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A b s t r a c t .  We present a method for computing abstractions of infinite 
state systems compositionallyand automatically. Given a concrete system 
S = $1 II "'" 11 S,~ of programs and given an abstraction function a,  using 
our method one can compute an abstract system S ~ = S~ II "'" II S~ such 
that S simulates S a. A distinguishing feature of our method is that it 
does not produce a single abstract state graph but rather preserves the 
structure of the concrete system. This feature is a prerequisite to ben- 
efit from the techniques developed in the context of model-checking for 
mitigating the state explosion. Moreover, our method has the advantage 
that the process of constructing the abstract system does not depend on 
whether the computation model is synchronous or asynchronous. 

1 Introduct ion 

A m a j o r  task in proving correctness of  protocols  consists in proving invariance 
properties.  Indeed, every safety proper ty  can be reduced to an invariance prop- 
er ty  and to  prove progress propert ies  one needs to establish invariance proper-  
ties [21]. Proving  invariance properties is especially crucial for infinite and large 
finite s ta te  sys tems which escape a lgor i thmic methods .  

The  s t andard  way to prove invariance properties of  infinite s tate  systems is by 
induction.  To prove t h a t  T is an invariant  of  S one has to  come up with a s t ronger  
invariant  ¢ tha t  is preserved by every t ransi t ion of  S. The  invariant  ¢ is usually 
called an auxi l iary invariant .  This  deductive m e t h o d  has three drawbacks:  1) 
it is often hard  to find suitable auxil iary invariants,  2) when a choice for an 
auxil iary invariant  fails, one has little hint  how to  s t rengthen the invariant  and 
3) one obtains  no counterexample  in the form of a trace when the considered 
p rog ram does no t  satisfy the invariance property.  Techniques for generat ing and 
s t rengthening invariants  (cf. [22, 2, 1, 27]) seem to give l imited results when 
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applied to protocols where the control is part ly encoded within the data  part, 
in particular when shared variables are extensively used for synchronization. 

On the other hand, verification by abstraction appears to be promising for 
reasoning about control intensive protocols in which control is finite but  the data  
part is infinite or very large. The use of abstraction techniques to model-check 
finite state reactive systems is by now a well-established approach [3, 20, 8, 18, 
19, 5, 17]. There are methods/ tools  that  compute an abstract system from the 
text of a finite state program and an abstraction relation [3, 7, 12, 6, 9]. It should 
be realized that  it is important  to avoid the construction of the concrete model 
which represents the semantics of the considered program before generating the 
abstract system. Otherwise, one would have to store the concrete system which 
might be too large. The produced abstract system is usually smaller than the 
concrete one, and hence is much simpler to model-check. 

Verification by abstraction can also be applied to infinite state systems as 
shown in [10, 11, 25, 15]. However, in all these approaches the verifier has to 
provide the abstract system and an important  amount  of user intervention is 
required to prove that  the concrete system simulates the abstract one. What  is 
needed is a method to automatically compute an abstract system for a given 
infinite state system and an abstraction relation. A method that  achieves this 
for a restricted form of abstraction functions, namely those induced by a set of 
predicates on the concrete states, is given in [13]. This method has, however, the 
drawback that  it generates an abstract graph rather than the text of an abstract 
program with the consequence that  one can neither apply further abstractions 
nor techniques for avoiding the state explosion problem as, for example, partial- 
order techniques. 

We present a method that  computes an abstract system S a = S~ I1""  II S~, 
for a given system S = $1 ][ " "  [[ Sn and abstraction function a, such that  S 
simulates S a is guaranteed by the construction. Hence, by known preservation 
results, if S a satisfies an invariant ~ then S satisfies the invariant  a - 1  (9). Since 
the produced abstract system is not given by a graph but  in a programming 
language, one still can apply all the known methods for avoiding the state ex- 
plosion problem, while analyzing S a. Moreover, there is a clear correspondence 
between concrete and abstract transitions. This allows for debugging the con- 
crete system, since it can be checked whether a given trace of the abstract system 
corresponds to a concrete trace. Furthermore, since the process of generation of 
the abstract system does not depend on the assumed semantics of the paral- 
lel operator,  our method works for both the synchronous and the asynchronous 
computat ion model. 

