
Verification of Floating-Point Adders **

Yirng-An Chen and Randal E. Bryant
yachen+@cs.cmu.edu, bryant+@cs.cmu.edu

Computer Science Dept., Carnegie Mellon Univ., Pittsburgh, PA 15213

Abstract. In this paper, we present a "black box" version of verification of FP
adders. In our approach, FP adders are verified by an extended word-level SMV
using reusable specifications without knowing the circuit implementation. Word-
level SMV is improved by using Multiplicative Power HDDs (*PHDDs), and
by incorporating conditional symbolic simulation as well as a short-circuiting
technique. Based on a case analysis, the adder specification is divided into several
hundred implementation-independent sub-specifications. We applied our system
and these specifications to verify the IEEE double precision FP adder in the Aurora
III Chip from the University of Michigan. Our system found several design errors
in this FP adder. Each specification can be checked in less than 5 minutes. A
variant of the corrected FP adder was created to illustrate the ability of our system
to handle different FP adder designs. For each adder, the verification task finished
in 2 CPU hours on a Sun UltraSPARC-II server.

1 Introduction
The floating-point (FP) division bug [10] in Intel's Pentium processor and the overflow
flag erratum of the FIST instruction (FP to integer conversion) [12] in Intel's Pentium
Pro and Pentium II processors have demonstrated the importance and the difficulty of
verifying FP arithmetic circuits and the high cost of an arithmetic bug. FP adders are
the most common units in FP processors~ Modern high-speed FP adders [17] are very
complicated, because they require many types of modules: a right shifter for alignment,
a left shifter for normalization, a leading zero anticipator (LZA), an adder for mantissas,
and a rounding unit.

Formal verification or exhaustive simulation can be used to ensure the correctness
of FP adders. However, it is impossible to perform exhaustive simulations for a floating-
point adder. Formal verification techniques such as theorem proving and model checking
have been used to verify arithmetic circuits. Most of the IEEE FP standard has been
formalized by Carrefio and Miner [4] for the HOL and PVS theorem provers. To verify
arithmetic circuits, theorem provers require users to guide the proof which is structured as
series of lemmas describing the effect of circuit modules and their interactions [1]. Thus,
the verification process is very tedious and implementation-dependent. After the famous
Pentium division bug [10], Intel researchers applied word-level SMV [9] with Hybrid
Decision Diagrams (HDDs) [8] to verify the functionality of the FP unit in one of Intel's
processors [7]. Due to the limitations of HDDs, the FP adder was partitionedinto several
sub-circuits to be verified. The correctness of the overall circuit had to be ascertained
manually from the verified specifications of the sub-circuits. This partitioning approach
requires user intervention and thus could be error prone. Moreover, the specifications
for the partitions are highly dependent on the circuit implementation.

** This research is sponsored by the Defense Advanced Research Projects Agency (DARPA)
under contract number DABT63-96-C-0071.

489

To the best of our knowledge, only two types of arithmetic circuits can be verified
by treating them as black boxes (i.e., the specifications contain only the inputs and
outputs). First, an integer adder can be verified by using Binary Decision Diagrams
(BDDs) [2]. Second, Hamaguchi et al [13] presented the verification of integer mul-
tipliers without knowing their implementations using Multiplicative Binary Moment
Diagrams (*BMDs) [3]. However, their approach does not work for incorrect designs,
because the *BMDs explode in size and counterexamples can not be generated for de-
bugging. None of the previous approaches can verify FP adders without knowing their
circuit implementations.

In this paper, we present a black box version of verification of FP adders. In our
approach, a FP adder is treated as a black box and is verified by an extended version
of word-level SMV with reusable specifications. Word-level SMV is / improved by us-
ing Multiplicative Power HDDs (*PHDDs) [5] to represent the FP functions, and by
incorporating conditional symbolic simulation as well as a short-circuiting technique.
The FP adder specification is divided into several hundred sub-specifications based on
the sign bits and the exponent differences. These sub-specifications are implementation-
independent, since they use only the input and output signals of FP adders.

