
N o r m e d S i m u l a t i o n s

David Griffioen 1'2. Frits Vaandrager 2

1 CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2 Computing Science Institute, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{day idg, fvaan}@cs, kun. n l

A b s t r a c t . In existing simulation proof techniques, a single step in a low-
level system may be simulated by an extended execution fragment in a
high-level system. As a result, it is undecidable whether a given relation
is a simulation, even if tautology checking is decidable for the underlying
specification logic. This paper introduces various types of normed simu-
lations. In a normed simulation, each step in a low-level system can be
simulated by at most one step in the high level system, for any relat-
ed pair of states. We show that it is decidable whether a given relation
is a normed simulation relation, given that tautology checking is decid-
able. We also prove that, at the semantic level, normed simulations form
a complete proof method for establishing behavior inclusion, provided
that the high-level system has finite invisible nondeterminism. As an il-
lustration of our method we discuss the verification in PVS of a leader
election algorithm that is used within the IEEE 1394 protocol.

1 I n t r o d u c t i o n

Simulat ion relations and refinement funct ions are widely used to prove tha t a
low-level specification of a reactive sys tem correctly implements a higher-level
one [1, 13]. Technically, a simulation (or refinement) is a relation (or function)
R between the s tates of a low-level sys tem A and a high-level sys tem B, tha t
satisfies condit ions such as

(s, u) e R A s - % s' 3u': ^ e R (1)

(If a low-level s tate s and a high-level s ta te u are related, and A can make a
t ransi t ion f rom s to s t, then there exists a ma tch ing t ransi t ion in B f rom u to
a s ta te u ~ tha t is related to # .) The existence of a s imula t ion implies tha t any
behavior tha t can be exhibited by A can also be exhibited by B.

The main reason why simulat ions are useful is tha t they reduce global rea-
soning abou t behaviors and executions to local reasoning about states and t ran-
sitions. However, to the best of our knowledge, all complete s imulat ion p roof
me thods tha t appear in the l i terature fall back on some form of global reasoning

* Supported by the Netherlands Organization for Scientific Research (NWO) under
contract SION 612-316-125.

333

in the case of systems that perform internal (or stuttering) steps. The usual
transfer condition for forward simulations [13], for instance, says

(s, u) e R A s a)A s' =~ 3 execution fragment a : f irst(a) = u (2)

A trace(a) = trace(a) A (s', last(a)) C n

(Each low-level transition can be simulated by a sequence of transitions which,
apart from the action that has to be matched, may also contain an arbitrary
number of internal steps.) Thus the research program to reduce global reasoning
to local reasoning has not been carried out to its completion.

In manual proofs of simulation relations, the occurrence of executions in
transfer condition (2) usually does not pose a real problem: often the matching
execution fragments that have to be constructed are short since internal step-
s are rare in high-level specifications; moreover humans tend to be quite good
in reasoning about sequences, and move effortlessly from transitions to execu-
tions and back. In contrast, it turns out to be rather cumbersome to formalize
arguments involving sequences using existing theorem provers (see [5] for a com-
parative study). In fact, in several papers in which formalizations of simulation
proofs are described, the authors only define a restricted type of simulation or
refinement in which each transition of the low-level system is formalized by one
or zero transitions of the high-level system [11, 15, 6]. In approaches such as [18],
in which the full transfer condition (2) is formalized, the user has to supply
the simulating execution fragment a to the prover explicitly in each case of the
proof, which makes the verification process highly interactive.

In this paper, we introduce a simulation proof method which remedies the
above problems. The key idea is to define a function n that assigns a norm
n(s a ~ s', u), in some well-founded domain, to each pair of a transition in A and
a state of B. If u has to simulate step s ~. ~ s ~ then it may either do nothing (if a
is internal and s t is related to u), or it may do a corresponding a-step, or it may
perform an internal action leading to a state u' such that the norm n(s - ~ s t, u ~)
decreases. We establish that the normed forward simulations and normed back-
ward simulations together constitute a complete proof method for establishing
trace inclusion. In addition we show how history and prophecy relations (which
are closely related to the history and prophecy variables of [1]) can be enriched
with a norm function, to obtain another complete proof method in combination
with a simple notion of refinement mapping.