The basic idea behind our method is simple. In order to construct an abstrac- 
tion of S, we construct for each concrete transition rc an abstract transition r~. 
To construct r~ we proceed by elimination starting from the universal relation, 
which relates every abstract state to every abstract state, and eliminate pairs of 
abstract states in a conservative way, i.e. it is guaranteed that  after elimination 
of a pair the obtained transition is still an abstraction of To. To check whether a 
pair (a, a ~) of abstract states can be eliminated we have to check that  the con- 
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crete transition rc does not lead from any state c with a(c) - a to any state c' 
with a(c ')  = a'. This amounts to proving a Hoare triple. The elimination method 
is in general too complex. Therefore, we combine it with three techniques that  
allow to check many fewer Hoare triples. These techniques are based on parti- 
tioning the set of abstract variables, using substitutions, and a new preservation 
result which allows to use the invariant to be proved during the construction 
process of the abstract system. A partit ioning of the set of abstract variables 
allows to consider a small group of abstract variables at a time. This reduces 
the number of Hoare triples to check, as the number of transitions of the uni- 
versal relation is exponential in the number of variables. However, in general, 
such a partit ioning leads to a more non-deterministic abstract system. We give 
sufficient conditions under which a partit ioning of the abstract variables does 
not increase the non-determinism of the abstract system. We also identify cases 
in which an abstraction of a transition can be computed solely by applying syn- 
tactic substitutions without using the elimination method. In many examples, 
a major  part  of the transitions can be handled by syntactic substitutions or by 
a combination of the elimination method with syntactic substitutions. Finally, 
our new preservation result allows us to consider only Hoare triples whose pre- 
condition implies the invariant to prove. Obviously, this reduces the number of 
Hoare triples to check. 

We implemented our method using the theorem prover PVS [26] to check the 
Hoare triples generated by the elimination method.  The first-order formulas cor- 
responding to these Hoare triples are constructed automatically and a strategy 
that  is given by the user is applied. The produced abstract system is optionally 
represented in the specification language of PVS or in that  of SMV [24]. Thus, 
our implementation provides a bridge between PVS and SMV. We applied our 
method and its implementation on a number of examples. In this paper, we re- 
port  on the verification of the Bounded Retransmission protocol. The Bounded 
Retransmission protocol has been verified using theorem proving in [14, 16, 15]. 
An automatic verification of some of the correctness aspects of the protocol is 
reported in [13]. We achieved an automatic  verification of all correctness aspects 
of the protocol. 

Related Work As mentioned above a method for computing abstractions of in- 
finite state systems is presented in [13]. In contrast to [13], our method produces 
an abstract system which has the same structure as the concrete one. This allows 
for further application of abstractions and other techniques for avoiding the state 
explosion problem. Moreover, this gives a clear correspondence between concrete 
and abstract transitions, which is useful for debugging the concrete system. Our 
method can also deal with abstraction functions that  only abstract some of the 
variables which range over infinite domains. This is not the case for the method 
in [13], since it generates a global control graph. One other advantage of our 
method is that  it does not depend on the computat ion model, whether it is 
synchronous or asynchronous. 

The basic idea behind our method for constructing an abstract system is re- 
lated to the splitting algorithm of [7, 5, 6]. The purpose of the splitting algorithm 
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is to refine an abstract structure in order to preserve properties in two directions, 
i.e., such that the concrete and the abstract system satisfy the same properties. 
We are, however, only interested in preservation of invariance properties in one 
direction, since this allows for more efficient methods for computing abstractions. 
Moreover, the splitting algorithm is based on splitting abstract states while our 
method is based on elimination of transitions. 