The concept of conditional symbolic simulation is to perform the symbolic simu-
lation of the circuit with some conditions to restrict the behavior of the circuit. This
approach can be viewed as dynamically extracting circuit behavior under the given
conditions without modifying the actual circuit. Can we verify the specifications of FP
adders using conditional symbolic simulation, avoiding any use of circuit knowledge?
We identify a conflict in variable orderings between the mantissa comparator and man-
tissa adder, which causes the BDD explosion in conditional symbolic simulation. A
short-circuiting technique to overcome this ordering conflict problem is presented and
integrated into word-level SMV package. In general, this short-circuiting technique can
be used when different parts of the circuit are used under different operating conditions.

We used our system and these specifications to verify the FP adder in the Aurora III
Chip [14] at the University of Michigan. This FP adder is based on the design described
in [17], and supports IEEE double precision and all 4 IEEE rounding modes. In this
verification work, we verified the FP adder only in the round-to-nearest mode, because
we believe that this is the most challenging rounding mode for verification. Our system
found several design errors. Each specification can be checked in less than 3 minutes
or 5 minutes including counterexample generation. A variant of the corrected FP adder
was created and verified to illustrate the ability of our system to handle different FP
adder designs. For each FP adder, verification took 2 CPU hours. We believe that our
system and specifications can be applied to directly verify other FP adder designs and
to help find design errors.

J

The overflow flag erratum of the FIST instruction (FP to integer conversion) [12]
in Intel's Pentium Pro and Pentium II processors has illustrated the importance of
verification of the conversion circuits which convert the data from one format to another
format (e.g., IEEE single precision to double precision). Since these circuits are much
simpler than FP adders and only have one input operand, we believe that our system can
be used to verify the correctness of these circuits.

490

2 *PHDD Overview

Chen and Bryant [5] introduced a representation, called Multiplicative Power HDDs
(*PHDDs), to provide a compact representation for integer and floating-point functions.
For expressing function g from Boolean variables to integer or floating-point values,
*PHDDs use one of three decompositions of a function with respect to an input variable
x: { e w . ((1 - A) (Sha, non)

g : (w, f) = c ~ (f~ + x . f~=) (Positive Davio)
c w (fx + (1 - x) . f ~) (Negative Davio)

where (w, f) denotes c ~ • f , and., + and - denote multiplication, addition and sub-
traction, respectively. Term f~ (f~) denotes the l- (0-) cofactor of f with respect to
variable x, i.e., the function resulting when the constant 1 (0) is substituted for x. Term
f~= = f~ - f~ is called the linear moment of f with respect to x. This terminology
arises by viewing f as a linear function with respect to its variables, and thus f~= is the
partial derivative of f with respect to x. Similarly, Term f ~ is f~- - f~.

In general, the constant c can be any positive integer. Since the base value of the
exponent in the IEEE floating-point (FP) format is 2, we will consider only c = 2 for
the remainder of this paper. Observe that w can be negative, allowing the representation
of rational numbers. The power edge weights enable us to represent functions mapping
Boolean variables to FP values. To the best of our knowledge, *PHDD is the only decision
diagram that can represent integer or floating-point functions efficiently. Readers can
refer to [5] for more details of FP representation using *PHDDs. In this verification
work, the output Boolean vector of a FP adder are converted into word-level functions
represented by *PHDDs using a method similar to one described in [3]. Thus, the
specifications of FP adders can be expressed in word-level functions using *PHDDs.

3 Floating-Point Adders
Let us consider the representation of FP numbers by IEEE standard 754. Double-
precision FP numbers are stored in 54 bits: 1 bit for the sign (5=), l l bits for the
exponent (E~), and 52 bits for the mantissa (N~). The exponent is a signed number
represented with a bias (B) of 1023. The mantissa (N~) represents a number less than 1.
Based on the value of the exponent, the IEEE FP format can be divided into four cases:

{ (-1) s= × 1.N= ×2 E~-B I f O < E = < A l l l (normal)
(-1) s= x 0.N= x 2 a-B I f E~ = 0 (denormal)
NaN I f E= = All 1 & N~ ~ 0
(-1) s~ × cxz 1rE= =Al l 1 & N= = 0

where N a N denotes Not-a-Number and c~ represents infinity. Let M~ = 1.N= or 0.N~.
Let m be the number of mantissa bits including the bit on the left of the binary point
and n be number of exponent bits. For IEEE double precision, m=53 and n=l 1.

