
Computing Abstractions of Infinite State
Systems

Compositionally and Automatically *

S. Bensalem 1, Y. Lakhnech 2 and S. Owre 3

1 VERIMAG, Centre Equation - 2, avenue de Vignate,
F-38610 Gi@res, France. Email: Bensalem@imag.fr

2 Institut ffir Informatik und Praktische Mathematik, Preuflerstr. 1-9,
D-24105 Kiel, Germany. Emaih yl@informatik.uni-kiel.de

z Computer Science Laboratory, SR[International,
Menlo Park, CA 94025, USA. Email : owre@csl.sri.com

A b s t r a c t . We present a method for computing abstractions of infinite
state systems compositionallyand automatically. Given a concrete system
S = $1 II "'" 11 S,~ of programs and given an abstraction function a, using
our method one can compute an abstract system S ~ = S~ II "'" II S~ such
that S simulates S a. A distinguishing feature of our method is that it
does not produce a single abstract state graph but rather preserves the
structure of the concrete system. This feature is a prerequisite to ben-
efit from the techniques developed in the context of model-checking for
mitigating the state explosion. Moreover, our method has the advantage
that the process of constructing the abstract system does not depend on
whether the computation model is synchronous or asynchronous.

1 Introduct ion

A m a j o r task in proving correctness of protocols consists in proving invariance
properties. Indeed, every safety proper ty can be reduced to an invariance prop-
er ty and to prove progress propert ies one needs to establish invariance proper-
ties [21]. Proving invariance properties is especially crucial for infinite and large
finite s ta te sys tems which escape a lgor i thmic methods .

The s t andard way to prove invariance properties of infinite s tate systems is by
induction. To prove t h a t T is an invariant of S one has to come up with a s t ronger
invariant ¢ tha t is preserved by every t ransi t ion of S. The invariant ¢ is usually
called an auxi l iary invariant . This deductive m e t h o d has three drawbacks: 1)
it is often hard to find suitable auxil iary invariants, 2) when a choice for an
auxil iary invariant fails, one has little hint how to s t rengthen the invariant and
3) one obtains no counterexample in the form of a trace when the considered
p rog ram does no t satisfy the invariance property. Techniques for generat ing and
s t rengthening invariants (cf. [22, 2, 1, 27]) seem to give l imited results when

* This work has been partly performed while the first two authors were visiting the
Computer Science Laboratory, SRI International. Their visits were funded by NSF
Grants No. CCR-9712383 and CCR-9509931.

320

applied to protocols where the control is part ly encoded within the data part,
in particular when shared variables are extensively used for synchronization.

On the other hand, verification by abstraction appears to be promising for
reasoning about control intensive protocols in which control is finite but the data
part is infinite or very large. The use of abstraction techniques to model-check
finite state reactive systems is by now a well-established approach [3, 20, 8, 18,
19, 5, 17]. There are methods/ tools that compute an abstract system from the
text of a finite state program and an abstraction relation [3, 7, 12, 6, 9]. It should
be realized that it is important to avoid the construction of the concrete model
which represents the semantics of the considered program before generating the
abstract system. Otherwise, one would have to store the concrete system which
might be too large. The produced abstract system is usually smaller than the
concrete one, and hence is much simpler to model-check.

Verification by abstraction can also be applied to infinite state systems as
shown in [10, 11, 25, 15]. However, in all these approaches the verifier has to
provide the abstract system and an important amount of user intervention is
required to prove that the concrete system simulates the abstract one. What is
needed is a method to automatically compute an abstract system for a given
infinite state system and an abstraction relation. A method that achieves this
for a restricted form of abstraction functions, namely those induced by a set of
predicates on the concrete states, is given in [13]. This method has, however, the
drawback that it generates an abstract graph rather than the text of an abstract
program with the consequence that one can neither apply further abstractions
nor techniques for avoiding the state explosion problem as, for example, partial-
order techniques.

We present a method that computes an abstract system S a = S~ I1"" II S~,
for a given system S = $1][" " [[Sn and abstraction function a, such that S
simulates S a is guaranteed by the construction. Hence, by known preservation
results, if S a satisfies an invariant ~ then S satisfies the invariant a - 1 (9). Since
the produced abstract system is not given by a graph but in a programming
language, one still can apply all the known methods for avoiding the state ex-
plosion problem, while analyzing S a. Moreover, there is a clear correspondence
between concrete and abstract transitions. This allows for debugging the con-
crete system, since it can be checked whether a given trace of the abstract system
corresponds to a concrete trace. Furthermore, since the process of generation of
the abstract system does not depend on the assumed semantics of the paral-
lel operator, our method works for both the synchronous and the asynchronous
computat ion model.