The basic idea underlying the methods of [3, 7, 9] for computing abstractions 
of finite state systems is that  of abstract interpretation [4]. Here, the abstract 
system is completely determined by abstract versions of the primitive operators. 
This is not the case in our method, since we do not consider the abstraction 
of the primitive operators in separation but we compute the abstraction of a 
complete transition. In general, the methods based on abstract interpretation 
are efficient but yield abstract systems which are more non-deterministic than 
the abstract systems computed by our method. 

2 P r e l i m i n a r i e s  

Given a set X of typed variables, a state over X is a type-consistent mapping that  
associates with each variable x E X a value. We denote by Z the set consisting of 
all states. A syntactic transition system is given by a triple (X, ~(X), p(Z, X')), 
where X is a set of typed variables, O(X) is a predicate describing the set of 
initial states and p(X, X I) is a predicate describing the transition relation. We 
associate in the usual way a transition system with every syntactic transition 
system. Given relations Ri C Zi × ~ ,  for i = 1, 2, we define their synchronous 
product R1 ® R2 C (S1 U Z2) × (Z~ U Z~), by (s, s') E R1 ® R2 iff (s I~ ,  s i ~ )  E Ri, 

for i = 1, 2, where Sl$' denotes the restriction of the mapping s to Zi.  Thus, if 
Z1 - Z2 and ~ = Z~ then R1 ® R2 = R1 M R2. The synchronous composition 
of transition systems Si = (Zi, Ii, Ri), i = 1, 2, denoted S1 ® S~, is given by the 
system (Z1 U Z2, {s I Sl~, E I i} ,  R1 ® R2). A computation of a transition system 
S -- ( ~ , I , R )  is a sequence s 0 , - . ' , s n  such that  so E I and (si ,s i+l)  E R, for 
i < n - 1. A state s E Z is called reachable in S, if there is a computat ion 
so , - . . ,  sn of S with sn = s. A set P C_ Z is called an mvariant of S, denoted 
by S ~ DP,  if every state that  is reachable in S is in P. Given a set P C_ ~ of 
states and a relation R C Z 2 the weakest liberal precondition of R with respect 
to P,  denoted by we(R,  P) ,  is the set consisting of states s such that  for every 
state s ~, if (s, s ~) E R then s ~ E P.  All the semantic notions introduced so far 
have their syntactic counterparts which we assume as known. Moreover, we will 
tacitly interchange syntax and semantics, e.g., predicates and sets of states etc., 
unless there is a necessity to make a distinction. 

3 P r o v i n g  I n v a r i a n t s  b y  A b s t r a c t i o n  

In this section we present a simulation notion that  depends on the invariance 
property to be proved and also present a preservation result for this new notion. 
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D e f i n i t i o n  l .  Let S c = ( S  ~, I ~, R ~) and S a = ( S  a, I a, R a) be two transition 
systems. We say tha t  S a is an abstraction of S ~ w.r.t, a _ S c x  Z a and ~c C Z c, 
denoted by S c E~ c S a, if the following conditions are satisfied: 1) ~ is a total  
relation, 2) for every state s~, s~ E S~ and s 8 E s a  with s~ E ~ and (s~, s~) E c~, 
if (s~, s~) E R ~ then there exists a state s~ E Z ~ such tha t  (s~, s~) E / ~  and 
(s~, s~) E ~, and 3) for every state s ~ in I ~ there exists a state s a in I a such tha t  
(sL s °) ~ ~. [] 

It  can be proved by induction on n that  if S c E_~ ~ S ~ then for every computat ion 
c .. c of S c such tha t  s i E ~0 c, for every i < n, there exists a computa t ion  8~,  • ,  S n 

s],  . . . ,  s n ~ of S a such tha t  (sT, s~) E a,  for every i <_ n. Therefore, we have: 

T h e o r e m 2 .  Let  S c and S a be transition sys tems such that S c Y-~¢ S a. Let  
~a C_. Z a and ~ C ~c .  I f  a - l ( ~  a) C ~c A ~, S a ~ O~ a, and I c C_ ~c, then 

s ~ b [](~ n ~) .  [] 

Notice tha t  the usual notion of simulation and its corresponding preservation 
result (cf. [3, 19]) can be obtained from Definition 1 and Theorem 2 by taking 
~ = ~ .  The  advantage of Definition 1 is that  it allows abstractions with fewer 
transitions and less reachable states. This is part icularly impor tan t  when we are 
seeking a method  that  automatical ly  computes finite abstractions for analysis by 
model-checking techniques. In the sequel, in case ~ = E c, we write S ~ U~ S ~ 
instead Of S c U_~ ¢ S ~ and say that  S a is an abstract ion of S c with respect to a.  

