exponential bounds for many boolean predicates including factor verification, string 
matching, selection/equality, shifted equality, and undirected graph predicates such 
as connectivity, s-t connectivity and bipartiteness that hold in all the representations 
considered above. 

- A simple regular language that requires *-BMDs of exponential size. In contrast, 
BDDs can represent any regular language in linear size. 

Existing lower bounds for BDDs [4] or even read-once branching programs [32] do 
not extend to *-BMDs and HDDs. We derive our lower bounds by defining an abstrac- 

1 R. E. Bryant. Private Communication. 
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tion, called the Binary Linear Diagram (BLD), that encompasses all the representations 
referred to above. We then show that for any function f ,  the rank of a certain matrix 
associated with f is a lower bound on the size of any BLD for f .  This matrix is (essen- 
tially) the one usually used for VLSI AT 2 bounds, and has been studied extensively in 
communication complexity by theoreticians. (An excellent source for results and ref- 
erences for this area is [24].) Our lower bound technique is analogous to previously 
known results in multiplicity automata theory which relate the size of a multiplicity 
automaton to the rank of the Hankel matrix computed by the automaton [20, 10]. 

Our technique provides insight into the contrast between boolean and integer repre- 
sentations. For example, consider multiplication. For the boolean function which com- 
putes the middle bit of the product, one of our results shows that the associated matrix 
has exponential rank, but it can be easily verified that the matrix of the integer func- 
tion has constant rank. This gives us better intuition as to why the integer function 
has linear-sized *-BMDs but the middle-bit version requires exponential size in all the 
ordered representations. 

For the boolean predicates listed above, the exponential bounds on the rank are a 
corollary of two of the approaches used for bounding the best-partition communication 
complexity of boolean functions. In the approach taken in [28, 31,4], one constructs 
exponentially large fooling sets. By a theorem of [18], these results imply exponen- 
tial bounds for the rank. The second approach involves directly bounding the rank, as 
in [22] for the graph predicates stated above, although there are fewer results that use 
this approach. On the other hand, the exponential bounds that we prove for the integer 
functions mentioned previously do not follow from standard communication complex- 
ity results but from directly analyzing the associated matrices and bounding their rank. 

As mentioned earlier, *-BMDs represent many arithmetic functions that require ex- 
ponential size BDDs. Enders [ 19] obtained the first separation result in the other direc- 
tion: the graph predicate that checks whether a graph is a triangle has polynomial-sized 
BDDs but requires exponential size *-BMDs. A variety of separation results have been 
shown in [ 1 ], contrasting the representational power of bit-level and word-level ordered 
representations. Our result for regular languages is the first (as far as we know) that 
shows such a separation for some natural language class. It also validates the belief 
in [6] that the strengths and weaknesses of *-BMDs and BDDs are orthogonal. 

The paper is organized as follows. In Section 2, we define the BLD representation 
and illustrate how it generalizes all the ordered representations. Section 3 describes the 
basic lower bound technique of relating the BLD size of a function to the rank of certain 
matrices associated with that function. Applying this technique, we prove in Section 4 
that the integer functions Div, Mod, HiMult, LoMult, Sqrt and Inv require exponential- 
sized BLDs. In Section 5, we give exponential lower bounds for many boolean functions 
by either using fooling sets or directly bounding the rank. Finally, in Section 6, we 
demonstrate for a simple regular language that the *-BMD complexity is exponential. 

2 Binary Linear Diagrams 

Let X = {x] ,x2,...  ,Xn} be a set of boolean variables. We consider functions that map 
boolean inputs (which assign 0-1 values to the variables) to elements of some fixed 
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ground field K.  We also consider subfunctions of a function f obtained by setting some 
of the input variables to 0-1 values. If t~ is a partial assignment of 0-1 values to Y C_ X, 
we denote the resulting subfunction by f ro  (which is defined on X\Y) .  

Definition 1. An (Ordered) Binary Linear Diagram (BLD) is a labeled, directed acyclic 
graph with a designated node called the source. The nodes that have out-degree O, 
called the sinks, are labeled with elements from 9(. Every other node v has out-degree 
two and the two edges directed from v are distinguished as the O-edge and 1-edge, 
respectively. The node that the O-edge (respectively, 1-edge) is incident to is called the 
O-child (respectively, 1-child). The node v is labeled with a variable from X and a 2 × 2 
matrix with entries in K.  2 For some order 0 = xpl ,Xp2,... ,Xpn on the variables, the 
BLD satisfies the constraint that the sequence o f  variables appearing in order along 
any path is a subsequence of  O. The size of a BLD is defined as the number of  nodes 
that it contains. 