The basic idea behind our method is simple. In order to construct an abstrac-
tion of S, we construct for each concrete transition rc an abstract transition r~.
To construct r~ we proceed by elimination starting from the universal relation,
which relates every abstract state to every abstract state, and eliminate pairs of
abstract states in a conservative way, i.e. it is guaranteed that after elimination
of a pair the obtained transition is still an abstraction of To. To check whether a
pair (a, a ~) of abstract states can be eliminated we have to check that the con-

321

crete transition rc does not lead from any state c with a(c) - a to any state c'
with a(c ') = a'. This amounts to proving a Hoare triple. The elimination method
is in general too complex. Therefore, we combine it with three techniques that
allow to check many fewer Hoare triples. These techniques are based on parti-
tioning the set of abstract variables, using substitutions, and a new preservation
result which allows to use the invariant to be proved during the construction
process of the abstract system. A partit ioning of the set of abstract variables
allows to consider a small group of abstract variables at a time. This reduces
the number of Hoare triples to check, as the number of transitions of the uni-
versal relation is exponential in the number of variables. However, in general,
such a partit ioning leads to a more non-deterministic abstract system. We give
sufficient conditions under which a partit ioning of the abstract variables does
not increase the non-determinism of the abstract system. We also identify cases
in which an abstraction of a transition can be computed solely by applying syn-
tactic substitutions without using the elimination method. In many examples,
a major part of the transitions can be handled by syntactic substitutions or by
a combination of the elimination method with syntactic substitutions. Finally,
our new preservation result allows us to consider only Hoare triples whose pre-
condition implies the invariant to prove. Obviously, this reduces the number of
Hoare triples to check.

We implemented our method using the theorem prover PVS [26] to check the
Hoare triples generated by the elimination method. The first-order formulas cor-
responding to these Hoare triples are constructed automatically and a strategy
that is given by the user is applied. The produced abstract system is optionally
represented in the specification language of PVS or in that of SMV [24]. Thus,
our implementation provides a bridge between PVS and SMV. We applied our
method and its implementation on a number of examples. In this paper, we re-
port on the verification of the Bounded Retransmission protocol. The Bounded
Retransmission protocol has been verified using theorem proving in [14, 16, 15].
An automatic verification of some of the correctness aspects of the protocol is
reported in [13]. We achieved an automatic verification of all correctness aspects
of the protocol.

Related Work As mentioned above a method for computing abstractions of in-
finite state systems is presented in [13]. In contrast to [13], our method produces
an abstract system which has the same structure as the concrete one. This allows
for further application of abstractions and other techniques for avoiding the state
explosion problem. Moreover, this gives a clear correspondence between concrete
and abstract transitions, which is useful for debugging the concrete system. Our
method can also deal with abstraction functions that only abstract some of the
variables which range over infinite domains. This is not the case for the method
in [13], since it generates a global control graph. One other advantage of our
method is that it does not depend on the computat ion model, whether it is
synchronous or asynchronous.

The basic idea behind our method for constructing an abstract system is re-
lated to the splitting algorithm of [7, 5, 6]. The purpose of the splitting algorithm

322

is to refine an abstract structure in order to preserve properties in two directions,
i.e., such that the concrete and the abstract system satisfy the same properties.
We are, however, only interested in preservation of invariance properties in one
direction, since this allows for more efficient methods for computing abstractions.
Moreover, the splitting algorithm is based on splitting abstract states while our
method is based on elimination of transitions.

The basic idea underlying the methods of [3, 7, 9] for computing abstractions
of finite state systems is that of abstract interpretation [4]. Here, the abstract
system is completely determined by abstract versions of the primitive operators.
This is not the case in our method, since we do not consider the abstraction
of the primitive operators in separation but we compute the abstraction of a
complete transition. In general, the methods based on abstract interpretation
are efficient but yield abstract systems which are more non-deterministic than
the abstract systems computed by our method.

