
On the Limitations of Ordered Representations of
Functions

Jayram S. Thathachar*

Abstract. We demonstrate the limitations of various ordered representations that
have been considered in the literature for symbolic model checking including
BDDs [3], *-BMDs [6], HDDs [15], MTBDDs [13] and EVBDDs [25]. We intro-
duce a lower bound technique that applies to a broad spectrum of such functional
representations. Using an abstraction that encompasses all these representations,
we apply this technique to show exponential size bounds for a wide range of
integer and boolean functions that arise in symbolic model checking in the defi-
nition and implicit exploration of the state spaces. We give the first examples of
integer functions including integer division, remainder, high/low-order words of
multiplication, square root and reciprocal that require exponential size in all these
representations. Finally, we show that there is a simple regular language that re-
quires exponential size to be represented by any *-BMD, even though BDDs can
represent any regular language in linear size.

1 Introduction

Model checking, proposed in [14], is a verification technique for determining whether a
given property expressed as a temporal logic formula is satisfied by a system specifica-
tion ([17] is an excellent source of references.) One of the major bottlenecks of model
checking is the state explosion problem, i.e. the exponential growth in the number of
states relative to the size of the system being verified.

Symbolic methods [9, 29, 8] have successfully combated this problem in many in-
stances. Central to these methods is an underlying representation for various boolean
and integer functions, and predicates combining such functions in arbitrary ways, in
order to encode and implicitly explore state spaces. Ideally, these representations must
satisfy certain important properties. First, they must be able to concisely represent the
functions that occur in the definition of the components of the system being verified
and arise in the implicit exploration of the state spaces. It is also necessary to combine
these representations efficiently in order for composing boolean functions and integer
functions using boolean and arithmetic operators, respectively. Finally, there should be
efficient algorithms for testing various properties such as equivalence of representa-
tions and detecting satisfying assignments for boolean functions (more generally, find-
ing roots of equations and inequalities involving boolean and integer functions).

BDDs (Ordered Binary Decision Diagrams) [3] are generalizations of decision trees
to directed acyclic graphs, where the queries are made in some fixed order. Because they

* This work was supported by the National Science Foundation under Grant CCR-9303017.
Mailing address: Department of Computer Science and Engineering, University of Washing-
ton, Box 352350, Seattle, Washington 98195 E-mail: jayram@cs.washington.edu

233

are canonical, easy to manipulate, and compactly represent many boolean functions that
are natural components of circuit designs, they have been useful in many instances for
equivalence testing of circuit designs against their specification. After their importance
to symbolic model checking was realized, various optimizations and heuristics [8] have
resulted in enormously successful BDD-based verification packages.

The main drawback of BDDs is in concisely representing some important functions,
particularly integer functions such as multiplication which requires exponential size [4].
Therefore other extensions and alternatives, e.g [13, 29, 6, 15], have been proposed to
overcome some of the limitations of BDDs (see [5] for references to the "alphabet
soup" of various representation schemes). *-BMDs [6] and HDDs [15] are two notable
examples that are able to efficiently represent multiplication and other integer functions.
They have been used to verify and identify errors in SRT division circuits [7, 16] sim-
ilar to the one used in the Intel Pentium chip. *-BMDs obtain some of their power by
treating the outputs of integer functions as a whole rather than splitting them into bits
and have been used for verifying many arithmetic circuit designs that were previously
intractable [6]. HDDs combine many of the advantages of BDDs and *-BMDs and thus
have been successfully incorporated into verification packages, e.g. [11].

However, none of these representations are satisfactory for verifying general sys-
tems. A common feature of all the verification approaches is that the system is evaluated
in a bottom-up manner to represent its transition relation. Therefore, the complexity of
the various components that arise in this bottom-up evaluation limits the success of a
representation scheme. Such components typically include many other integer functions
such as division, reciprocal etc. and predicates such as linear equalities, e.g. xy =- c. An-
other issue, which arises in verifying arithmetic circuits, is that the outputs are truncated,
e.g. certain multiplication circuits require that both the high-order and low-order words
of the product be represented efficiently. 1 This research is aimed at understanding the
effectiveness of these representations in dealing with these functions and predicates.

We show that none of the representations referred to above, including recently de-
fined representations [12], can represent a variety of specific integer and boolean func-
tions concisely. Our specific results include

- Exponential bounds in the *-BMD and HDD representation for natural integer
functions such as division (D/v), remainder (Mod), high-order word (HiMult) and
low-order word (LoMult) of multiplication, integer square root (Sqrt), and recipro-
cal (lnv). These are the first theoretical results that show the limitations of *-BMDs
and HDDs in representing integer functions. Some of the functions listed above are
natural components of microprocessor instruction sets that need to be verified.