We define the semantics of  computation in a BLD by associating a node function gv 
with each node v: if v is a sink, gv is a constant function as given by its label; i f  v is a 
non-sink, labeled with a 2 x 2 matrix Tv and a variable Xpk for  some k, 1 < k < n, gv 
is defined on the variable set {Xpk , Xpk +1,... 'XP, } in terms of  its O-child u, and 1-child 

w, by [ (gv)[xp~ J = Tv gw . The function computed by the BLD is the node function 

associated with the source. 

Note that unlike many of the ordered representations that have canonical represen- 
tations of functions, it is possible to have different BLDs computing the same function. 
They are purely an abstraction of a large class of representations, used for proving 
lower bounds. For each representation, the corresponding BLD has the same underly- 
ing acyclic graph, variable and sink labels. The 2 x 2 matrix that labels any (non-sink) 
node is uniquely determined by the representation that the BLD corresponds to: for a 

BDD, the label is an identity matrix, for a *-BMD having no edge weights, it is [ 1 011 
1 ' 

and for an HDD, it is the matrix that is assigned by the HDD to the variable label of 
that node. The following example illustrates how weights can be handled. 

Example 1. Consider the integer multiplication function f ( x , y )  for a pair of two-bit 
numbers x = XlXO and y = YlYo. Figure 1 shows both the *-BMD representation and the 
corresponding BLD representation o f f .  Using our definition, the node function at node 
d i s y o  and at nodec is  ( 1 - y l ) - ( 1 . y 0 + 0 . 2 ) + y l . ( 1 . y 0 +  1-2) = y 0 + 2 " y l .  

3 The  Rank B o u n d  for B L D s  

We now describe our main result for getting lower bounds on the BLD complexity of a 
function, that is, lower bounds on the BLD size that hold independent of the order of the 
variables. A slightly weaker result can be inferred from standard results on multiplicity 

2 Alternatively, we could have defined BLDs using edge variables and weights for abstracting 
non-deterministic ordered representations such as Parity-OBDDs. Our bounds apply to this 
alternate definition as well. 
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automata which have been previously considered in stochastic automata [ 10], theory of 
formal series [23], and learning theory [2]. Informally, a multiplicity automaton is sim- 
ilar to a non-deterministic automaton with weights (in some field 90  on transitions and 
states. It computes a function f : {0,1}* ~ 9( such that for each input w, f (w)  equals 
the sum over all paths conforming to w of the product of  weights of  the transitions and 
the last state along each such path. Define the Hankel matrix F associated with f as an 
infinite matrix whose rows and columns are indexed by strings in {0,1}*. The (x,y) th 
entry of F for strings x and y is f ( x  o y). It is known that the size of a minimal automaton 
computing f equals rank(F) [10, 20]. 

Given any BLD P computing a function f that uses the order Xp~ ,xp2,... ,xe,, we 
transform it to a multiplicity automaton N via the following procedure. First, by adding 
dummy nodes, we transform P to a BLD P'  of size at most n. size(P) in which no vari- 
able is missed along any source-sink path. Next, we view P~ as a multiplicity automaton 
N: nodes of pr become states of N, and the source of P~ becomes the start state of N. 

For a node v in/,i  with the associated matrix / v°° v0] l ,  whose 0-child and 1-child are 
/ V l 0  V I I  J 

u0 and ul respectively, we define the weight of the edge (v, Ub) in N corresponding to 
the symbol b t to be Vb, b, where b,b ~ E {0, 1}. The weight of a sink is equal to its label 
and equals 0 for non-sink nodes. If  we identify any string b = bib2. . ,  b,  E {0,1 }n with 
the input that assigns bi to Xpi for all i, then it is not too difficult to show that N also 
computes f .  Therefore, size(P) > rank(F)/n. 