2 P r e l i m i n a r i e s

Given a set X of typed variables, a state over X is a type-consistent mapping that
associates with each variable x E X a value. We denote by Z the set consisting of
all states. A syntactic transition system is given by a triple (X, ~(X), p(Z, X')),
where X is a set of typed variables, O(X) is a predicate describing the set of
initial states and p(X, X I) is a predicate describing the transition relation. We
associate in the usual way a transition system with every syntactic transition
system. Given relations Ri C Zi × ~ , for i = 1, 2, we define their synchronous
product R1 ® R2 C (S1 U Z2) × (Z~ U Z~), by (s, s') E R1 ® R2 iff (s I~ , s i ~) E Ri,

for i = 1, 2, where Sl$' denotes the restriction of the mapping s to Zi. Thus, if
Z1 - Z2 and ~ = Z~ then R1 ® R2 = R1 M R2. The synchronous composition
of transition systems Si = (Zi, Ii, Ri), i = 1, 2, denoted S1 ® S~, is given by the
system (Z1 U Z2, {s I Sl~, E I i} , R1 ® R2). A computation of a transition system
S -- (~ , I , R) is a sequence s 0 , - . ' , s n such that so E I and (si ,s i+l) E R, for
i < n - 1. A state s E Z is called reachable in S, if there is a computat ion
so , - . . , sn of S with sn = s. A set P C_ Z is called an mvariant of S, denoted
by S ~ DP, if every state that is reachable in S is in P. Given a set P C_ ~ of
states and a relation R C Z 2 the weakest liberal precondition of R with respect
to P, denoted by we(R, P) , is the set consisting of states s such that for every
state s ~, if (s, s ~) E R then s ~ E P. All the semantic notions introduced so far
have their syntactic counterparts which we assume as known. Moreover, we will
tacitly interchange syntax and semantics, e.g., predicates and sets of states etc.,
unless there is a necessity to make a distinction.

3 P r o v i n g I n v a r i a n t s b y A b s t r a c t i o n

In this section we present a simulation notion that depends on the invariance
property to be proved and also present a preservation result for this new notion.

323

D e f i n i t i o n l . Let S c = (S ~, I ~, R ~) and S a = (S a, I a, R a) be two transition
systems. We say tha t S a is an abstraction of S ~ w.r.t, a _ S c x Z a and ~c C Z c,
denoted by S c E~ c S a, if the following conditions are satisfied: 1) ~ is a total
relation, 2) for every state s~, s~ E S~ and s 8 E s a with s~ E ~ and (s~, s~) E c~,
if (s~, s~) E R ~ then there exists a state s~ E Z ~ such tha t (s~, s~) E / ~ and
(s~, s~) E ~, and 3) for every state s ~ in I ~ there exists a state s a in I a such tha t
(sL s °) ~ ~. []

It can be proved by induction on n that if S c E_~ ~ S ~ then for every computat ion
c .. c of S c such tha t s i E ~0 c, for every i < n, there exists a computa t ion 8~, • , S n

s], . . . , s n ~ of S a such tha t (sT, s~) E a, for every i <_ n. Therefore, we have:

T h e o r e m 2 . Let S c and S a be transition sys tems such that S c Y-~¢ S a. Let
~a C_. Z a and ~ C ~c . I f a - l (~ a) C ~c A ~, S a ~ O~ a, and I c C_ ~c, then

s ~ b [](~ n ~) . []

Notice tha t the usual notion of simulation and its corresponding preservation
result (cf. [3, 19]) can be obtained from Definition 1 and Theorem 2 by taking
~ = ~ . The advantage of Definition 1 is that it allows abstractions with fewer
transitions and less reachable states. This is part icularly impor tan t when we are
seeking a method that automatical ly computes finite abstractions for analysis by
model-checking techniques. In the sequel, in case ~ = E c, we write S ~ U~ S ~
instead Of S c U_~ ¢ S ~ and say that S a is an abstract ion of S c with respect to a.