- Exponential bounds for many boolean predicates including factor verification, string
matching, selection/equality, shifted equality, and undirected graph predicates such
as connectivity, s-t connectivity and bipartiteness that hold in all the representations
considered above.

- A simple regular language that requires *-BMDs of exponential size. In contrast,
BDDs can represent any regular language in linear size.

Existing lower bounds for BDDs [4] or even read-once branching programs [32] do
not extend to *-BMDs and HDDs. We derive our lower bounds by defining an abstrac-

1 R. E. Bryant. Private Communication.

234

tion, called the Binary Linear Diagram (BLD), that encompasses all the representations
referred to above. We then show that for any function f , the rank of a certain matrix
associated with f is a lower bound on the size of any BLD for f . This matrix is (essen-
tially) the one usually used for VLSI AT 2 bounds, and has been studied extensively in
communication complexity by theoreticians. (An excellent source for results and ref-
erences for this area is [24].) Our lower bound technique is analogous to previously
known results in multiplicity automata theory which relate the size of a multiplicity
automaton to the rank of the Hankel matrix computed by the automaton [20, 10].

Our technique provides insight into the contrast between boolean and integer repre-
sentations. For example, consider multiplication. For the boolean function which com-
putes the middle bit of the product, one of our results shows that the associated matrix
has exponential rank, but it can be easily verified that the matrix of the integer func-
tion has constant rank. This gives us better intuition as to why the integer function
has linear-sized *-BMDs but the middle-bit version requires exponential size in all the
ordered representations.

For the boolean predicates listed above, the exponential bounds on the rank are a
corollary of two of the approaches used for bounding the best-partition communication
complexity of boolean functions. In the approach taken in [28, 31,4], one constructs
exponentially large fooling sets. By a theorem of [18], these results imply exponen-
tial bounds for the rank. The second approach involves directly bounding the rank, as
in [22] for the graph predicates stated above, although there are fewer results that use
this approach. On the other hand, the exponential bounds that we prove for the integer
functions mentioned previously do not follow from standard communication complex-
ity results but from directly analyzing the associated matrices and bounding their rank.

As mentioned earlier, *-BMDs represent many arithmetic functions that require ex-
ponential size BDDs. Enders [19] obtained the first separation result in the other direc-
tion: the graph predicate that checks whether a graph is a triangle has polynomial-sized
BDDs but requires exponential size *-BMDs. A variety of separation results have been
shown in [1], contrasting the representational power of bit-level and word-level ordered
representations. Our result for regular languages is the first (as far as we know) that
shows such a separation for some natural language class. It also validates the belief
in [6] that the strengths and weaknesses of *-BMDs and BDDs are orthogonal.

The paper is organized as follows. In Section 2, we define the BLD representation
and illustrate how it generalizes all the ordered representations. Section 3 describes the
basic lower bound technique of relating the BLD size of a function to the rank of certain
matrices associated with that function. Applying this technique, we prove in Section 4
that the integer functions Div, Mod, HiMult, LoMult, Sqrt and Inv require exponential-
sized BLDs. In Section 5, we give exponential lower bounds for many boolean functions
by either using fooling sets or directly bounding the rank. Finally, in Section 6, we
demonstrate for a simple regular language that the *-BMD complexity is exponential.

2 Binary Linear Diagrams

Let X = {x] ,x2,... ,Xn} be a set of boolean variables. We consider functions that map
boolean inputs (which assign 0-1 values to the variables) to elements of some fixed

235

ground field K. We also consider subfunctions of a function f obtained by setting some
of the input variables to 0-1 values. If t~ is a partial assignment of 0-1 values to Y C_ X,
we denote the resulting subfunction by f ro (which is defined on X\Y) .

Definition 1. An (Ordered) Binary Linear Diagram (BLD) is a labeled, directed acyclic
graph with a designated node called the source. The nodes that have out-degree O,
called the sinks, are labeled with elements from 9(. Every other node v has out-degree
two and the two edges directed from v are distinguished as the O-edge and 1-edge,
respectively. The node that the O-edge (respectively, 1-edge) is incident to is called the
O-child (respectively, 1-child). The node v is labeled with a variable from X and a 2 × 2
matrix with entries in K. 2 For some order 0 = xpl ,Xp2,... ,Xpn on the variables, the
BLD satisfies the constraint that the sequence o f variables appearing in order along
any path is a subsequence of O. The size of a BLD is defined as the number of nodes
that it contains.