Due to this encoding, an operation on two FP numbers cannot be rewritten as an
arithmetic function of the two inputs. For example, the addition of two FP numbers X
(5;=, E~, M~) and Y (Sy, Ey, My) call not be expressed as X + Y, because of special
cases when one of them is N a N or 4-oo. Table 1 summarizes the possible results of the
FP addition of two numbers X and Y, where F represents a normalized or denormalized
number. The result can be expressed as R o u n d (X + Y) only when both operands have
normal or denormal values. Otherwise, the result is determined by the case. When one

491

operand is +oo and the other is - c ~ , the adder should raise an invalid arithmetic operand
exception.

Y
i + - ~ F +oo N a N

X - c o - o o - ~ * V a N
F - c o R o u n d (X + Y) +co V a N

+oo * +oo +oo N a N
N a N N a N N a N N a N N a N

TaMe 1. Summary of the FP addition of two numbers of X and Y. F represents the normal
and denormal numbers. * indicates FP invalid arithmetic operands.

Figure 1.a shows the block diagram of the SNAP FP adder designed at Stanford
University [17]. As an alternative to the SNAP design, the ones complementer after
the mantissa adder can be avoided, if we ensure that input C (shown in Figure 1.a) of
the mantissa adder is smaller than or equal to input A (shown in Figure 1.a), when the
exponent difference is 0 and the operation of mantissa adder is subtraction. To ensure
this property, a mantissa comparator and extra circuits are needed to swap the mantissas
correctly. Figure 1.b shows a variant of the SNAP FP adder with this modification
(the compare unit is added and the ones complementer is deleted). This c o m p a r e unit
exists in many modern high-speed FP adder designs and makes the verification harder
as described in Section 5.2. Figure 2 shows the detailed circuit of the compare unit
which generates the signal to swap the mantissas. The signal E~ < Ey comes from the
exponent subtractor. When Ez < Ey or E~ = E v and M~ < My (i.e., h =1), A is My
(i.e. the mantissas are swapped). Otherwise, A is M~.

So.,

s E e~ M~ M,

'elea

Adder

LZ4

E '

So. E~, Mo.

(a) Co)

Fig. 1. The Stanford SNAP FP adder (a) and its variant (b).

492

h ~

Fig. 2. Detailed circuit of the compare unit

4 Specifications of FP Adders
In this section, we focus on the general specifications of the FP adder, especially when
both operands have denormal or normal values. In cases where at least one of the
operands is a NaN or c~, the specifications can be easily written at the bit level. For
example, when both operands are NaN, the expected output is NaN (i.e. the exponent
is all ls and the mantissa is not equal to zero). This specification can be expressed as the
"AND" of the exponent output bits is 1 and the "OR" of the mantissa output bits is 1.
4.1 Specif ications
When both operands have normal or denormal values, the ideal specification is OUT =
Round(X + Y). However, the *PHDD representation of FP addition grows exponen-
tially with the size of the exponent. Thus, the specification must be divided into several
sub-specifications for verification. According to the signs o f the operands, the function
X + Y can be rewritten as Equation 1. Similarly, for FP subtraction, the function X - Y
can be also rewritten as true addition when the operands have different signs and true
subtraction when the operands have the same sign.

{(2E= -B 2E~ -B) X + Y = (-1) s= x (2E=-B x Mz + My x Sx -- S~(true addition)
x M. - My x 2 ~y-B) S. ~- Su(true subtraetio.,)X~

The *PHDDs for the true addition and subtraction still grow, exponentially. Based on
the sizes of the two exponents, the function X + Y for true addition can be rewritten as:

y2 E'-B (M. +(My > > i)) E v < E . , w h e r e / = IG-EuI . X + Y = (-1) s= x] . 2 ~ _ " x x (My + (M= > > i)) Ey > E~:
When Ey < E . , the exponent is E= and the mantissa is the sum of Mx and My right
shifted by i bits (M u > > i in the equation). IE. - Eu] can range from 0 to 2 n - 2, but
the number of mantissa bits in FP format is only m bits.

I ~ I I M, I
I ~ I I M, I

I l~kl~l ~ I I lq~l~l ~ I

I ~o. I I Mo., I

(a) E.t-E y<m (b) Ex-E y >=m

Fig. 3. Cases of true addition for the mantissa part.