Thus, to prove tha t a transition system S ~ satisfies an invariance proper ty
~ it suffices to find a f inite abstraction S a of S c w.r.t, some relation a such
that S ~ ~ [3W a for some W~ C K ~ with a-1(9~ ~) C W~. This method is complete.
Indeed, it suffices to take an abstract system with two states s~ and s~ and
a relation a such that (s¢,s]) E c~ iff s c is reachable in So; and (s~,s~) E a
iff s c is not reachable in S ~. The abstract system S a has s~ as unique initial
state. Obviously, S c E~ S ~ and S ~ ~ D{s~}. Moreover, since S ~ ~ []9~ ¢, we
have a -~(s~) G ~¢. On the other hand, if S c ~ [] ~ can be proved using
an abstract ion S ~ of S ~ w.r.t, a , then it can also be proved using the auxiliary
invariant a - 1(74 (S ~)), where 74(S a) is the set of the reachable states of S". Thus,
from a theoretical point of view proving invariance properties using abstractions
is as difficult as using auxiliary invariants. Still in practice it is often the case
tha t the method based on abstractions is easier.

4 C o m p u t i n g A b s t r a c t i o n s

In this section we consider the problem of comput ing an abstract ion of a transi-
tion system S c w.r.t, a relation a. Thus, consider a syntactic transition system
S c = (C, OC, p~). Let a be a predicate whose set of free variables is C U A.
Let c~[S c] = (A, a[0¢], c~[pC]) where c~[0 c] is given by 36 . (0CA~) and a[p c] by
~ C 3 C ~. (aAa~Ap ~) and a ~ is obtained from a by subst i tut ing every variable c E C
by c' and every variable a E A by a I. It can then be easily proved tha t a[S ~] is
an abstract ion of S c. In case a is a function, h i s ~] is the smallest abstract ion

324

of S c w . r . t . a . Unfortunately, it is not possible in general to analyze a[S c] by
model-checking even when all the variables in A range over finite domains. The
reason is that the description of h i s c] involves quantification over the variables
in C which may range over infinite domains. In t h e sequel of this section we
present a method for computing abstractions which avoids the quantification
problem described above.

The elimination method Consider a transition relation given by a predicate
p(C, C') and consider an abstraction relation given by a predicate ~(C, A), where
A is a set of abstract variables. There is an obvious abstraction of p w.r.t, a which
is the universal relation on Z a given by the everywhere true predicate. Let us
denote it by//A- Of course one cannot use the abstract relation HA to prove any
interesting invariant, i.e., one which is not a tautology. One can, however, obtain
a more interesting abstraction of p(C, C') by eliminating transitions from UA.
The following lemma states which transitions can be safely eliminated:

L e m m a 3. Let S c, S a be transition systems such that S c E~ ° S a. Let s~, s~ be
abstract states. I f 0/-1(83) ~ wP(R ~,,U ~ \ a- l (s~)) then S ~ E~ c S 'a, where
S 'a consists of the same components as S a except that its transition relation is
n ° \ {(s~,sD}- []

In other words, if the concrete transition does not lead from a concrete state s~
with (s~, s~) E a to a concrete state s~ with (s~, s~) E a, then we can safely
eliminate the transition (s~, s~) from S ~. Notice that since the concrete system
in general is infinite state the condition c~-l(s~) ~ wP(R c, E ¢ \ c~-l(s~)) has to
be checked by means of a theorem prover. Notice also that if we eliminate all the
pairs (s~, s~) for which this condition is satisfied, we get as result the abstract
system (~[SC].

The elimination method in its rough form is not feasible since it requires too
many formulas to be checked for validity. Indeed, if there are n boolean abstract
variables then there are 2 2n such conditions to be checked. Therefore, we present
techniques which make the elimination method feasible as shown in section 6.

Partitioning the abstract variables A simple and practical way to enhance the
elimination method consists of partit ioning the set A of abstract variables into
subsets A1, • . . , Am and considering the effect of the abstraction of a concrete
transition p on each set Ai separately. Let us consider this in more detail. We
assume that the considered abstraction relation a is a function and we denote
by a~ the projection of a onto Ai, i.e. cq(s) ---- a(S)[A,, for every concrete state
s and i < m. Then, we have the following lemma:

L e m m a 4 . Let io c C ~c. For i ~ m, let S~ -- (A i , I a , R a) and let S ~ = @ S a.
i<rn

Then, S c E_~: S~, for i <_ m iff S ~ U_~ ~ S a. []

For the t ruth of this s tatement it suffices to have one of the assumptions that a
is a function or A1, • .-, Am is a parti t ion of A. It is, however, in general unsound
if we do not have either of these assumptions. The lemma suggests to parti t ion
the set of abstract variables and consider each element of the partitioning in

325

isolation. If we have n boolean abstract variables and parti t ion them into two
sets of nl and n2 elements then, when applying the elimination method, we have
to check for 2 ~'~1 + 2 2~ validities instead o f f or 2 2('h+"~) validities.