When proving invariance properties of programs, one is faced with two prob-
lems. The first problem is related to the necessity of proving tautologies of the
assertion logic, whereas the second manifests in the need of finding sufficiently
strong invariants. In order to address the first problem, powerful decision proce-
dures have been incorporated in theorem provers such as PVS [16]. If tautology
checking is decidable then it is decidable whether a given state predicate is valid
for the initial states and preserved by all transitions. The task of finding such a
predicate, i.e. solving the second problem, is the responsibility of the user, even
though some very powerful heuristics have been devised to automate this search
[2]. Analogously, if systems A and B, and a conjectured simulation relation R

334

and norm function n can all be expressed within a decidable assertion logic, and
if the transition relations of A and B can be specified using a finite number of
deterministic transition predicates, then it is decidable whether the pair (R, n)
is a normed simulation. This result, which does not hold for other methods such
as [1, 13], is a distinct advantage of normed simulations.

The preorders generated by normed forward simulations are strictly finer
than the preorders induced by the simulations of [13]. In fact, it is easy to
characterize normed forward simulations in terms of branching simulations [9].
We believe it will be possible to come up with a notion of normed simulation
that induces the same preorder as forward simulations, but technically this will
be much more involved. In [9] it is argued that branching bisimulations have
much nicer mathematical properties than Milner's weak bisimulations. Similarly,
the mathematical theory of normed simulations appears to be nicer and more
tractable than the theory of simulations developed in [13].

The idea of using norm functions to prove simulation relations also occurs
in [10], where it is used to prove branching bisimilarity in the context of the
process algebra #CRL. However, in [10] the norm function is defined on the
states of B only, and does not involve the transitions of A. Furthermore the
method of [10] only applies to divergence free processes. Norm functions very
similar to ours were also studied by Namjoshi [14]. He uses them to obtain a
characterization of the stuttering bisimulation of [3], which is the equivalent of
branching bisimulation in a setting where states rather than actions are labelled
(see [4]). Both [10] and [14] do not address effectiveness issues. Although we
present normed simulations in a setting of labeled transition systems, it should
not be difficult to transfer our results to a process algebraic setting such as [10]
or a state based setting such as [14].

As a substantial example of the use of normed simulations, we discuss the
formalization in PVS of the verification of a leader election algorithm that plays
a role in the tree identify phase of the physical layer of the IEEE 1394 protocol
[12,6]. We establish a normed prophecy relation from a high-level specification
of the protocol to an intermediate specification, and a normed history relation
from the intermediate specification to a low-level specification.

2 A T h e o r y o f N o r m e d S i m u l a t i o n s

In this section we build on some (standard) definitions and notations presented
in [13]. In fact, our aim is to derive the same results as in [13], only for different
types of simulations.

2.1 Step Ref inements

The simplest type of simulation we consider is a step refinement. A step refine-
ment from automaton A to automaton B is a partial function r from states(A)
to states(B) that satisfies the following two conditions:

1. If s E start(A) then s E domain(r) and r(s) E start(B).

335

2. If s---%A s' A s E domain(r) then s' E domain(r) and
- r (s) = r (s ') A a = v , or
- r (s) % r(s ') .

Write A < a B if there exists a step refinement from A to B. It is easy to check
that _<R is a preorder (i.e., is transitive and reflexive). If A <R B then we can
construct, for each execution a of A, a corresponding execution of B with the
same trace. This idea is formalized below.

Suppose A and B are automata, R C states(A) × states(B), and a =
soalsla2s2.., and a t = uoblulb2u2.., are executions of A and B, respective-
ly. Let index(a) and index(a') denote the index sets of a and a ' . We say that
a and a ' are R-related, written (a, a ~) E R, if there exists an index mapping,
i.e., a total, nondecreasing function rn : index(a) -4 index(a') such that , for all
i E index(a) and j E index(a'),

1. m(0) = O,
2. (si, urn(O) E R,
3. i > O ~ ai=bm(i) V (a i = 7 " A m (i) = m (i - 1)) ,
4. re(i) < j A (i + l E i n d e x (a) : : ~ j < m (i + l)) ~ (s i ,uj) E R A b j = r .