Figure 3 illustrates the possible cases of true addition for Ey _< E= based on the
values of E= - E u. In Figure 3.a, for 0 _< E= - Ey < m, the intermediate (precise)
result contains more than m bits. The right portion of the result is denoted as L, G, R
and S, where L is the least signification bit of the mantissa. The rounding mode will use

493

these bits to perform the rounding and generate the final result (Mo~t) in m-bit format.
When E~ - Ey >__ m as shown in Figure 3.b, the right shifted My only contributes to
the intermediate result in the G, R and S bits. Depending the rounding mode, the output
mantissa will be M~ or M~ + 1 , 2 - ~ + l . Therefore, we only need one specification
in each rounding mode for the cases E~ - E v >__ m. A similar analysis can be applied
to the case Ey > Ex. Thus, the specifications for true addition with rounding can be
written as:

{ Ca~[i] =* O U T = R o u n d ((- 1) sx x 2 E x - " x (M~ + (My > > i))) 0 _< i < m
C~2 ~ O U T = R o u n d ((- 1) s~ x 2 E , - B x (M~ + (Mv > > m))) i > m
Ca3[i] ::¢" O U T = R o u n d ((- 1) s~ x 2 E~-B x (M v + (M~ > > i))) O < i < m
Ca4 ~ O U T = R o u n d ((- 1) sx x 2 E~-~ x (My + (M~ > > m))) i _> m

where Cal[i], Ca2, Ca3[i] and Ca4 are the conditions Cond_add&E, = Ey + i,
Cond_add& E~ >_ Eu + m, Cond..add&E u = Ex + i, and Cond_add&Ey >_ E~, + m,
respectively. Cond_add represents the condition for true addition and exponent range
(i.e. normal and denormal numbers only). O U T is composed from the outputs Sour,
Eout and Mout. While building BDDs and *PHDDs for O U T from the circuit, the
conditions on left side of the =¢, will be used to simplify the BDDs automatically by
conditional symbolic simulation.

The number of specifications for true addition is 2m + 1. Since the value of m for
IEEE double precision is 53, the number of specifications for true addition is 107. Since
the specifications are very similar to one another, they can be generated by a looping
construct in the word-level SMV specification language.

Similarly, the specification of true subtraction can be divided into several hundred
of sub-specifications. The specification of true subtraction is divided into two cases: far
(IE~ - Ey I > 1)and close (E , - Ey--O,1 or-1). For the far case, the result of mantissa
subtraction does not require a massive left shift (i.e., LZA is not active). For the close
case, the result of mantissa subtraction requires a massive left shift (i.e., LZA is active),
which makes the verification harder. Thus, the specifications of the close case must be
divided further based on the number of bits to be left shifted. Readers can refer to [6]
for the details of these specifications.

4.2 Specification Coverage
Since the specifications of floating-point adders are split into several hundred sub-
specifications, do these sub-specifications cover the entire input space? To answer this
question, one might use a theorem prover to check the case splitting. In contrast, we
propose a BDD approach to compute the coverage of our specifications.

Our approach is based on the observation that our specifications are in the form
"cond =~ out = expected_result" and cond is only dependent on the inputs of the
circuits. Thus, the union of the conds of our specifications, which can be computed by
BDD operations, must be TRUE when our specifications cover the entire input space.
In other words, the union of the conds can be used to compute the percentage of input
space covered by our specifications and to generate the missing cases.

5 Verification System: Extended Word-Level SMV with *PHDDs
To verify integerarithmetic circuits, SMV [16] was extended using HDDs [8] to handle
word level expressions in the specification formulas [9]. For verification of FP circuits,

494

we replaced the HDDs in word-level SMV with *PHDDs and introduced relational
operators for FP numbers. As in word-level SMV, only the word-level functions are
represented by *PHDDs while the rest of the functions are represented by BDDs.

5.1 Conditional Symbolic Simulation
We have introduced a conditional symbolic simulation technique into word-level SMV.
Symbolic simulation performs a simulation with inputs having symbolic values (i.e.,
Boolean variables or Boolean functions). The simulation process builds BDDs for the
circuits. If each input is a Boolean variable, this approach may cause a explosion of the
BDD size in the middle of the process, because it tries to simulate the entire circuit for
all possible inputs at once. The concept of conditional symbolic simulation is to perform
the simulation process under restricted conditions, expressed as a Boolean function over
the inputs.