Now, the question arises whether an abstract system that is computed using a
.partitioning is at most non-deterministic as the system computed without using
the partitioning, i.e. whether a [S c] = ~ i < m ai[So] holds. The answer is that
in general ~ i < m ai[So] has more transitions than a[SC], because there might
be dependencies between the ai ' s which are not taken into account during the
process of computing ai[SC]. We can, however, state the following lemma:

L e m m a 5. Assume that the set C of concrete variables can be partitioned into
sets C 1 , " "Cm such that R c can be written in the form R~ ®. . "®R~n, where each
R~ is a relation on states over Ci. Assume also that each ai can be considered
as a function of Ci. Then, u[S c] = @i<m ai[S~] • r7

In fact, it is often the case that most of the dependencies between the ai ' s are
captured as an invariant of S c, which can then be used during the computat ion
of the abstract System.

I Given two partitions P = {A1,-. -, A,~ } and P ' = {A~,-. -, Am,} of A, we
say that P is finer than pt , if for every i < m there is j _< m ~ such that Ai C__ Aj, .
In this case, we write P < P'. The following lemmasta tes that, in general, finer
partitions lead to more transitions in the abstract system.

L e m m a 6. Let t~ and P~ be partitions of A such that P <_ P~. Moreover, for
every j < m', let ~} denote the projection of ~ on A), i.e., c~}(s) = ~(S)lA} ,

for every concrete state s. Then, @j<m' °~}[S~] ~IdA @i<_rn °~i[Sc], where IdA
is the identity on the abstract states. []

Using substitutions In many cases we do not need to apply the elimination
method to compute the abstraction of a transition 7-; instead we can achieve
this using syntactic substitutions. To explain how this goes we assume in this
section that transitions are given as guarded simultaneous assignments of the
form g(e) --+ e := e. Thus, consider a transition r a n d an abstraction function

given by A a ~ ca, i.e., a(s)(a) = s(ea), for every concrete state s, where
aEA

s(ea) denotes the evaluation of e~ in s. To compute the abstraction of 7- one can
proceed as follows:

1) Determine a list cl = v l , . . . , Cn = v~ of equations, where ci E C and vi is a
constant, such that ci = vi follows from the guard g.

2) Substitute each variable ci with vi in e obtaining a new concrete transition
7" with 7.' - g(c) --~ c :-- e ' and e ' = e [Vl/Cl , . . . , v,/cn].

3) Let fl(a) be ea[e'/c], for each a E A.
4) We say that an abstract variable a is determined by fl, if one of the following

conditions is satisfied:
(a) there is a variable-free expression e such that for every concrete state s,

s(fl(a)) = s(e) holds, or
(b) there is an abstract variable 5 such that fl(a) and en are syntactically

equal.

Let 7(a) be e in the first case and fi in the second.

326

5) If all variables in A are determined by fl then the transit ion with guard a(#)
and which assigns 7(a) to every abstract variable a is an abstract ion of 7-
w . r . t . a .

To see that 5) is true notice that transitions 7" and r ~ are semantically equivalent
and that for all concrete states s and s ' if (s, s ') e 7"' then a (s ') (a) = a(s) (7(a)) ,
for every a E A.

Thus, in case all abstract variables are determined by fl the complete ab-
straction of r is determined by substitutions without need for the elimination
method. However, in general we can apply the procedure described above fol-
lowed by the elimination method to determine the assignments to the abstract
variables which are not determined by/~.