We define the semantics of computation in a BLD by associating a node function gv
with each node v: if v is a sink, gv is a constant function as given by its label; i f v is a
non-sink, labeled with a 2 x 2 matrix Tv and a variable Xpk for some k, 1 < k < n, gv
is defined on the variable set {Xpk , Xpk +1,... 'XP, } in terms of its O-child u, and 1-child

w, by [(gv)[xp~ J = Tv gw . The function computed by the BLD is the node function

associated with the source.

Note that unlike many of the ordered representations that have canonical represen-
tations of functions, it is possible to have different BLDs computing the same function.
They are purely an abstraction of a large class of representations, used for proving
lower bounds. For each representation, the corresponding BLD has the same underly-
ing acyclic graph, variable and sink labels. The 2 x 2 matrix that labels any (non-sink)
node is uniquely determined by the representation that the BLD corresponds to: for a

BDD, the label is an identity matrix, for a *-BMD having no edge weights, it is [1 011
1 '

and for an HDD, it is the matrix that is assigned by the HDD to the variable label of
that node. The following example illustrates how weights can be handled.

Example 1. Consider the integer multiplication function f (x , y) for a pair of two-bit
numbers x = XlXO and y = YlYo. Figure 1 shows both the *-BMD representation and the
corresponding BLD representation o f f . Using our definition, the node function at node
d i s y o and at nodec is (1 - y l) - (1 . y 0 + 0 . 2) + y l . (1 . y 0 + 1-2) = y 0 + 2 " y l .

3 The Rank B o u n d for B L D s

We now describe our main result for getting lower bounds on the BLD complexity of a
function, that is, lower bounds on the BLD size that hold independent of the order of the
variables. A slightly weaker result can be inferred from standard results on multiplicity

2 Alternatively, we could have defined BLDs using edge variables and weights for abstracting
non-deterministic ordered representations such as Parity-OBDDs. Our bounds apply to this
alternate definition as well.

236

automata which have been previously considered in stochastic automata [10], theory of
formal series [23], and learning theory [2]. Informally, a multiplicity automaton is sim-
ilar to a non-deterministic automaton with weights (in some field 90 on transitions and
states. It computes a function f : {0,1}* ~ 9(such that for each input w, f (w) equals
the sum over all paths conforming to w of the product of weights of the transitions and
the last state along each such path. Define the Hankel matrix F associated with f as an
infinite matrix whose rows and columns are indexed by strings in {0,1}*. The (x,y) th
entry of F for strings x and y is f (x o y). It is known that the size of a minimal automaton
computing f equals rank(F) [10, 20].

Given any BLD P computing a function f that uses the order Xp~ ,xp2,... ,xe,, we
transform it to a multiplicity automaton N via the following procedure. First, by adding
dummy nodes, we transform P to a BLD P' of size at most n. size(P) in which no vari-
able is missed along any source-sink path. Next, we view P~ as a multiplicity automaton
N: nodes of pr become states of N, and the source of P~ becomes the start state of N.

For a node v in/,i with the associated matrix / v°° v0] l , whose 0-child and 1-child are
/ V l 0 V I I J

u0 and ul respectively, we define the weight of the edge (v, Ub) in N corresponding to
the symbol b t to be Vb, b, where b,b ~ E {0, 1}. The weight of a sink is equal to its label
and equals 0 for non-sink nodes. If we identify any string b = bib2. . , b, E {0,1 }n with
the input that assigns bi to Xpi for all i, then it is not too difficult to show that N also
computes f . Therefore, size(P) > rank(F)/n.

For our purposes, we consider certain special submatrices of F. Fix a k, 0 < k < n.
Let L = {x m,xpl , . . . ,Xpk } and R be the remaining variables. Consider the submatrix

__ /t//Pt,P2,--- ,Pn My - "~f,k of F whose rows and columns correspond to all the 0-1 assignments
to L and R, respectively. Using a proof similar to the one that relates the size of a
multiplicity automaton to the rank of the associated Hankel matrix, we can show that
the rank of My is also a lower bound on the BLD size. A brief sketch of this proof is as
follows: 3 For each input ff : L ---+ {0, 1 }, we can associate a unique node in the BLD that
can be reached from the source by tracing the path of 0-edges and 1-edges according to
t~ and stopping as soon as either a sink or a node labeled with a variable of R is reached.
Let Vk denote the set of nodes associated, in the manner described above, with all the
0-1 input assignments to L. A proof by induction on k shows that the subfunction f[~,
for any input ~ : L ~ {0,1}, is linearly related to the node functions associated with the
nodes in Vk. Therefore, the matrix My can be expressed as a product T. H, where H is
a matrix of IVkl rows corresponding to all the node functions. From elementary linear
algebra, rank(My) < rank(H) < IVkl. automata results.