Write (A, B) E R if for every execution a of A there is an execution c~ ~ of B such
that (a, cd) E R, and write [A, B] E R if for every finite execution a of A there
is a finite execution a I of B such that (c~, c~ I) E R.

An index mapping maps low-level states to corresponding high-level states
such that the start states correspond (Condition 1), corresponding states are
related by R (Condition 2), each non-;- action in the low-level execution corre-
sponds to an action in the high-level execution (Condition 3), and each non-r
action in the high-level execution corresponds to an action in the low-level execu-
tion (Condition 4). Our notion of correspondence is similar to the one presented
in [8, 19]. Within the theory of I /O automata , execution correspondence plays a
crucial role in proofs of preservation of both safety and liveness properties. Our
notion is more restrictive than the one of [8, 19], but has the advantage that it
also preserves until properties.

T h e o r e m 1. (Execution correspondence) (I) If ((~, ~) E R then trace(a) =
trace(~'). (2) If (A, B) E R then A <T B. (3) If [A, B] E R then A <.T B.

T h e o r e m 2. (Soundness of refinements) If r is a step refinement from A to B
then (A, B) E r.

Combining Theorems 1 and 2 gives that A _<R B implies A <T B. In addition,
Theorem 2 allows us to use refinement relations as a sound technique for proving
implementation relations between live automata, as in [8,19].

2.2 N o r m e d F o r w a r d S i m u l a t i o n s

A normed forward simulation from A to B consists of a relation f over states(A) ×
states(B) and a function n : steps(A) × states(B) -4 S, for some welt-founded
set S, such that (here f[s] denotes the set {u I(s, u) e f}):

336

1. If s E start(A) then f[s] I"1 start(B) ~ O.
2. If s--~A s ~ A u E f[s] then

- u E f [s '] A a - - - - 7 - , o r

- 3u' E f[s '] : u 5 B u', o r

-- ::]U ! E f[8] :U 5 B U ! A n (S - - ~ A 8 I ,u l) < n(8----~A 8 I ,u) .

Write A <F B if there exists a normed forward simulation from A to B.
The intuition behind this definition is that when s--%A s ~ and (s, u) E f ,

either the transition in A is a stuttering step (first clause), or there is a matching
step in B (second clause), or B can do a stuttering step which decreases the norm
(third clause). Since the norm decreases at each application of the third clause,
it can only be applied a finite number of times. In general, the norm function
may depend both on the transitions in A and on the states of B. However, if B
is convergent, i.e., there are no infinite r-paths, then one can simplify the type
of the norm function (though not necessarily the definition of the norm function
itself!) to n : states(B) --+ S. In fact, in the approach of [10], which only applies
to convergent processes, the norm function is required to be of this restricted
type. It is not hard to see that in the example of Figure 1, where B is divergent,
the norm necessarily depends on the selected step in A.

As each step refinement is a normed
f°rward simulati°n (f°r an arbitrary a ~ <F ~ v ~_
norm function) A <R B implies A <F r
B. It is also not so difficult to prove • •
that <F is a preorder. The following A B
theorem states that normed forward Fig. 1. Norm function must take steps
simulations induce the same preorder of A into account.
on automata as "branching forward sim-
ulations". Basically the same result has been obtained by Namjoshi [14] in the
setting of stuttering bisimulations.

T h e o r e m 3. A <F B iff there is a branching forward simulation from A to B,
i.e., a relation f over states(A) × states(B) such that

1. I f s E start(A) then f[s] M start(B) • O.
2. I f 8 a) A 8 t A u E f[s] then

- u E f [s '] A a = 7 - , or
- 3uo,..,Un E f [8] 3 u ' E f [s '] : uo = u A (V i < n : ui

Un " - ~ B z/t-
T) B Uih-1) A

An interesting implication of our proof of Theorem 3 is that if there is a normed
forward simulation from A to B, there is in fact a normed forward simulation
with a norm function that has the set of natural numbers as its range.