Thus,  to prove tha t  a transition system S ~ satisfies an invariance proper ty  
~ it suffices to find a f inite abstraction S a of S c w.r.t, some relation a such 
that  S ~ ~ [3W a for some W~ C K ~ with a-1(9~ ~) C W~. This method is complete. 
Indeed, it suffices to take an abstract  system with two states s~ and s~ and 
a relation a such that  (s¢,s])  E c~ iff s c is reachable in So; and (s~,s~) E a 
iff s c is not reachable in S ~. The abstract  system S a has s~ as unique initial 
state. Obviously, S c E~ S ~ and S ~ ~ D{s~}. Moreover, since S ~ ~ []9~ ¢, we 
have a -~(s~)  G ~¢. On the other hand, if S c ~ [ ] ~  can be proved using 
an abstract ion S ~ of S ~ w.r.t, a ,  then it can also be proved using the auxiliary 
invariant a -  1(74 (S ~ )), where 74(S a) is the set of the reachable states of S".  Thus,  
from a theoretical point of view proving invariance properties using abstractions 
is as difficult as using auxiliary invariants. Still in practice it is often the case 
tha t  the method based on abstractions is easier. 

4 C o m p u t i n g  A b s t r a c t i o n s  

In this section we consider the problem of comput ing an abstract ion of a transi- 
tion system S c w.r.t, a relation a.  Thus, consider a syntactic transition system 
S c = (C, OC, p~). Let a be a predicate whose set of free variables is C U A. 
Let c~[S c] = (A, a[0¢], c~[pC]) where c~[0 c] is given by 36 .  (0CA~) and a[p c] by 
~ C 3 C  ~. (aAa~Ap ~) and a ~ is obtained from a by subst i tut ing every variable c E C 
by c' and every variable a E A by a I. It  can then be easily proved tha t  a[S  ~] is 
an abstract ion of S c. In case a is a function, h i s  ~] is the smallest abstract ion 
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of S c w . r . t . a .  Unfortunately, it is not possible in general to analyze a[S c] by 
model-checking even when all the variables in A range over finite domains. The 
reason is that  the description of h i s  c] involves quantification over the variables 
in C which may range over infinite domains. In t h e  sequel of this section we 
present a method for computing abstractions which avoids the quantification 
problem described above. 

The elimination method Consider a transition relation given by a predicate 
p(C, C') and consider an abstraction relation given by a predicate ~(C, A), where 
A is a set of abstract variables. There is an obvious abstraction of p w.r.t, a which 
is the universal relation on Z a given by the everywhere true predicate. Let us 
denote it by//A- Of course one cannot use the abstract relation HA to prove any 
interesting invariant, i.e., one which is not a tautology. One can, however, obtain 
a more interesting abstraction of p(C, C') by eliminating transitions from UA. 
The following lemma states which transitions can be safely eliminated: 

L e m m a  3. Let S c, S a be transition systems such that S c E~ ° S a. Let s~, s~ be 
abstract states. I f  0/-1(83) ~ wP(R ~,,U ~ \ a- l ( s~ ) )  then S ~ E~ c S 'a, where 
S 'a consists of the same components as S a except that its transition relation is 
n ° \ {(s~,sD}- [] 

In other words, if the concrete transition does not lead from a concrete state s~ 
with (s~, s~) E a to a concrete state s~ with (s~, s~) E a, then we can safely 
eliminate the transition (s~, s~) from S ~. Notice that  since the concrete system 
in general is infinite state the condition c~-l(s~) ~ wP(R c, E ¢ \  c~-l(s~)) has to 
be checked by means of a theorem prover. Notice also that  if we eliminate all the 
pairs (s~, s~) for which this condition is satisfied, we get as result the abstract 
system (~[SC]. 