For our purposes, we consider certain special submatrices of F. Fix a k, 0 < k < n. 
Let L = {x m,xpl , . . .  ,Xpk } and R be the remaining variables. Consider the submatrix 

__ /t//Pt,P2,--- ,Pn My - "~f,k of F whose rows and columns correspond to all the 0-1 assignments 
to L and R, respectively. Using a proof similar to the one that relates the size of a 
multiplicity automaton to the rank of the associated Hankel matrix, we can show that 
the rank of My is also a lower bound on the BLD size. A brief sketch of this proof is as 
follows: 3 For each input ff : L ---+ {0, 1 }, we can associate a unique node in the BLD that 
can be reached from the source by tracing the path of  0-edges and 1-edges according to 
t~ and stopping as soon as either a sink or a node labeled with a variable of R is reached. 
Let Vk denote the set of nodes associated, in the manner described above, with all the 
0-1 input assignments to L. A proof by induction on k shows that the subfunction f[~,  
for any input ~ : L ~ {0,1}, is linearly related to the node functions associated with the 
nodes in Vk. Therefore, the matrix My can be expressed as a product T.  H, where H is 
a matrix of IVkl rows corresponding to all the node functions. From elementary linear 
algebra, rank(My) < rank(H) < IVkl. automata results. 

Theorem 1. For any k, 0 < k < n, and for any order of  the variables Xpl ,Xp2,... ,Xp,, 
let M~,~ p2'''''p" denote the matrix where the (~,~)th entry is f ( o "  n), for each t~ and 

that assign 0-1 values to {xm,xp2,...  ,xpk } and {Xek+l ,Xpk+2,... ,Xp,}, respectively. 
Then, the size of  any BLD that computes f ,  using an arbitrary order on the variables, 

r r ~  b(  llatPl ~P2~... ,Pn is at least minpl,p2,...,p, maxk . . . . . . .  f ,k 1" 

3 We can extend this proof to the case where the BLD is defined using edge weights and label- 
ings. Here, the rank bound does not follow from multiplicity automata results. 
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Corollary 1. The statement in Theorem 1 holds when we substitute any of the ordered 
representations such as BDDs, *-BMDs, and HDDs in place of BLDs. 

We will use a form of Theorem 1 that is easier to apply for proving exponential 
bounds on the rank. Notice that the rank of the matrix My = M~:~ p2,''" 'p~ depends 
only on L and R and not on the order of the variables in L or R. Therefore, denote 
this matrix by M~ 'R. Let P C_ {(L,R)IX = LOR} be a family of partitions of X such 
that for every order x m ,Xp2,... ,xp, of the variables, there is at least one k such that 
({Xpl ,Xp2,... ,Xpk), {Xpk+l ,Xpk+2,... ,Xpn) ) E P. It follows that the best-partition rank, 

defined as the minimum rank of M~ 'g over all partitions in £0, is a lower bound on the 
BLD size. 

Example 2. Consider the multiplication function f (x ,y )  of Example 1. Let g(x,y) de- 
note the middle (second least significant) bit ofxy. Setting L = {x0,xl } and R = {Y0,Yl }, 

XlXO 
Mr.:  X"IXO 

XIXO 
XlXO 

m 

YlYO YlyO YlYO YlYO 
0 0 0 0  
0 I 2 3 
0 2 4 6  
0 3  6 9  

xlxo 
Mg= -x-fxo 

xixo 
XlXO 

YlYO ylYO YlYO ylYo 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 

Mf has rank 1 (over reals or rationals), and remains constant at 1 for larger input sizes. 
In contrast, Mg has rank 2 over GF[2]. We will see shortly that this rank increases 
exponentially for larger input sizes (for any order of the variables). 

4 Integer Functions with Exponential BLD Size 

We consider integer functions of the form f (x ,y , . . .  ) where x,y , . . ,  are n-bit integers 
encoded in binary. Define the division function Div(x,y) as [x/yJ and the mad function 
Mod(x,y) as x mad y. The functions HiMult(x,y) and LoMult(x,y) represent the high- 
order word and low-order word, respectively of the product xy, that is HiMult(x,y) = 
[ ~ ]  and LoMult(x,y) = xy mad (2n). Finally, let the square root function Sqrt(x) de- 

note Iv/x] and the reoprocal funcuon lnv(x) denote . The followmg theorem / x d  
shows that the BLD complexity of each of these integer functions is exponential. 