E x a m p l e 1. To illustrate how we can use syntactic substi tut ion to compute the
abstract ion of a concrete transition, we consider the Bakery mutual exclusion
algorithm, which has an infinite s tate space.
Transition system $1:
7-1 : pc1 = 111
7-2 : pc1 = 112 A (Y2 = 0 V Yl < Y2)
7-3 : pc l =-/13
Transition system $2:
7"4 : pc2 =/21
7"5 :PC2=I22A(Yl = O V y2 < Yl)
7"6 : PC2 = 123

Yl := Y~ + 1,pc1 := 112
> pc1 := 113
> Yt := O, pc l := 111

> Y2 := Yl + 1,pc2 :=/22
> pc2 := 123
> Y2 := O,pc2 := 121

Here pci ranges over { l i l , Ii2, li3} and yi ranges over the set of natural numbers.
As abstract variables we use the boolean variables al , a2, a3 and the variables
pc~ and pc~. The abstract ion function a is given by the predicate Ai=l ,2 ai =---

= o) ^ a3 -- (Ul <_ Y2) ^ A =I, pe? - pc .
Let us consider transit ion 7-1 of $1 and apply step 1) to 5) to it. It can be

easily seen that we obtain f l (pc~) -= 112, fl(al) - l + y 2 = 0, fl(a3) = 1+y2 _< Y2,
f l (pc~) =_ pc2, and fl(a2) = Y2 = 0. Moreover, a (p c l = 111) ~- pc~ = 111. Since
1 + Y2 = 0 and 1 + Y2 < Y2 are equivalent to false, we obtain as abstract
transition pc~ = 111 ~ al := false, a3 := false, pc~ := 111. Also the abstract ion
of transitions 7"2 to ~-s are computed by substitutions. For transit ion 7-6, the
assignment to variables a2 and pc~ are determined by substitutions, while we
need the elimination method to determine the effect on a3.

5 A P V S - b a s e d I m p l e m e n t a t i o n

We have implemented a tool that computes an abstract ion of a network $1 I[
" '" II Sn, where II is the synchronous or asynchronous composit ion of transit ion
systems. As a specification language for concrete systems we use a subset of
the specification language of PVS. The produced abstract system is optionally
described in PVS or SMV. The PVS theorem-prover is used to check the formulas
generated by the elimination method. The user supplies a list of proof strategies

327

which are used to check these formulas. Besides the proof strategies the user
provides the following components:

1) A PVS theory describing the concrete system. The user can choose whether
to use the invariant to be checked during generation of the abstract system as
given by definition 1. The user can also give a list of already proved invariants
of the concrete system which are then used while constructing the abstract
system.

2) A PVS-theory describing the abstract s tate space and defining the abstrac-
tion function. We implemented a procedure that computes a first abstract ion
function which associates a boolean variable with every atomic formula of
the form r (x l , • .- , x~) which appears in a guard, if there is at least one con-
crete variable among Z l , . . - , x~ that ranges over an infinite da ta domain,
and which associates a boolean variable with every expression of the form
x p = exp which appears in a concrete transition, if z ranges over an infinite
da ta type and does not occur in exp. 4

The user can optionally provide a set of concrete variables for which our tool
computes for each atomic operation on these variables an abstract operation.
The computed abstract operations are then stored and reused each t ime an
abstract ion of the concrete system is computed unless the abstraction function
has been modified.

The generation of the abstract system is completely automatic and composi-
tional as we consider transition by transition. Thus, for each concrete transit ion
we obtain an abstract transition (which might be non-deterministic). This is
a very impor tan t property of our method, since it enables the debugging of
the concrete system or alternatively enhancing the abstract ion function. Indeed,
the constructed abstract system may not satisfy the desired property, for three
possible reasons: 1) the concrete system does not satisfy the invariant, 2) the
abstract ion function is not suitable for proving the invariant, or 3) the provided
proof strategies are too weak. Now, a model-checker ~such as SMV provides a
trace as a counterexample, if the abstract system does not satisfy the abstract
invariant. Since we have a clear correspondence between abstract and concrete
transitions, we can examine the trace and find out which of the three reasons
listed above is the case. In particular if the concrete system does not satisfy the
invariant then we can transform the trace given by SMV to a concrete trace,
and verify whether it is a concrete counterexample.

6 A Case Study

We consider the verification of the Bounded Retransmission protocol [23], BRP
for short. The BRP protocol is an extension of the al ternating bit protocol, where

4 In [13] it is proposed to take as abstraction the partition of the concrete state space
which is induced by the literals appearing in the guards. This abstraction is, however,
generally too coarse.