The proofs of the following Theorems 4 and 5 are standard and similar to
the proofs of the corresponding results in [13] and elsewhere.

T h e o r e m 4. (Soundness of forward simulations) I f f is a normed forward sim-
ulation from A to B then (A, B) E f .

337

T h e o r e m 5. (Partial completeness of forward simulations) I f B is determinis-
tic and A < ,T B, then A <F B.

It is interesting to note that there is only one result from [13] that does not
carry over to the setting of this paper. This result says that if A is a forest, i.e.,
each state can be reached via exactly one execution, and A <F B then A <R B.
The au tomata A and B of Figure 1 constitute a counterexample.

2.3 N o r m e d Backward S imulat ions

A normed backward simulation from A to B consists of a total relation b over
states(A) × states(B) and a function n : (steps(A) U start(A)) x states(B) ~ S,
for some well-founded set S, such that

1. If s e start(A) ^ u • b[s] then
- u • start(B), or
- 3~' • b[s]: ~' "~B ~ ^ n(s, ~') < n(s, ~).

2. I f s ' %AS A u • b[s] then
- u • b [s '] A a = r , or
- 3 u ' • b [s '] : u ' a) B u , o r

- 3~' • b[s]: ~' % u A . (s ' °~a s, ~') < n(s' % s, ~).

Relation b is image-finite if, for all s, the set his] is finite. Write A <B B if
there is a normed backward simulation from A to B, and A <iB B if there is
an image-finite normed backward simulation from A to B. It is routine to prove
that < s and ~iB are preorders, and to characterize these relations in terms of
"branching backward simulations" as in Theorem 3.

The proofs of the following Proposition 1, Theorem 6 and Theorem 7 again
closely follow the proofs of the corresponding results in [13].

P r o p o s i t i o n 1. (1) A <rt B ~ A <iB B. (2) If all states of A are reachable, B
is deterministic and A <B B, then A <rt B. (3) A <ir~ B =~ A <B B. (4) If all
states of A ave reachable, B has finite invisible nondeterminism and A <_s B,
then A <_iB B.

T h e o r e m 6. (Soundness of backward simulations) If b is a normed backward
simulation from A to B then [A, B] • b. If, moreover, b is image-finite then
(A, B) • b.

T h e o r e m 7. (Partial completeness of backward simulations) If A is a forest
and A < ,T B, then A <]3 B.

2.4 H i s t o r y R e l a t i o n s

A pair (h, n) is a normed history relation from A to B if (h, n) is a normed
forward simulation from A to B and h -1 is a step refinement from B to A.
Write A _<H B if there exists a normed history relation from A to B.

338

Thus A -<H B implies A -<F B and B < a A. Through these implications, the
preorder and soundness results for forward simulations and refinements carry
over to history relations. In fact, if (h, n) is a normed history relation from A
to B then h-1 is just a functional branching bisimulation between A and B in
the sense of Van Glabbeek and Weijland [9]. Hence, history relations preserve
behavior of automata in a very strong sense.

The following theorem is a variant of a result proved by Sistla [17].

T h e o r e m 8. (Completeness of history relations and backward simulations) If
A <.W B then there exists a forest C such that A -<H C -<B B.

T h e o r e m 9. A -<F B ¢~ (3C : A -<H C _<a B).

2.5 P r o p h e c y Relat ions

A pair (p, n) is a normed prophecy relation from A to B if (p, n) is a normed
backward simulation from A to B and p-1 is a step refinement from B to A.
Write A -<p B if there exists a prophecy relation from A to B, and A <ie B if
there is an image-finite prophecy relation from A to B. Thus A _<iP B implies
A -<iB B and A -<p B, and A -<p B implies A -<B B and B < a A. Moreover, if
all states of A are reachable, B has finite invisible nondeterminism and A -<p B,
then A _<iP B. Through these implications, the preorder and soundness results
for backward simulations and refinements carry over to prophecy relations.