The elimination method in its rough form is not feasible since it requires too 
many formulas to be checked for validity. Indeed, if there are n boolean abstract 
variables then there are 2 2n such conditions to be checked. Therefore, we present 
techniques which make the elimination method feasible as shown in section 6. 

Partitioning the abstract variables A simple and practical way to enhance the 
elimination method consists of partit ioning the set A of abstract variables into 
subsets A1, • . . ,  Am and considering the effect of the abstraction of a concrete 
transition p on each set Ai separately. Let us consider this in more detail. We 
assume that  the considered abstraction relation a is a function and we denote 
by a~ the projection of a onto Ai, i.e. cq(s) ---- a(S)[A,, for every concrete state 
s and i < m. Then, we have the following lemma: 

L e m m a 4 .  Let io c C ~c. For i ~ m, let S~ -- ( A i , I  a , R  a) and let S ~ = @ S a. 
i<rn  

Then, S c E_~: S~, for i <_ m iff S ~ U_~ ~ S a. [] 

For the t ruth of this s tatement it suffices to have one of the assumptions that  a 
is a function or A1, • .-, Am is a parti t ion of A. It is, however, in general unsound 
if we do not have either of these assumptions. The lemma suggests to parti t ion 
the set of abstract variables and consider each element of the partitioning in 
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isolation. If we have n boolean abstract variables and parti t ion them into two 
sets of nl  and n2 elements then, when applying the elimination method, we have 
to check for 2 ~'~1 + 2 2~  validities instead o f f  or 2 2('h+"~) validities. 

Now, the question arises whether an abstract system that  is computed using a 
.partitioning is at most non-deterministic as the system computed without using 
the partitioning, i.e. whether a [S  c] = ~ i < m  ai[ So] holds. The answer is that  
in general ~ i < m  ai[  So] has more transitions than a[SC], because there might 
be dependencies between the ai ' s  which are not taken into account during the 
process of computing ai[SC]. We can, however, state the following lemma: 

L e m m a  5. Assume that the set C of concrete variables can be partitioned into 
sets C 1 , "  "Cm such that R c can be written in the form R~ ®. .  "®R~n, where each 
R~ is a relation on states over Ci. Assume also that each ai can be considered 
as a function of Ci. Then, u[S c] = @i<m ai[S~] • r7 

In fact, it is often the case that  most of the dependencies between the ai ' s  are 
captured as an invariant of S c, which can then be used during the computat ion 
of the abstract System. 

I Given two partitions P = {A1,-.  -, A,~ } and P '  = {A~,-. -, Am,} of A, we 
say that  P is finer than pt ,  if for every i < m there is j _< m ~ such that  Ai C__ Aj, .  
In this case, we write P < P'. The following lemmasta tes  that,  in general, finer 
partitions lead to more transitions in the abstract system. 

L e m m a  6. Let t~ and P~ be partitions of A such that P <_ P~. Moreover, for 
every j < m', let ~} denote the projection of ~ on A),  i.e., c~}(s) = ~(S)lA} , 

for every concrete state s. Then, @j<m' °~}[ S~] ~IdA @i<_rn °~i[Sc], where IdA 
is the identity on the abstract states. [] 

Using substitutions In many cases we do not need to apply the elimination 
method to compute the abstraction of a transition 7-; instead we can achieve 
this using syntactic substitutions. To explain how this goes we assume in this 
section that  transitions are given as guarded simultaneous assignments of the 
form g(e) --+ e := e. Thus, consider a transition r a n d  an abstraction function 

given by A a ~ ca, i.e., a(s)(a) = s(ea), for every concrete state s, where 
aEA 

s(ea) denotes the evaluation of e~ in s. To compute the abstraction of 7- one can 
proceed as follows: 

1) Determine a list cl = v l , . . . ,  Cn = v~ of equations, where ci E C and vi is a 
constant, such that  ci = vi follows from the guard g. 