328

files of individual da ta are transmitted and the number of retransmissions per
da tum is bounded by a parameter. The protocol has been verified using theorem
proving [14, 16, 15], where a large number Of auxiliary invariants were needed. In
the original formulation of the case study the requirements on the protocol are
given by an abstract protocol, BRP-spec, and the task is to prove that the con-
crete protocol BRP simulates (is a refinement of) BRP-spec. In [13] it has been
shown by computing an abstraction of BRP that the concrete protocol satisfies
a set of temporal properties which have been extracted from the specification
BRP-spec. There is, however, no guarantee that the checked temporal properties
exclude all the behaviors excluded by BRP-spec: They do not exclude, for in-
stance, that the protocol cheats both the sending and receiving clients by telling
them that the transmission was successful while this is not the case. Using our
method and its implementation we have been able to automatically prove that
BRP implements BRP-spec.

Description of the protocol The BRP protocol accepts requirements REQ(f)
from a producer to transmit a file f of data to a consumer (See Fig 1). The
protocol consists of a sender at the producer side and a receiver at the con-
sumer side. The sender transmits data frames to the receiver via channel K and

Fig. i . The Bounded Retransmission Protocol.

waits for acknowledgment via channel L. Since these channels may lose mes-
sages t imeouts are used to identify a loss of messages. After sending a message,
the sender waits for an acknowledgment. When the acknowledgment arrives, the
sender either proceeds with the next message in the file, if there is one, or sends
a confirmation message to the producer. If a t imeout occurs before reception of
an acknowledgment, the sender retransmits the same message. This procedure is
repeated as often as specified by a parameter maz. On its side, the receiver after
acknowledging a message that is not the last one waits for further messages.
If no new message arrives before a timeout, it concludes that there is a loss of
contact to the sender and reports this to the consumer. The protocol is respon-
sible for informing the producer whether the file has been transmitted correctly,
whether transmission failed, or whether the last message is possibly lost. On the
consumer side, the protocol passes data frames indicating whether the da tum is
the first one in a file, the last one, or whether it is an intermediate one.

Correctness criterion To reduce the problem of proving that BRP simulates
BRP-spec to an invariance problem, we follow the same approach as in [16].
Thus, we consider a superposition of BRP and BRP-spec and prove that the
superposed protocol, BRP +, satisfies the invariance property DSafe, where Safe
is a variable tha t is set to false as soon as BRP makes a transition that is
not allowed by BRP-spec. It should be realized that BRP + contains for many

329

variables of the protocol two different copies corresponding to the variable in
BRP and BRP-spec, respectively. So, for instance there are two variables file
and a file which correspond to the file to be sent and two variables head and
ahead which correspond to the position of the data being processed in file and
a file, respectively.
Verification of the protocol The BRP protocol represents a family of param-
eterized protocols. The parameters are the number of allowed retransmissions
max, the length of a file Last, and finally, the data type Data. To obtain a fi-
nite abstraction of the protocol it is natural to eliminate these parameters by
introducing additional nondeterminism. The abstraction we used is essentially
obtained by the procedure we proposed in section 5. The only exception concerns
an abstract variable that encodes the distance between the position variables
head and ahead. A finite abstract system has been fully automatically produced
within one hour and 20 minutes on an Ultra Sparc 5 and has been successfully
model-checked by SMV within 2.11 seconds.

7 Conclus ion

We have presented a method that automatically and compositionally computes
abstractions for infinite state systems. The salient feature of our method, apart
from being automatic, is that the generated abstract system has the same struc-
ture as the concrete one. This makes our method applicable for synchronous as
well as asynchronous computat ion models. Moreover, this allows for the appli-
cation of other techniques for reducing the state explosion problem as well as
for debugging the concrete system. An other important feature of our method
is that it is incremental, in the following sense. Assume that we computed an
abstraction S a of a system S with respect to an abstraction function a. Assume
that we want to add new abstract variables to those in a, that is, we consider
a new abstraction function a t which agrees with a on the old abstract vari-
ables. Then, all transitions which have been eliminated during the generation of
S a need not be considered for the construction of an abstraction of S with re-
spect to a t. Furthermore, it is worth mentioning that, by the preservation results
of [8, 19], one can use our method to compute a finite abstract system that can
be used to verify every temporal property that does not include an existential
quantification over computat ion paths.

Though our method is based on a rather simple mathematical background,
we view it as practically important . We implemented the method using PVS
to check the conditions generated by the elimination method. The generated
abstract system is optionally described in the specification language of PVS or
of SMV. Thus, our implementation presents a bridge between the PVS theorem
prover and the SMV model-checker.