In [15], Jain and Gopalakrishnan encoded the conditions together with the original
inputs as new inputs to the symbolic simulator using a parametric form of Boolean
expressions, but it is hard to incorporate this approach into word-level SMV. Our ap-
proach is to apply the conditions directly during the symbolic simulation process. After
building the BDD for a circuit gate, the condition is used to simplify the BDD using
the restrict [11] algorithm. Then, the simplified BDD is used as the input function for
the gates connected to this one. This process is repeated until the outputs are reached.
This approach dynamically extracts the circuit behavior under the specified condition
without modifying the actual circuit.

5.2 Short-Circuiting Technique
Can we verify the specifications of FP adders by conditional symbolic simulation? In our
experience, all the specifications for the FP adder design without a mantissa comparator,
as in Figure 1.a, can be verified by conditional symbolic simulation, but not so for the FP
adder containing a mantissa comparator, as in Figure 1.b. This is caused by a conflict in
variable orderings for the mantissa adder and the mantissa comparator, which generates
the signal M= < My (i.e. signal d in Figure 2). The best variable ordering for the
comparator is to interleave the two vectors from the most significant bit to the least
significant bit (i.e., xm- l, ym- 1 x0, Y0). Table 2 shows the CPU time in seconds and
the BDD size of the signal d under different variable orderings, where ordering offset
represents the number of bits offset from the best ordering. For example, the ordering
is Xm_ 1 Xm-6 , Y m - 1 , X m - 7 , Yrn-2, ..., X0, Y5 Y0, when the ordering offset is 5.
Clearly, the BDD size grows exponentially with the offset. In contrast to the comparator,
the best ordering for the mantissa adder is xm-i x , ~ - k - x , Y m - l , X r a - k - 2 , Y m - 2 ,

.... x0, ya Y0, when the exponent difference is k. We observed that the best ordering
for the specification represented by *PHDDs is the same as the best ordering for the
mantissa adder. Thus, extended word-level SMV can not build the BDDs for both the
mantissa comparator and mantissa adder by conditional symbolic simulation, when the
exponent difference is large.

Let us examine the compare unit carefully. We find that the signal d is used only
when Ez = Ey. In other words, it is not necessary to build the BDDs for it, when
IEx - Eu] is greater than 0. Based on this fact, we introduce a short-circuiting technique
to eliminate unnecessary computations as early as possible. The word-level SMV system
is modified to incorporate this technique. In the *PHDD package, the BDD operators,

495

such as And and Or, are modified to abort the operation and return a special token when
the number of newly created BDD nodes within this BDD call is greater than a size
threshold. In word-level SMV, for an And gate with two inputs, if the first input evaluates
0, 0 will be returned without building the BDDs for the second input. Otherwise, the
second input will be evaluated. If the second input evaluates to 0 and the first input
evaluates to a special token, 0 is returned. Similar rules are applied to Or gates with
two inputs. Nand(Nor) gates can be decomposed into Not and And (Or) gates and use
the same technique to terminate earlier. For other logic gates with two inputs, the result
is a special token if either of the inputs evaluates to a special token. If the special
token is propagated to the output of the circuit, then the size threshold is doubled and
the output is recomputed. This process is repeated until the output BDD is built. For
example, when the exponent difference is 30, the size threshold is 10000, the ordering
is the best ordering of mantissa adder, and the evaluation sequence of the compare unit
shown in Figure 2 is d, e, f , 9 and h, the values of signals d, e, f , 9 and h will be
special token, 0, 0, 1, and 1, respectively, by conditional symbolic simulation. With
these modification, the new system can verify all of the specifications for both types
of FP adders by conditional symbolic simulation. We believe that this short-circuiting
technique can be generalized and used when different parts of the circuit are used under
different operating conditions.

Ordering Offset BDD Size CPU Time (Sec.)
0 157 0.68
1 309 0.88
2 608 1.35
3 1195 2.11
4 2346 3.79
5 4601 7.16
6 9016 13.05
7 17655 26.69
8 34550 61.61
9 67573 135.22

Table 2. Performance measurements of a 52-bit comparator with different orderings.