Theorem 1. For any k, 0 < k < n, and for any order of the variables Xpl ,Xp2,... ,Xp,,
let M~,~ p2'''''p" denote the matrix where the (~,~)th entry is f (o " n), for each t~ and

that assign 0-1 values to {xm,xp2,... ,xpk } and {Xek+l ,Xpk+2,... ,Xp,}, respectively.
Then, the size of any BLD that computes f , using an arbitrary order on the variables,

r r ~ b(llatPl ~P2~... ,Pn is at least minpl,p2,...,p, maxk f ,k 1"

3 We can extend this proof to the case where the BLD is defined using edge weights and label-
ings. Here, the rank bound does not follow from multiplicity automata results.

237

Corollary 1. The statement in Theorem 1 holds when we substitute any of the ordered
representations such as BDDs, *-BMDs, and HDDs in place of BLDs.

We will use a form of Theorem 1 that is easier to apply for proving exponential
bounds on the rank. Notice that the rank of the matrix My = M~:~ p2,''" 'p~ depends
only on L and R and not on the order of the variables in L or R. Therefore, denote
this matrix by M~ 'R. Let P C_ {(L,R)IX = LOR} be a family of partitions of X such
that for every order x m ,Xp2,... ,xp, of the variables, there is at least one k such that
({Xpl ,Xp2,... ,Xpk), {Xpk+l ,Xpk+2,... ,Xpn)) E P. It follows that the best-partition rank,

defined as the minimum rank of M~ 'g over all partitions in £0, is a lower bound on the
BLD size.

Example 2. Consider the multiplication function f (x ,y) of Example 1. Let g(x,y) de-
note the middle (second least significant) bit ofxy. Setting L = {x0,xl } and R = {Y0,Yl },

XlXO
Mr.: X"IXO

XIXO
XlXO

m

YlYO YlyO YlYO YlYO
0 0 0 0
0 I 2 3
0 2 4 6
0 3 6 9

xlxo
Mg= -x-fxo

xixo
XlXO

YlYO ylYO YlYO ylYo
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

Mf has rank 1 (over reals or rationals), and remains constant at 1 for larger input sizes.
In contrast, Mg has rank 2 over GF[2]. We will see shortly that this rank increases
exponentially for larger input sizes (for any order of the variables).

4 Integer Functions with Exponential BLD Size

We consider integer functions of the form f (x ,y , . . .) where x,y , . . , are n-bit integers
encoded in binary. Define the division function Div(x,y) as [x/yJ and the mad function
Mod(x,y) as x mad y. The functions HiMult(x,y) and LoMult(x,y) represent the high-
order word and low-order word, respectively of the product xy, that is HiMult(x,y) =
[~] and LoMult(x,y) = xy mad (2n). Finally, let the square root function Sqrt(x) de-

note Iv/x] and the reoprocal funcuon lnv(x) denote . The followmg theorem / x d
shows that the BLD complexity of each of these integer functions is exponential.

Theorem 2. Let BLD(f) denote the minimum size of a BLD representing f over any
fieM that includes the integers. Then,

BLD(Div) >_ 2 n/16 - 1 BLD(Mod) > 2 n/16 - 3 BLD(HiMult) > 2 n/16

BLD(LoMult) > 2 n/16 - 3 BLD(Sqrt) _> 2 f~(n) BLD(Inv) > 2 n(n)

Proof. Let the variable sets X = Xn-lXn-2...xo, Y = Yn--lyn--2...Yo, etc., each represent
n-bit integer inputs of a function f . For all the functions that we consider, we will
choose a set Z = U U V _C X of 2m consecutive variables, where U = {xe+i I 2m > i >
m}, and V = {xe+i [m > i > 0}, for some g, m. Choose any (L,R) in the family of
partitions { (L,R) I R = X\L, IL n Zl = IZl/2}. We refer to assignments to the variables
of L (respectively, R) as row (respectively, column) assignments.