T h e o r e m 10. (1) A ~_B B ~=~ (3C : A <p C -<~ B). (2) A -<iB B ~ (36 :
A -<iP C -<R B).

We can now state variants of the well-known completeness result of Abadi
and Lamport [1].

T h e o r e m 11. (Completeness of history+prophecy relations and refinements)
Suppose A -<,W B. Then (1) 3C, D : A -<H C -<p D -<rt B. (2) I f B has finite
invisible nondeterminism then 3C, D : A <_H C --<iF D _<a B.

2.6 D e c i d a b i l i t y

Fix an assertion language/~ that includes first-order predicate logic and inter-
preted symbols for expressing the standard operations and relations. If automata
A and B, and a conjectured simulation relation R and norm function n can all
be expressed within a fragment of/2 for which tautology checking is decidable
and if the transition relations of A and B can be specified using a finite number
of deterministic transition predicates (as defined, for instance in, [7]), then it
is decidable whether the pair (R, n) is a normed forward or normed backward
simulation. It is not hard to prove that this result does not hold for the refine-
ments, forward and backward simulations presented in [13], nor for the prophecy
variables of [1].

339

2.7 R e a c h a b i l i t y

When proving simulations one often restricts the automata to the reachable sub-
automata, in order to be able to use invariants. In backward simulations this is
not convenient, therefore a slightly adapted version of the backward simulation
is presented below. The predicate Q on states of B can be used as induction
hypothesis.

The adapted normed backward simulation from A to B consists of a total
relation b over states(A) x states(B) and a function n : (steps(A) U start(A)) x
states(B) --+ S, for some well-founded set S, such that

1. If s E start(A) A u E b[s] A Q(u) then
- u E start(B), or
- 3u ' E b[s] : u'--5+/3 u A n(s, u') < n(s, u) A Q(u').

2. If s' a)A s A u E b[s] A reachable(s') A Q(u) then
- uEb[s'] A a = r , or

- 3u' ~ b[s'] : u' °~/3 u ^ Q(~') , or
- 3~' e b[s]: u ' - ~ / 3 u n n(s ' % s, u') < n(s' % s, u) n Q(u') .

3 E x a m p l e : I E E E 1 3 9 4

In this section we illustrate the notions of step refinements and normed (forward
and backward) simulations through the verification of a fragment of IEEE 1394
[12], a high performance serial multimedia bus protocol. The specific algorithm
that we analyze is an abstract version of the tree identify phase (TIP) of the
IEEE 1394. We present the TIP protocol at three levels of abstraction, and
prove, via refinements and simulations, that these three specifications are trace
equivalent. The three au tomata are described in the IOA language of [7], and
the relations that will be established between them are depicted below.

<B _<F

IOA contains the basic type Bool with its standard operators, such as A, V
and --. In addition type constructors Array, Seq (finite sequences) and Set (finite
sets) are part of the language. The notation _[__] is used for array subscripting,
an array with a value e in all cells is denoted by c o n s t (e) . The operation __ F _
appends an element at the end of a sequence.

The task of the TIP is to check whether the finite and connected network
topology is cycle free, and (if this is indeed the case) to elect a leader amongst
the nodes. In Figure 2, a simple example network is displayed, with devices A,
B and C, and ports p, % r and s. It is assumed that each port is connected to
exactly one other port, which is called its peer. A network may contain a loop,
and devices even can be connected to themselves. So, in the example port q also
could have been connected to r , but then q and r could not have been connected
to p and s, respectively.

340

automaton TIP1
s lgna tu re

o u t p u t root(d : Dev),
loopdetec t (d : Dev)

s ta tes
root, Ipd: Array[Dev,Bool] := const(false)

transitions
o u t p u t root (d)

pre -- 3 e : Dev (oncycle? (e) V root [e])
ef t root [d] := t rue

o u t p u t loopdetec t (d)
pre oncycle?(d) A -~lpd[d]
etT lpd[d] := t rue

Fig. 3. Automaton TIP1.