Theorem 2. Let BLD(f)  denote the minimum size of  a BLD representing f over any 
fieM that includes the integers. Then, 

BLD(Div) >_ 2 n/16 - 1 BLD(Mod) > 2 n/16 - 3 BLD(HiMult) > 2 n/16 

BLD(LoMult) > 2 n/16 - 3 BLD(Sqrt) _> 2 f~(n) BLD(Inv) > 2 n(n) 

Proof. Let the variable sets X = Xn-lXn-2...xo, Y = Yn--lyn--2...Yo, etc., each represent 
n-bit integer inputs of a function f .  For all the functions that we consider, we will 
choose a set Z = U U V _C X of 2m consecutive variables, where U = {xe+i I 2m > i > 
m}, and V = {xe+i [ m > i > 0}, for some g, m. Choose any (L,R) in the family of 
partitions { (L,R) I R = X\L,  IL n Zl = IZl/2}. We refer to assignments to the variables 
of L (respectively, R) as row (respectively, column) assignments. 
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Proposition 1 ([4, Lemma  3]). There exists an index set I C_ { 1 ,2 , . . . ,  m}, with III 
m/8, and integers p, e + m > p > g + max(1), and q, £ + 2 m  > q > g + m + m a x ( 1 )  such 
that the two sets A = {Xq-k I k E I} C_ U and B = {xp-k I k E I} C_ V, satisfy the property 
that either A C L and B C R or A C_ R and B C_ L. 

Thus, the words U and V can be aligned in a such a way that the variables in A and B can 
be "matched" (see Figure 2). Without loss of generality, assume from the proposition 
above that A _C L and B C_ R. We will restrict all the variables that are not in A tO B (and 
only those variables) to certain fixed values that depend on f .  We then show that the 
2111 × 2111 submatrix ivy ~A,B of My obtained by varying the row and column assign- 
ments in all possible ways but still conforming to the above restrictions has (almost) 
full rank. If  m = 12(n), then Nf and consequently Mf has exponential rank. 

To simplify the presentation below, let I 'denote max(l). Each set of boolean values 
bk, k E 1, can be thought of as assigning values to the variables of A or B and thus can 
be associated with a unique row or column of Nf. We identify the set bk, k E I, with 
the (unique) number ~k~ibk2 -k. Let 0 < Sl < s2 < ... < s211I < 1 be all the numbers 

arising in this way. (Although these are rational, 2lsi is always an integer.) Permute the 
rows and columns of Nf so that the i th row and and t ~h column are associated with si, 
for 1 < i < 2111. Let t be the integer which corresponds to the fixed assignment of values 
to the variables of X\ (A  tO B). 4 Note that the input X which corresponds to the i th row 
and jth column is Xij = 2qsi q- 2Psj  -}- t. Our goal is to chose t in such a way that when 
computing f (Xi j , . . .  ), the integers 2qsi and 2Psi will be multiplied by suitable factors 
so as to obtain a term which "aligns" si and sj. Since these numbers affect the same bit 
positions, we will use the alignment to affect the value of f for the various Xij's in a 
way that Nf has almost full rank. 

Summarizing the paradigm, for each function f we choose U and V, and apply 
Proposition I to obtain I, p, q, A, and B. We then fix the values of all the variables not in 
A tO B and show that the resulting submatrix Nf has almost full rank. We omit the proof 
for Inv, which appears in the full version. 

(a) Div: Let n = 2m. Choose U = {X2m-1 , . . .  ,Xm}, and V = {Xm-1,... ,xo} and apply 
Proposition 1 to obtain I, p, q, A, and B. Set each of the variables in X\(A  LIB) to 0 so 

that Xij = 2qsi q- 2Psj. Fix Y to be the integer 2q-l'q - 2 p-~" by setting both Yp-T and Yq-'i" 
to 1 and each remaining variable in Y to 0. 

Observe that for all i,j, Xij = (27si)Y + 2P(sj - s i ) .  Since 12P(sj -si)] < 2 p < Y, 

it follows that (1) Div(Xii, Y) = 2Tsi and (2) for all j < i, Div(Xij,Y) = 27si- 1. Thus, 
from elementary linear algebra, rank(NDiv) > 2111 _ 1 > 2 n/16 - 1. 

(b) Mod: For the same parameters considered in part (a), note that NMo d = M - Y.  
NDiv, where the (i~j) th entry of M is 2qsi q- 2Ps i (  --- Xij). It can be verified that M has 

rank 2, implying that rank(NMod) >_ rank(NDiv) - rank(M) > 2 n/16 - 3. 