238

Proposition 1 ([4, Lemma 3]). There exists an index set I C_ { 1 ,2 , . . . , m}, with III
m/8, and integers p, e + m > p > g + max(1), and q, £ + 2 m > q > g + m + m a x (1) such
that the two sets A = {Xq-k I k E I} C_ U and B = {xp-k I k E I} C_ V, satisfy the property
that either A C L and B C R or A C_ R and B C_ L.

Thus, the words U and V can be aligned in a such a way that the variables in A and B can
be "matched" (see Figure 2). Without loss of generality, assume from the proposition
above that A _C L and B C_ R. We will restrict all the variables that are not in A tO B (and
only those variables) to certain fixed values that depend on f . We then show that the
2111 × 2111 submatrix ivy ~A,B of My obtained by varying the row and column assign-
ments in all possible ways but still conforming to the above restrictions has (almost)
full rank. If m = 12(n), then Nf and consequently Mf has exponential rank.

To simplify the presentation below, let I 'denote max(l). Each set of boolean values
bk, k E 1, can be thought of as assigning values to the variables of A or B and thus can
be associated with a unique row or column of Nf. We identify the set bk, k E I, with
the (unique) number ~k~ibk2 -k. Let 0 < Sl < s2 < ... < s211I < 1 be all the numbers

arising in this way. (Although these are rational, 2lsi is always an integer.) Permute the
rows and columns of Nf so that the i th row and and t ~h column are associated with si,
for 1 < i < 2111. Let t be the integer which corresponds to the fixed assignment of values
to the variables of X\ (A tO B). 4 Note that the input X which corresponds to the i th row
and jth column is Xij = 2qsi q- 2Psj -}- t. Our goal is to chose t in such a way that when
computing f (Xi j , . . .), the integers 2qsi and 2Psi will be multiplied by suitable factors
so as to obtain a term which "aligns" si and sj. Since these numbers affect the same bit
positions, we will use the alignment to affect the value of f for the various Xij's in a
way that Nf has almost full rank.

Summarizing the paradigm, for each function f we choose U and V, and apply
Proposition I to obtain I, p, q, A, and B. We then fix the values of all the variables not in
A tO B and show that the resulting submatrix Nf has almost full rank. We omit the proof
for Inv, which appears in the full version.

(a) Div: Let n = 2m. Choose U = {X2m-1 , . . . ,Xm}, and V = {Xm-1,... ,xo} and apply
Proposition 1 to obtain I, p, q, A, and B. Set each of the variables in X\(A LIB) to 0 so

that Xij = 2qsi q- 2Psj. Fix Y to be the integer 2q-l'q - 2 p-~" by setting both Yp-T and Yq-'i"
to 1 and each remaining variable in Y to 0.

Observe that for all i,j, Xij = (27si)Y + 2P(sj - s i) . Since 12P(sj -si)] < 2 p < Y,

it follows that (1) Div(Xii, Y) = 2Tsi and (2) for all j < i, Div(Xij,Y) = 27si- 1. Thus,
from elementary linear algebra, rank(NDiv) > 2111 _ 1 > 2 n/16 - 1.

(b) Mod: For the same parameters considered in part (a), note that NMo d = M - Y.
NDiv, where the (i~j) th entry of M is 2qsi q- 2Ps i (--- Xij). It can be verified that M has

rank 2, implying that rank(NMod) >_ rank(NDiv) - rank(M) > 2 n/16 - 3.

(c) HiMult: Let n = 2m. Choose U = {X2m-l,... ,Xm}, V ----- {Xra- l , - -x2X0} and apply
Proposition 1 to obtain I, p, q, A, and B. For each k E/~ = {1,2, . . . , I} \ I , we set the

4 In other words, if each xj E X\(A to B) is set to cj E {0,1 }, then]~xj~X\(AUB)cj 2j ---- t.

239

variable Xq_ k E X \ (A UB) to 1, and all the remaining variables in X \ (A UB) to 0; these
variables form the integer 2qr, where r =]~ksI' 2-k. Therefore, Xij = 2q(si + r) + 2Psj.
We also set both Y2m-q and Y2m-p to 1 and the remaining variables in Y to 0 so that the
input Y corresponds to the integer 2 2m-q + 2 2m-p. Now,

I Xij .}7 [[(2 q (s i + r) + 2Psj22m-p+q) • (22m-q -4- 22m-p) /
HiMult(Xij , Y)

L 22m J : L 22m]
= 2q-P(si + r) + [(si + sj + r) + 2P-qsj] (1)

Because si -[- Sj -'[- r = aij2 -'f, for some integer aij, and 2P-qSj < 2 -?, the expression in
Line 1 simplifies to 2q-P(si + r) + [si + sj + r].