In Figure 3, au tomaton TIP1 is presented. This simple au tomaton has two
action schemas r o o t (d: Dev) and l o o p d e t o c t (d : Dov). Specification TIP 1 says
tha t if the network is cycle free exactly one node will perform a r o o t action.
Otherwise, no r o o t action will occur, but instead each node tha t lies on a cycle
will perform a loopdetect action.

Automaton TIP2, presented in Figure 4, is an imple-
mentat ion of TIP1. The states contain an extra variable
c h i l d : Se t [P o r t] . If port p is in c h i l d then we say tha t
its device dev (p) has a child, namely d e v (p e e r (p)) .
When all but one neighbours of a device are its children
it can become a child itself. Besides the l o o p d e t e c t and
r o o t actions, TIP2 has an a d d c h i l d action, which adds
a port to the child set. I f we consider the connections
with a port in the c h i l d set to be the branches of a tree,

F ig . 2. A network then this tree grows with each a d d c h i l d action from the
leaves in the direction of the root. If all the ports of a

device are in the c h i l d set then this device will become the root.
Au tomaton TIP3, presented in Figure 6, is an implementat ion of TIP2. It

extends TIP2 with a state variable mq, which gives a queue of outgoing messages
per port . Furthermore, some status bits per device (i n i t , rc) are added. For
a detailed description of the protocol we refer to [6] and the full version of this
paper. Next the relations between the au t om a t a will be discussed.

(TIP2 ~_R TIP1) The function b f rom states of TIP2 to states of TIP1 is
defined as the projection on the s tate variables of TIP1, in IOA notation:
b ([c h i l d , r o o t , l p d]) == [r o o t , 1pd]. It is quite simple to prove tha t b is a
step refinement (see Section 2.1) f rom TIP2 to TIP1.

The simulation from TIP1 to TIP2 illustrates the usefullness of backward
simulations. A (traditional) forward simulation exists, but no normed forward

341

a u t o m a t o n TIP2
s igna tu re

in te rna l addchild(d : Dev,p : Port),
o u t p u t root(d : Dev),

loopdetec t (d : Dev)
s ta tes

child: Set[Port] := {},
root,lpd: Array[Dev,Bool] :---- const (false)

t r a n s i t i o n s
in terna l addchi ld(d,p) where d = dev(p)

p re p ~ ch i ld A
ports (dev(peer(p))) - child = {peer(p) }

eiT child := insert(p,child)

output root (d)
pre -~root[d] A ports(d) _ child
eft root[d] := true

output loopdetect (d)
pre oncycle?(d) A ~ ipd[d]

eIT ipd[d] := true

Fig. 4. Automaton TIP2.

simulation. The reason for this can be seen in Figure 5. This figure depicts the
transit ion systems of TIP1 and TIP2, for a network with only two devices (d and
e) and a single link connecting these. The solid arrows represent the transitions
of the systems, r is a shorthand for r o o t and a for a d d c h i l d . In this case TIP1
only can do a r o o t (d) or a r o o t (e) action. Before a r o o t action can be done
in TIP2 an a d d c h i l d action has to be done.

TIP1 TIP2

.......

Fig . 5. Transit ion systems

A possible simulation relation is depict-
ed by the dotted lines. This is not a normed
forward simulation because the s tar t s ta te
of T I P l is related to a state where only
a r o o t (d) action can happen and not a
r o o t (e) action.

However the dot ted lines depict a normed
backwardsimnlationfrom TIP1 to TIP2. The

norm is defined on the states of TIP2 as the number of ports in the child set.
Note tha t the only internal action of TIP2 is a d d c h i l d , so the norm only needs
to decrease when an a d d c h i l d is simulated backwards (is 'undone') .

In general, backward simulations can be useful when the implementat ion
'makes a decision' with internal steps. In TIP2 the decision who becomes root
device is made by the internal action a d d c h i l d .