2) Substitute each variable ci with vi in e obtaining a new concrete transition 
7" with 7.' - g(c) --~ c :-- e '  and e '  = e [Vl/Cl , . . . ,  v,/cn]. 

3) Let fl(a) be ea[e'/c], for each a E A. 
4) We say that  an abstract variable a is determined by fl, if  one of the following 

conditions is satisfied: 
(a) there is a variable-free expression e such that  for every concrete state s, 

s(fl(a)) = s(e) holds, or 
(b) there is an abstract variable 5 such that  fl(a) and en are syntactically 

equal. 

Let 7(a) be e in the first case and fi in the second. 
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5) If  all variables in A are determined by fl then the transit ion with guard a(#) 
and which assigns 7(a) to every abstract  variable a is an abstract ion of 7- 
w . r . t . a .  

To see that  5) is true notice that  transitions 7" and r ~ are semantically equivalent 
and that  for all concrete states s and s '  if (s, s ') e 7"' then a ( s ' ) ( a )  = a(s ) (7(a) ) ,  
for every a E A. 

Thus, in case all abstract  variables are determined by fl the complete ab- 
straction of r is determined by substitutions without need for the elimination 
method.  However, in general we can apply the procedure described above fol- 
lowed by the elimination method to determine the assignments to the abstract  
variables which are not determined by/~. 

E x a m p l e  1. To illustrate how we can use syntactic substi tut ion to compute  the 
abstract ion of a concrete transition, we consider the Bakery mutual  exclusion 
algorithm, which has an infinite s tate  space. 
Transition system $1: 
7-1 : pc1 = 111 
7-2 : pc1 = 112 A (Y2 = 0 V Yl < Y2) 
7-3 : pc l  =-/13 
Transition system $2: 
7"4 : pc2 =/21 
7"5 :PC2=I22A(Yl  = O V y2 < Yl ) 
7"6 : PC2 = 123 

Yl := Y~ + 1,pc1 := 112 
> pc1 := 113 
> Yt := O, pc l  := 111 

> Y2 := Yl + 1,pc2 :=/22 
> pc2 := 123 
> Y2 := O,pc2 := 121 

Here pci ranges over { l i l ,  Ii2, li3} and yi ranges over the set of natural  numbers. 
As abstract  variables we use the boolean variables al ,  a2, a3 and the variables 
pc~ and pc~. The abstract ion function a is given by the predicate Ai=l ,2  ai =--- 

= o) ^ a3 --  (Ul <_ Y2) ^ A =I, pe? - pc . 
Let us consider transit ion 7-1 of $1 and apply step 1) to 5) to it. It  can be 

easily seen that  we obtain f l (pc~)  -= 112, fl(al)  - l + y 2  = 0, fl(a3) = 1+y2  _< Y2, 
f l (pc~) =_ pc2, and fl(a2) = Y2 = 0. Moreover, a ( p c l  = 111) ~- pc~ = 111. Since 
1 + Y2 = 0 and 1 + Y2 < Y2 are equivalent to false, we obtain as abstract  
transition pc~ = 111 ~ al  := false, a3 := false, pc~ := 111. Also the abstract ion 
of transitions 7"2 to ~-s are computed by substitutions. For transit ion 7-6, the 
assignment to variables a2 and pc~ are determined by substitutions, while we 
need the elimination method to determine the effect on a3. 

5 A P V S - b a s e d  I m p l e m e n t a t i o n  

We have implemented a tool that  computes  an abstract ion of a network $1 I[ 
" '" II Sn, where II is the synchronous or asynchronous composit ion of transit ion 
systems. As a specification language for concrete systems we use a subset of 
the specification language of PVS. The produced abstract  system is optionally 
described in PVS or SMV. The  PVS theorem-prover is used to check the formulas 
generated by the elimination method.  The user supplies a list of proof  strategies 
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which are used to check these formulas. Besides the proof  strategies the user 
provides the following components:  

1) A PVS theory describing the concrete system. The  user can choose whether 
to use the invariant to be checked during generation of the abstract  system as 
given by definition 1. The user can also give a list of already proved invariants 
of the concrete system which are then used while constructing the abstract  
system. 