Suppose si = Zket bk2-k, for some bk, k E I. If i* = 2111 - i + 1, then si* = ~kst-b-£k 2-k,
that is, si* is the one' s complement of si with respect to the bit positions in I. Therefore,

1" -i 2-~. si + si* =]~k~l 2-k, implying that si + si* + r = Y-i=l 2 = 1 -
We have the following two cases. When j < i*, [si + sj + rJ < Isi + si* + rJ = O.

Thus, HiMult(Xij, Y) = 2q-P(si -I- r). On the other hand, si + si*+l + r > si + si* + 2-7+
r = I, so [si + si*+l + rJ > 1. Therefore, HiMult(Xi.+Lj, Y) > 2q-P(si q- r) -q- 1. It fol-
lows that rank(NHiMult) > 2111 _ 1 > 2 n/16 - 1.

(d) LoMult: With the same parameters as in part (c), NLoMult = M - 2mNHiMult ,
where the (i, j)th entry of g is Xij. Y = (2 zm-q + 22m-e)Xij. Therefore,

rank(NLoMult) >_ rank(NHiMult) - r a n k (M) > rank(NHiMult) - 2 > 2 n/16- 3.

(e) Sqrt: Let n = 10m, U = {X5m_ l,X5m_2,... ,X4m}, V : {X4m-l,X4m-2,... ,X3m}, for
large enough m, and apply Proposition 1 to obtain I, p, q, A, and B. Fix each of the
variables X2q_2~_ 2, X2p_2T_ 2, Xp+q_2? - 1 to 1 (which are in X \ (A U B) because 2p - 21"-

2 > 5m) and all the remaining variables in X \ (A UB) to 0. Therefore, Xij = 1.2 "-}- 2qsi "-}-

2Psi, where r = 2 q-T-1 + 2 p-?-I .

We claim that for i >_ 2, (a) Xii < (r-t- 21"Si) 2 < Xi,i+t and (b) for all j <_ i, Xij >_ (r +

21"Si -- 1) 2, which would imply the desired inequality, rank(NSqrt) >_ 2111 - 2 = 2 t~(n).

Observe that (r + 21"si) 2 : r 2 + 2qsi -t- 2Psi -}- (21"si) 2. Since 3I'_< 3m < p, it follows that

(27si)2 < 22?<__ 2p-?_< 2P(si+ L _ si), proving part(a) of the claim.
Since p _> 31"and q - p > 1, part(b) of the claim follows by verifying for each j that

(r + 2"[si -- 1) 2 = r 2 + 2qsi -- (2 q-~'- 2Psi) -- (2 p-~ ' - (2Isi - 1) 2) _< r 2 + 2qsi <_ Xij.

5 Boolean Functions with Exponential BLD Size

• LR For a fixed partition of X into L and R, the matrix M~' has been used to study commu-
nication complexity of f ([33]). Among the approaches that give lower bounds on this
measure are (i) constructing large boolean fooling sets and (ii) computing the rank of

L,R C n M~ [30]. A fooling set o sists of pairs of input assignments to L and R such that for

240

any two distinct pairs (o,r~) and (oS,r(), f (a . re) = f (o a. ~'), but f (6 - ~ ') ¢ f (o a. ~).
The following proposition [18], which extends to unequal-sized partitions, shows that
exponentially large fooling sets imply exponential rank.

Proposition 2 ([18]). For any boolean function f , and any equipartition of its variable
into L and R, let M~ 'R be the associated matrix o f f with respect to this partition. set

L,R Let r = rank(M7) over anyfield. I f s is the size of a fooling set, then r >_ x /~ - 1.

For the best-partition rank, the more relevant measure is the best-partition commu-
nication complexity [31] in which one computes the communication complexity for
the best choice of a partition into L and R in some appropriate family of partitions.
By Proposition 2 and the discussion following the statement of Theorem 1, any func-
tion for which lower bounds on the best-partition communication complexity have been
proved either by constructing exponential size fooling sets or by proving exponential
rank bounds for all partitions imply exponential bounds on the BLD complexity. Ex-
amples of such functions are in [28], [31], [4], [27] and [22], of which we list some
below.

Corollary 2. The foUowing predicates require BLDs of exponential size:

PATTERN MATCHING: Verify if the binary pattern string of ctn bits occurs in the binary
text string of (1 - ~)n bits, where 0 < ~ < 1.