(c) HiMult: Let n = 2m. Choose U = {X2m-l,... ,Xm}, V ----- {Xra- l , - -x2X0} and apply 
Proposition 1 to obtain I, p, q, A, and B. For each k E/~ = {1,2, . . .  , I} \ I ,  we set the 

4 In other words, if each xj E X\(A to B) is set to cj E {0,1 }, then ]~xj~X\(AUB)cj 2j ---- t. 
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variable Xq_ k E X \ ( A  UB) to 1, and all the remaining variables in X \ ( A  UB) to 0; these 
variables form the integer 2qr, where r = ]~ksI' 2-k. Therefore, Xij = 2q(si + r) + 2Psj. 
We also set both Y2m-q and Y2m-p to 1 and the remaining variables in Y to 0 so that the 
input Y corresponds to the integer 2 2m-q + 2 2m-p. Now, 

I Xij .}7 [ [ ( 2 q ( s i +  r ) +  2Psj22m-p+q) • (22m-q -4- 22m-p) / 
HiMult( Xij , Y ) 

L 22m J : L 22m ] 
= 2q-P(si + r) + [(si + sj + r) + 2P-qsj] (1) 

Because si -[- Sj -'[- r = aij2 -'f, for some integer aij, and 2P-qSj < 2 -?, the expression in 
Line 1 simplifies to 2q-P(si + r) + [si + sj + r]. 

Suppose si = Zket bk2-k, for some bk, k E I. If i* = 2111 - i + 1, then si* = ~kst-b-£k 2-k,  
that is, si* is the one' s complement of si with respect to the bit positions in I. Therefore, 

1" -i  2-~. si + si* = ]~k~l 2-k, implying that si + si* + r = Y-i=l 2 = 1 - 
We have the following two cases. When j < i*, [si + sj + rJ < Isi + si* + rJ = O. 

Thus, HiMult(Xij, Y) = 2q-P(si  -I- r). On the other hand, si + si*+l + r > si + si* + 2-7+  
r = I, so [si + si*+l + rJ > 1. Therefore, HiMult(Xi.+Lj, Y) > 2q-P(si  q- r) -q- 1. It fol- 
lows that rank(NHiMult ) > 2111 _ 1 > 2 n/16 - 1. 

(d) LoMult: With the same parameters as in part (c), NLoMult = M - 2mNHiMult , 
where the (i, j)th entry of g is Xij. Y = (2 zm-q + 22m-e)Xij. Therefore, 

rank(NLoMult ) >_ rank(NHiMult ) - r a n k ( M )  > rank(NHiMult ) - 2  > 2 n/16- 3. 

(e) Sqrt: Let n = 10m, U = {X5m_ l,X5m_2,... ,X4m}, V : {X4m-l,X4m-2,... ,X3m}, for 
large enough m, and apply Proposition 1 to obtain I, p, q, A, and B. Fix each of the 
variables X2q_2~_ 2, X2p_2T_ 2, Xp+q_2? - 1 to 1 (which are in X \ ( A  U B) because 2p - 21"- 

2 > 5m) and all the remaining variables in X \ ( A  UB)  to 0. Therefore, Xij = 1.2 "-}- 2qsi "-}- 

2Psi, where r = 2 q-T-1 + 2 p-?-I . 

We claim that for i >_ 2, (a) Xii < (r-t- 21"Si) 2 < Xi,i+t and (b) for all j <_ i, Xij >_ ( r +  

21"Si -- 1) 2, which would imply the desired inequality, rank(NSqrt ) >_ 2111 - 2 = 2 t~(n). 

Observe that ( r +  21"si) 2 : r 2 + 2qsi -t- 2Psi -}- (21"si) 2. Since 3I'_< 3m < p, it follows that 

(27si)2 < 22?<__ 2p-?_< 2P(si+ L _  si), proving part(a) of the claim. 
Since p _> 31"and q - p > 1, part(b) of the claim follows by verifying for each j that 

( r +  2"[si -- 1) 2 = r 2 + 2qsi -- (2 q-~'-  2Psi) -- (2 p-~ ' -  (2Isi - 1) 2) _< r 2 + 2qsi <_ Xij. 