2) A PVS-theory describing the abstract  s tate space and defining the abstrac- 
tion function. We implemented a procedure that  computes  a first abstract ion 
function which associates a boolean variable with every atomic formula of 
the form r (x l ,  • .- ,  x~) which appears  in a guard, if there is at least one con- 
crete variable among Z l , . . - ,  x~ that  ranges over an infinite da ta  domain,  
and which associates a boolean variable with every expression of the form 
x p = exp which appears in a concrete transition, if z ranges over an infinite 
da ta  type and does not occur in exp. 4 

The user can optionally provide a set of concrete variables for which our tool 
computes  for each atomic operation on these variables an abstract  operation. 
The computed  abstract  operations are then stored and reused each t ime an 
abstract ion of the concrete system is computed  unless the abstraction function 
has been modified. 

The generation of the abstract  system is completely automatic and composi- 
tional as we consider transition by transition. Thus,  for each concrete transit ion 
we obtain an abstract  transition (which might  be non-deterministic).  This is 
a very impor tan t  property of our method,  since it enables the debugging of 
the concrete system or alternatively enhancing the abstract ion function. Indeed, 
the constructed abstract  system may  not satisfy the desired property, for three 
possible reasons: 1) the concrete system does not satisfy the invariant, 2) the 
abstract ion function is not suitable for proving the invariant, or 3) the provided 
proof strategies are too weak. Now, a model-checker ~such as SMV provides a 
trace as a counterexample,  if the abstract  system does not satisfy the abstract  
invariant. Since we have a clear correspondence between abstract  and concrete 
transitions, we can examine the trace and find out which of the three reasons 
listed above is the case. In particular if the concrete system does not satisfy the 
invariant then we can transform the trace given by SMV to a concrete trace, 
and verify whether it is a concrete counterexample.  

6 A Case  Study 

We consider the verification of the Bounded Retransmission protocol [23], BRP 
for short. The BRP protocol is an extension of the al ternating bit protocol, where 

4 In [13] it is proposed to take as abstraction the partition of the concrete state space 
which is induced by the literals appearing in the guards. This abstraction is, however, 
generally too coarse. 
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files of individual da ta  are transmitted and the number of retransmissions per 
da tum is bounded by a parameter.  The protocol has been verified using theorem 
proving [14, 16, 15], where a large number Of auxiliary invariants were needed. In 
the original formulation of the case study the requirements on the protocol are 
given by an abstract protocol, BRP-spec, and the task is to prove that  the con- 
crete protocol BRP simulates (is a refinement of) BRP-spec. In [13] it has been 
shown by computing an abstraction of BRP that  the concrete protocol satisfies 
a set of temporal  properties which have been extracted from the specification 
BRP-spec. There is, however, no guarantee that  the checked temporal properties 
exclude all the behaviors excluded by BRP-spec: They do not exclude, for in- 
stance, that  the protocol cheats both the sending and receiving clients by  telling 
them that  the transmission was successful while this is not the case. Using our 
method and its implementation we have been able to automatically prove that  
BRP implements BRP-spec. 

Description of the protocol The BRP protocol accepts requirements REQ(f )  
from a producer to transmit  a file f of data  to a consumer (See Fig 1). The 
protocol consists of a sender at the producer side and a receiver at the con- 
sumer side. The sender transmits data  frames to the receiver via channel K and 

Fig. i .  The Bounded Retransmission Protocol. 

waits for acknowledgment via channel L. Since these channels may lose mes- 
sages t imeouts are used to identify a loss of messages. After sending a message, 
the sender waits for an acknowledgment. When the acknowledgment arrives, the 
sender either proceeds with the next message in the file, if there is one, or sends 
a confirmation message to the producer. If a t imeout occurs before reception of 
an acknowledgment, the sender retransmits the same message. This procedure is 
repeated as often as specified by a parameter  maz. On its side, the receiver after 
acknowledging a message that  is not the last one waits for further messages. 
If no new message arrives before a timeout,  it concludes that  there is a loss of 
contact to the sender and reports this to the consumer. The protocol is respon- 
sible for informing the producer whether the file has been transmitted correctly, 
whether transmission failed, or whether the last message is possibly lost. On the 
consumer side, the protocol passes data  frames indicating whether the da tum is 
the first one in a file, the last one, or whether it is an intermediate one. 