FACTOR VERIFICATION: Verify if two n-bit numbers multiply to a 2n-bit number.
MIDDLE BIT OF PRODUCT: Does the middle bit of the product of two n bit numbers

equal 1 ?
SELECTION/EQUALITY TESTING: For two n bit numbers, x and y such that x has n/2

bits set to 1, check if the n/2-bit number obtained by selecting the bits in y at
positions corresponding to l s in x equals the remaining n /2-bit number in y.

SHIFTED EQUALITY: Given two input strings and a number i, does the first string
equal the second shifted circularly to the right i times? (Lam and Ruzzo [261 gen-
eralized this to show that any function f that has a large fooling set under some
fixed partition has a shifting version that has large fooling sets under all partitions.
However, these shifted versions may not be natural.)

GRAPH PROPERTIES: Verifying any of the following predicates on undirected graphs:
Connectivity, Bipartiteness, and s-t-Connectivity.

6 *-BMDs and Regular Languages

We saw earlier that the rank approach is useful for proving bounds that apply uniformly
to all the ordered representations. A related and important problem is to contrast specific
representations in order to understand what representations are best suited for a class
of functions or languages. For regular languages, we know that BDDs can represent
any regular language in linear size by keeping track of the state in the automaton that
represents it. The following theorem shows that there is a simple regular language that
has exponential complexity in the *-BMD representation. The proof is omitted and
appears in the full paper.

Theorem 3. For i = 0,2,3,4, let Ai = {w E {0, 1} 7 : w has i ls }. Any *-BMD repre-
senting the regular language S = A~A3(Ao UA2)* UA~44A~ requires size 2 ~(n).

241

7 Conclusions

We have shown that a variety of integer functions such as integer division, remainder,
high/low-order words of multiplication, square root, and reciprocal require exponential-
sized BLDs. We then showed similar results for a variety of boolean functions by relat-
ing its complexity to two measures, the fooling set size and the rank. The generality in
the BLD definition implies that minor variations in the known ordered representations
will not be sufficient and we may have to consider non-linear definitions to be able to
handle the hard functions. Another approach is to consider read-once representations
that relax the notion of an implicit order on the variables, e.g. Free Binary Decision
Diagrams [21] and their generalizations similar to BLDs.

References

1. B. Becker, R. Drechsler, and R. Enders. On the computational power of bit-level and word-
level decision diagrams. In 4. G1/ITG/GME Workshop zur Methoden des Entwurfs und der
Verifikation Digitaler Systeme, Berichte aus der Informatik, pages 71-80, Kreischa, March
1996. Shaker Veflag, Aachen.

2. Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-
ricchio. On the applications of multiplicity automata in learning. In 37th Annual Symposium
on Foundations of Computer Science, Burlington, Vermont, 14-16 October 1996. IEEE.

3. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677-691, August 1986.

4. R. E. Bryant. On the complexity of VLSI implementations and graph representations of
boolean functions with application to integer multiplication. IEEE Transactions on Comput-
ers, 40(2):205-213, February 1991.

5. R.E. Bryant. Binary decision diagrams and beyond: Enabling technologies for formal verifi-
cation. In International Conference on Computer Aided Design, pages 236-245, Los Alami-
tos, Ca., USA, November 1995. IEEE Computer Society Press.

6. R.E. Bryant and Y.-A. Chen. Verification of arithmetic circuits with binary moment dia-
grams. In 32nd A CM/IEEE Design Automation Conference, Pittsburgh, June 1995.

7. R.E. Bryant and Y.-A. Chen. Bit-level analysis of an SRT divider circuit. In 33rdACM/IEEE
Design Automation Conference, 1996.

8. J.R. Butch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Symbolic model check-
ing for sequential circuit verification. 1EEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 13(4):401--424, April 1994.

9. J.R. Burch, E.M. Clarke, K.L McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: 1020 states and beyond. In Proceedings of the Fifth Annual 1EEE Symposium on Logic
in Computer Science, pages 1-33, Washington, D.C., June 1990. IEEE CS Press.

10. J. W. Carlyle and A. Paz. Realizations by stochastic finite automata. Journal of Computer
and System Sciences, 5(1):26--40, February 1971.

11. Y.-A. Chen, E. Clarke, P. H. Ho, Y. Hoskote, T. Kam, M. Khaira, J. O' Leary, and X. Zhao.
Verification of all circuits in a foating-pont unit using word-level model checking. In First
International Conference on Formal Methods in Computer-Aided Design, volume 1166 of
Lecture Notes Comp. Sci., pages 19-33, Palo Alto, CA, November 1996. Springer Verlag.