(TIP2 _~B TIP1) The inverse of function b is used as simulation relation. A
predicate Q on the states of TIP2 is used to restrict the statespace.

342

q(u) ---- Vd.u.root[d] -+ ports(d) C u.child A
Vd.u.Ipd[d] -+ oncycleT(d) A
GDT(u.child)

The first two conjucts are trivial consequences of the specification. GDT(S) is
a predicate on ports stat ing that the net obtained by deleting all links without
a port in the set S is a Growing Directed Tree. This means tha t it contains no
cycles and each device has at most one parent and when a device has a parent
all its other neighbours are its children. The norm function only depends on the
s tate of TIP2, it is defined as the cardinalty of the set c h i l d .

(TIP3 _<R TIP2) The function f from states of TIP3 to states of TIP2 is the
projection on the state variables of TIP2. In IOA notat ion :
f([child,mq, init,rc,root,ipd]) == [¢hild,root,ipd]

In the routine proof of TIP3 _<R TIP2 an invariant I is proved at the same
time, where I == o n c y c l e ? (d) - - > i n i Z (d) .

(TIP2 _<F TIP3) The proof that f - 1 is a normed forward simulation from
TIP2 to TIP3 will be discussed in more detail. The condition for s tar t states
holds trivially. Next the three actions of TIP2 must be simulated, they will be
discussed each. The norm function is defined per action schema and the result
type is the natural numbers with the usual ordering. For convenience actions of
TIPx are subscripted with x. The states s and t are states of TIP2 before and
after a transition respectively, similarly u and v are states of TIP3.

The l o o p d e t e c t 2 action of TIP2 has the same precondition as the action
l o o p d e t e c t 3 of TIP3, and mentions only state variables that the au toma ta
have in common. Thus if the precondition of l o o p d e t e c t 2 holds on a state
s then the precondition of l o o p d e t e c t 3 also holds on states in f - l (s) . Be-
cause the l o o p d e t e c t 2 action can be simulated directly, the norm function for
l o o p d e t e c t 2 is irrelevant.

The precondition of the the roo t2 action is similar to the precondition of
root3 , the lat ter has only a single extra conjunct: ~ i n i t [d]. The norm function
for r o o t (d) 2 is defined to be 1 when i n i t [d] holds and 0 otherwise.

If roo t (d)2 is enabled and f (u) = s then roo t (d)3 or Tini t
ch i ld renknown(d)~ are enabled in u. A case distinction on <:.. , c J d ~
u. i n i t [d] is made. Suppose u. i n i t [d] holds then the action T
ch i ld renknown(d)3 is enabled. This action reduces the norm, r2(d~ ~-~ i n i t
and the state after this action, is also related to s. Suppose ~ I r3 (d)
-~u. i n i t [d] then r o o t (d)3 is enabled in, u and r o o t (d) 3 can
be simulated directly.

The proof tha t addch i ld2 is simulated is similar to the proof for roo t2
but longer. Where the roo t2 simulation had two cases, we have seven cases for
addchi ld2. The case distinction is on whether init holds or not and whether the
message queues of the port that is added and its peer are empty or contain a
parent request.

343

Notice that the relations used in the simulations are the inverses of the func-
tions (b and f) used in the step refinements, so in fact we have proved a stronger
result, namely: TIP1 <_iP TIP2 and TIP2 __~H TIP3.

A drawback of the use of normed simulations instead of ' traditional ' simula-
tions could be that one has to find a suitable norm function. In our experience
the norm functions were obvious. We expect this to be the case in general, be-
cause the norm function is 'local', only for a specific transition in one automaton
the internal step in the other should decrease this measure.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, 1991.

2. S. Bensalem, Y. Lakhnech, and H. Saldi. Powerful techniques for the automatic
generation of invariants. In Proc. CAV'96, LNCS 1102, pp 323-335. Springer, 1996.

3. M. Browne, E. Clarke, and O. Griimberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Comp. Sci., 59(1,2):115-131, 1988.