Correctness criterion To reduce the problem of proving that  BRP simulates 
BRP-spec to an invariance problem, we follow the same approach as in [16]. 
Thus, we consider a superposition of BRP and BRP-spec and prove that  the 
superposed protocol, BRP +, satisfies the invariance property DSafe, where Safe 
is a variable tha t  is set to false as soon as BRP makes a transition that  is 
not allowed by BRP-spec. It should be realized that  BRP + contains for many 
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variables of the protocol two different copies corresponding to the variable in 
BRP and BRP-spec, respectively. So, for instance there are two variables file 
and a file which correspond to the file to be sent and two variables head and 
ahead which correspond to the position of the data  being processed in file and 
a file, respectively. 
Verification of the protocol The BRP protocol represents a family of param- 
eterized protocols. The parameters are the number of allowed retransmissions 
max, the length of a file Last, and finally, the data  type Data. To obtain a fi- 
nite abstraction of the protocol it is natural to eliminate these parameters by 
introducing additional nondeterminism. The abstraction we used is essentially 
obtained by the procedure we proposed in section 5. The only exception concerns 
an abstract variable that  encodes the distance between the position variables 
head and ahead. A finite abstract system has been fully automatically produced 
within one hour and 20 minutes on an Ultra Sparc 5 and has been successfully 
model-checked by SMV within 2.11 seconds. 

7 Conclus ion 

We have presented a method that  automatically and compositionally computes 
abstractions for infinite state systems. The salient feature of our method,  apart  
from being automatic,  is that  the generated abstract system has the same struc- 
ture as the concrete one. This makes our method applicable for synchronous as 
well as asynchronous computat ion models. Moreover, this allows for the appli- 
cation of other techniques for reducing the state explosion problem as well as 
for debugging the concrete system. An other important  feature of our method 
is that  it is incremental, in the following sense. Assume that  we computed an 
abstraction S a of a system S with respect to an abstraction function a.  Assume 
that  we want to add new abstract variables to those in a,  that  is, we consider 
a new abstraction function a t which agrees with a on the old abstract vari- 
ables. Then, all transitions which have been eliminated during the generation of 
S a need not be considered for the construction of an abstraction of S with re- 
spect to a t. Furthermore, it is worth mentioning that,  by the preservation results 
of [8, 19], one can use our method to compute a finite abstract system that  can 
be used to verify every temporal  property that  does not include an existential 
quantification over computat ion paths. 

Though our method is based on a rather simple mathematical  background, 
we view it as practically important .  We implemented the method using PVS 
to check the conditions generated by the elimination method.  The generated 
abstract system is optionally described in the specification language of PVS or 
of SMV. Thus, our implementation presents a bridge between the PVS theorem 
prover and the SMV model-checker. 

We applied our method on several examples. In addition to the BRP de- 
scribed in this paper we computed a finite abstraction of the Alternating bit 

The implementation of [13] takes five hours for a version of the BRP with fewer 
variables. 
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protocol following the example in [25] and verified the Bakery and Peterson's 
mutual exclusion algorithms, the reader-writer example, and a simplified ver- 
sion of the Futurebus+ cache coherence protocol. For all of these examples an 
abstract system has been fully automatically and efficiently generated. 

Currently, we are integrating our implementation with our techniques for 
generating auxiliary invariants [1]. We are also planning to investigate methods 
to automate the debugging process of the concrete system. What  is needed is a 
module that transforms a trace of the abstract system into a concrete one and 
then checks whether this trace corresponds to a computation of the concrete 
system. 
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