12. Ying-An Chen and R.E. Bryant. *PHDD: an efficient graph representation for floating point
circuit verification. In International Conference on Computer Aided Design, pages 2-7, Los
Alamitos, Ca., USA, November 1997. IEEE Computer Society Press.

242

13. E. Clarke, K.L. McMillian, X. Zhao, M. Fujita, and J.C.-Y. Yang. Spectral transforms for
large boolean functions with application to technologie mapping. In 30th ACM/IEEEDesign
Automation Conference, pages 54-60, Dallas, TX, June 1993.

14. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons from branching
time temporal logic. Lecture Notes Comp. Sci., 131:52-71, 1982.

15. E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams --overcoming limitations
of MTBDDs and BMDs. In International Conference on Computer Aided Design, pages
159-163, Los Alamitos, CA, November 1995. IEEE Computer Society Press.

16. E. M. Clarke, S. M. German, and X. Zhao. Verifying the SRT division algorithm using
theorem proving techniques. Lecture Notes in Computer Science, 1102, 1996.

17. Edmund M. Clarke and Jeanette M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4):626-643, December 1996.

18. M. Dietzfelbinger, J. Hromkovic, and G. Schnitger. A comparison of two lower bound meth-
ods for communication complexity. In Symposium on Mathematical Foundations of Com-
puter Science, pages 326-335, 1994.

19. R. Enders. Note on the complexity of binary moment diagram representations. In IFIP WG
10. 5 Workshop on Applications of Reed-Muller Expansion in Circuit Design, pages 191-197,
1995.

20. M. Fliess. Matrices de Hankel. J. Math. Pures etAppl., 53:197-224, 1974.
21. J. Gergov and Ch. Meinel. Efficient boolean manipulation with OBDD' s can be extended to

read-once only branching programs. IEEE Transactions on Computers, 43(10):1197-1209,
October 1994.

22. Andr~is Hajnal, Wolfgang Maass, and Gytrgy TurS_n. On the communication complexity of
graph properties. In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pages 186-191, Chicago, Illinois, 2--4 May 1988.

23. Harju and Karhumaki. The equivalence problem of multitape finite automata. Theoretical
Computer Science, 78, 1991.

24. Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
Cambridge [England] ; New York, 1997.

25. Y.-T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-level hierarchical
verification. In 29th ACM/IEEEDesign Automation Conference, pages 608-613, 1992.

26. Tak Wah Lam and Larry Ruzzo. Results on communication complexity classes. Journal of
Computer and System Sciences, 44, 1992.

27. Thomas Lengauer. VLSI theory. In Handbook of Theoretical Computer Science, volume 1.
The MIT Press/Elsevier, 1990.

28. Richard J. Lipton and Robert Sedgewick. Lower bounds for VLSI. In Conference Proceed-
ings of the Thirteenth Annual ACM Symposium on Theory of Computation, pages 300-307,
Milwaukee, Wisconsin, 11-13 May 1981.

29. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
30. Kurt Mehlhorn and Erik M. Schmidt. Las Vegas is better than determinism in VLSI and

distributed computing (extended abstract). In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, pages 330-337, San Francisco, California, May 1982.

31. C. Papadimitriou and M. Sipser. Communication complexity. Journal of Computer and
System Sciences, 28, 1984.

32. Stephen Ponzio. A lower bound for integer multiplication with read-once branching pro-
grams. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, pages 130-139, Las Vegas, Nevada, 29 May-1 June 1995.

33. Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Conference Record of the Eleventh Annual ACM Symposium on Theory
of Computing, pages 209-213, Atlanta, Georgia, 30 April-2 May 1979.

243

*-BMD
xl

/
/

/

¢

~g##°°°°# ~
[]

1-edae

""O'~'d'g'~

[,,

rrl []

BLD
ol

l
l

?,

m [] []

Fig. 1. The *-BMD (left) and BLD(righO for multiplication using the order xl ,xo,Yl ,Yo.

I ~ U

I I liiiil liiiiliiiil liiiil Ii~ '[l
cl

1+2m

T
p

l+m

A

liiiiliiiil liiiit liiiil l I

1
1

4 U

I liliii liiiiiiiiii Iiiiil lfl I
I Iiiiii lfliiiil liill liiiii I

Fig. 2. This figure illustrates Proposition 1. The sets A C_ U and B C_ V (shown shaded in the
figure) can be matched by suitably aligning the words U and V.