We applied our method on several examples. In addition to the BRP de-
scribed in this paper we computed a finite abstraction of the Alternating bit

The implementation of [13] takes five hours for a version of the BRP with fewer
variables.

330

protocol following the example in [25] and verified the Bakery and Peterson's
mutual exclusion algorithms, the reader-writer example, and a simplified ver-
sion of the Futurebus+ cache coherence protocol. For all of these examples an
abstract system has been fully automatically and efficiently generated.

Currently, we are integrating our implementation with our techniques for
generating auxiliary invariants [1]. We are also planning to investigate methods
to automate the debugging process of the concrete system. What is needed is a
module that transforms a trace of the abstract system into a concrete one and
then checks whether this trace corresponds to a computation of the concrete
system.

R e f e r e n c e s

1. S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Accepted in
Formal Methods in System Design. To appear.

2. N. Bjerner, A. Browne, and Z. Manna. Automatic generation of invariants and
intermediate assertions. Theoretical Computer Science, 173(1), 1997.

3. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. A CM
Transactions on Programming Languages and Systems, 16(5), 1994.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
ACM syrup, of Prog. Lang., pages 238-252. ACM Press, 1977.

5. D. Dams. Abstract interpretation and partition refinement for model checking.
PhD thesis, Technical University of Eindhoven, 1996.

6. D. Dams, R. Gerth, G. DShmen, R. Herrmann, P. Kelb, and H. Pargmann. Model
checking using adaptive state and data abstraction. In CAV'94, volume 818 of
LNCS. Springer-Verlag, 1994.

7. D. Dams, R. Gerth, and O. Grumberg. Generation of reduced models for checking
fragments of CTL. In CAV'93, volume 697 of LNCS. Springer-Verlag, 1993.

8. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems: Abstractions preserving ACTL*, ECTL* and CTL*. In ROCOMET'9$.
IFIP Transactions, North-Holland/Elsevier, 1994.

9. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.
ACM Transactions in Programming Languages and Systems, 19(2), 1997.

10. J. Dingel and Th. Filkorn. Model checking for infinite state systems using data
abstraction. In CAV'95, volume 939 of LNCS, pages 54-69. Springer-Verlag, 1995.

11. S. Graf. Characterization of a sequentially consistent memory and verification of
a cache memory by abstraction. Accepted to Distributed Computing, 1995.

12. S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction.
In CAV'93, volume 697 of LNCS. Springer-Verlag, 1993.

13. S. Grafand H. Saidi. Construction of abstract state graphs with PVS. In CAV'97,
volume 1254 of LNCS, 1997.

14. F.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large
packets. In A case study in computer checked verification, Logic Group Preprint
Series 100. Utrecht University, 1993.

15. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In FME'96, volume 1051 of LNCS. Springer-verlag, 1996.

331

16. L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link
protocol. Technical Report CS-R9420, CWI, March 1994.

17. P. Kelb. Abstraktionstechnikenfiir Automatische Verifikationsmethoden. PhD the-
sis, University of Oldenburg, 1995.

18. R.P. Kurshan. Computer-Aided Verification of Coordinating Processes, the au-
tomata theoretic approach. Princeton Series in Computer Science. 1994.

19. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserv-
ing abstractions for the verification of concurrent systems. Formal Methods in
System Design, 6(1), 1995.

20. D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD
thesis, Carnegie Mellon, 1993.

21. Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83(1):97-130, 1991.

22. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995.

23. S. Mauw and G.J. Veltink editors. Algebraic Specification of Communication Pro-
tocols. Number 36 in Cambridge Tracts in Theoretical Computer Science. 1993.

24. K.L. McMillan. Symbolic model checking. Kluwer Academic Publ., Boston, 1993.
25. O. Miiller and T. Nipkow. Combining model checking and deduction for I/O-

automata. In TACAS'95, volume 1019 of LNCS, 1995.
26. S. Owre, J. Rushby, N. Shankar, and F. yon Henke. Formal verification for fault-

tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 1995.

27. J. X. Su, D. L. Dill, and C. Barrett. Automatic generation of invariants in proces-
sor verification. In FMCAD '96, volume 1166 of LNCS, 1996.