4. R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal
of the ACM, 42(2):458-487, 1995.

5. M. Devillers, W. Griffioen, and O. Mfiller. Possibly infinite sequences: A compar-
ative case study. In Proc. TPHOLs'97, LNCS 1275, pp 89-104. Springer, 1997.

6. M. Devillers, W. Griffioen, J. Romijn, and F. Vaandrager. Verification of a leader
election protocol - - formal methods applied to IEEE 1394. Technical Report CSI-
R9728, University of Nijmegen, 1997.

7. S. Garland, N. Lynch, and M. Vaziri. IOA: A language for specifiying, program-
ming, and validating distributed systems, September 1997. Available through
ht tp://larch. Ics. mit. edu: 800 I/~garland/ioaLanguage. html.

8. R. Gawlick, R. Segala, J. Scgaard-Andersen, and N. Lynch. Liveness in timed and
untimed systems. In Proe. 21 th ICALP, LNCS 820. Springer, 1994. A full version
appears as MIT Technical Report MIT/LCS/TR-587.

9. R. van Glabbeek and W. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555-600, 1996.

10. J. Groote and J. Springintveld. Focus points and convergent process operators - -
a proof strategy for protocol verification. Report CS-R9566, CWI, 1995.

11. L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link protocol.
In Proc. TYPES'93, LNCS 806, pp 127-165. Springer, 1994.

12. IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394-1995, August 1996.

13. N. Lynch and F. Vaandrager. Forward and backward simulations, I: Untimed
systems. Information and Computation, 121(2):214-233, 1995.

14. K. Namjoshi. A simple characterization of stuttering bisimulation. In Proc. FST
TCS'97, LNCS 1346, pp 284-296. Springer, 1997.

15. T. Nipkow and K. Slind. I/O automata in IsabeUe/HOL. In Types for Proofs and
Programs, LNCS 996, pp 101-119. Springer, 1995.

16. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering, 21(2):107-125, 1995.

17. A. Sistla. Proving correctness with respect to nondeterministic safety specifica-
tions. Information Processing Letters, 39(1):45-49, 1991.

'344

18. J. S~gaard-Andersen, S. Garland, J. Guttag, N. Lynch, and A. Pogosyants.
Computer-assisted simulation proofs. In Proc. CAV'93, LNCS 697, pp 305-319.
Springer, 1993.

19. J. S0gaard-Andersen, N. Lynch, and B. Lampson. Correctness of communication
protocols - a case study. Report MIT/LCS/TR-589, MIT, Cambridge, MA, 1993.

au toma ton TIP3
s ignature

states
child: Set[Port] := {}
mq: Array[Port,Seq[Mes]] := const({})
init: Array[Dev,Bool] := const(true)
rc, root, lpd: Array[Dev,Bool] :----- const(false)

t ransi t ions
internal childrenknown(d)

pre init[d] A size(ports(d) - child) _< 1
eft" init[d] := false ;

for p in ports[d] do if p 6 child
then mq[p] :-- mq[p] F ack
else mq[p] :---- mq[p] ~ parent fi od

internal addchild(d,p) where d = dev(p)
pre init[d] A head(mq[peer(p)]) = parent
eIT child := insert(p, child); mq[peer(p)] :----tail(mq[peer(p)])

internal receivemes(d,p,mes) where d = dev(p)
pre-~init[d] A poris(d) - child = {p} A head(mq[peer(p)]) = mes
eft if mes = parent then rc[d] :---- true fi;

mq[peer(p)] := tail(mq[peer(p)])
internal solverootcontent(d,p) where d = dev(p)

pre rc(d) A rc(dev(peer(p)))
eli child := inser~(p,child) ;

re(d) := false; rc(dev(peer(p))) :---- false
ou tpu t root(d)

pre-~init[d] A -~root[d] A ports(d) _ child
eli root[d] :----true

ou tpu t loopdetect (d)
pre oncycle?(d) A -~ Ipd[d]
eIT Ipd[d] :----true

Fig. 6. Automaton TIP3.