5 Boolean Functions with Exponential BLD Size 

• LR For a fixed partition of X into L and R, the matrix M~' has been used to study commu- 
nication complexity of f ([33]). Among the approaches that give lower bounds on this 
measure are (i) constructing large boolean fooling sets and (ii) computing the rank of 

L,R C n M~ [30]. A fooling set o sists of pairs of input assignments to L and R such that for 
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any two distinct pairs (o,r~) and (oS,r(), f ( a .  re) = f ( o  a. ~'), but f ( 6 - ~ ' )  ¢ f ( o  a. ~). 
The following proposition [18], which extends to unequal-sized partitions, shows that 
exponentially large fooling sets imply exponential rank. 

Proposition 2 ([18]). For any boolean function f ,  and any equipartition of its variable 
into L and R, let M~ 'R be the associated matrix o f f  with respect to this partition. set  

L,R Let r = rank(M7 ) over anyfield. I f  s is the size of a fooling set, then r >_ x /~ -  1. 

For the best-partition rank, the more relevant measure is the best-partition commu- 
nication complexity [31] in which one computes the communication complexity for 
the best choice of a partition into L and R in some appropriate family of partitions. 
By Proposition 2 and the discussion following the statement of Theorem 1, any func- 
tion for which lower bounds on the best-partition communication complexity have been 
proved either by constructing exponential size fooling sets or by proving exponential 
rank bounds for all partitions imply exponential bounds on the BLD complexity. Ex- 
amples of such functions are in [28], [31], [4], [27] and [22], of which we list some 
below. 

Corollary 2. The foUowing predicates require BLDs of exponential size: 

PATTERN MATCHING: Verify if the binary pattern string of ctn bits occurs in the binary 
text string of (1 - ~)n bits, where 0 < ~ < 1. 

FACTOR VERIFICATION: Verify if two n-bit numbers multiply to a 2n-bit number. 
MIDDLE BIT OF PRODUCT: Does the middle bit of the product of two n bit numbers 

equal 1 ? 
SELECTION/EQUALITY TESTING: For two n bit numbers, x and y such that x has n/2 

bits set to 1, check if the n/2-bit number obtained by selecting the bits in y at 
positions corresponding to l s in x equals the remaining n /2-bit number in y. 

SHIFTED EQUALITY: Given two input strings and a number i, does the first string 
equal the second shifted circularly to the right i times? (Lam and Ruzzo [261 gen- 
eralized this to show that any function f that has a large fooling set under some 
fixed partition has a shifting version that has large fooling sets under all partitions. 
However, these shifted versions may not be natural.) 

GRAPH PROPERTIES: Verifying any of the following predicates on undirected graphs: 
Connectivity, Bipartiteness, and s-t-Connectivity. 

6 *-BMDs and Regular Languages 

We saw earlier that the rank approach is useful for proving bounds that apply uniformly 
to all the ordered representations. A related and important problem is to contrast specific 
representations in order to understand what representations are best suited for a class 
of functions or languages. For regular languages, we know that BDDs can represent 
any regular language in linear size by keeping track of the state in the automaton that 
represents it. The following theorem shows that there is a simple regular language that 
has exponential complexity in the *-BMD representation. The proof is omitted and 
appears in the full paper. 

Theorem 3. For i = 0,2,3,4, let Ai = {w E {0, 1} 7 : w has i ls  }. Any *-BMD repre- 
senting the regular language S = A~A3(Ao UA2)* UA~44A~ requires size 2 ~(n). 
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7 Conclusions 

We have shown that a variety of integer functions such as integer division, remainder, 
high/low-order words of multiplication, square root, and reciprocal require exponential- 
sized BLDs. We then showed similar results for a variety of boolean functions by relat- 
ing its complexity to two measures, the fooling set size and the rank. The generality in 
the BLD definition implies that minor variations in the known ordered representations 
will not be sufficient and we may have to consider non-linear definitions to be able to 
handle the hard functions. Another approach is to consider read-once representations 
that relax the notion of an implicit order on the variables, e.g. Free Binary Decision 
Diagrams [21 ] and their generalizations similar to BLDs. 
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Fig. 1. The *-BMD (left) and BLD(righO for multiplication using the order xl ,xo,Yl ,Yo. 
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Fig. 2. This figure illustrates Proposition 1. The sets A C_ U and B C_ V (shown shaded in the 
figure) can be matched by suitably aligning the words U and V. 