6 Verification of FP Adders
We use the FP adder in the Aurora III Chip [14], designed by Dr. Huffas part of his PhD
dissertation at the University of Michigan, as an example to illustrate the verification
of FP adders. This adder is based on the same approach as the SNAP FP adder [17] at
Stanford University. This FP adder only handles operands with normal values. When
the result is a denormal value, it is truncated to 0. This adder supports IEEE double
precision format and the 4 IEEE rounding modes. Dr. Huff found several errors with the
approach described in [17]. In this verification work, we verify the adder only in round
to nearest mode, because we believe that the round to nearest mode is the hardest one to
verify. All experiments were carried out on a Sun 248 MHz UltraSPARC-II server with
1.5 GB memory.

The FP adder is described in the Verilog language in a hierarchical manner. The
circuit was synthesized into flattened, gate-level Verilog by Dr. John Zhong at SGI.
Then, a simple Perl script was used to translate the circuit from gate-level Verilog to
SMV format and to perform latch removal.

496

6.1 Latch Removal

Huff's FP adder is a pipelined, two phase design with a latency of three clock cycles.
We handled the latches during the translation from gate-level Verilog to SMV format.
Figure 4.a shows the latches in the pipelined, two phase design. In the design, the phase
2 clock is the complement of the phase 1 clock. Since we only verify the functional
correctness of the design and the FP adder does not have any feedback loops, the latches
can be removed. One approach is to directly connect the inputs and the outputs of latches.
This approach would eliminate some logic circuits related to the latch enable signals as
shown on the right side of the latches in Figure 4.a. With this approach, the correctness
of these circuits can not be checked. For example, a design error in the circuit, always
generated Os for the enable signals of latches, can not be found if we use this approach
to remove the latches.

F
~ . ~ _ . Phase 1

Phase 1 clock
clock

i e ~ ~ . ~ Phase 1

£ o2 clock

(a) (b)

Fig. 4. Latch Removal. (a) The pipelined, two phase design. (b) The design after latch removal.

Our approach for latch removal is based on this observation: the data are written into
the latches when the enable signals are 1. To ensure the correctness of the circuits for the
enable signals, the latches can be replaced by And gates, as shown in Figure 4.b, without
losing the functional behavior of the circuit. Since phase 2 clock is the complement of
the phase 1 clock, we must replace the phase 2 clock by the phase 1 clock. Otherwise the
circuit behavior will be incorrect. With this approach, we can also check the correctness
of circuits for the enable signals of the latches.

6.2 Design with Bugs
During the verification process, our system found several design errors in Huff's FP
adder. These errors were not caught by random simulations performed by Dr. Huff. The
first error we found is the case when A -Jr C' = 01.111...11, A + C + 1=10.000...00,
and the rounding logic decides to add 1 to the least significant bit (i.e., the result should
be A + C + 1), but the circuit design outputs A+C as the result. This error is caused
by incorrect logic in the path select unit, which categorized this case as a no shift
case instead of a right shift by 1. While we were verifying the specification of true
addition, our system generated a counterexample for this case in around 50 seconds. To
ensure that this bug was not introduced by when translating the circuits, we have used
Cadence's Verilog simulation to verify this bug in the original design by simulating the
input pattern generated by our system.

Another design error we found is in the sticky bit generation. The sticky bit generation
is based on the table given in page 10 of Quach's paper describing the SNAP FP

497

adder [17]. The table only handles cases when the absolute value of the exponent
difference is less than 54. The design sets the sticky bit to 1 when the absolute value of
the exponent difference is greater than 53 (for normal numbers only). The bug is that
the sticky bit should not always be 1 when the absolute value of the exponent difference
is equal to 54. Figure 5 shows the sticky bit generation when E= - Ey = 54. Since iV=
has 52 bits, the leading 1 will be the Round (R) bit and the sticky (S) bit is the O R of all
of Ny bits, which may be 0. Therefore an entry for the case IE= - E~I = 54 is needed
in the table of Quach's paper [17].

11 Nx I
,.I N, I

I 14oiRi s I
Fig. 5. Sticky bit generation, when E= - Ey = 54.

6 .3 C o r r e c t e d D e s i g n s

After identifying the bugs, we fixed SMV version of the circuit. In addition, we created
another FP adder by adding the compare unit in Figure 1.b to Huff 's design. This new
adder is equivalent to the FP adder in Figure 1.b, since the ones complement unit will
not be active at any time.

To verify the FP adders, we combined the specifications for both addition and
subtraction instructions into the specification of true addition and subtraction. We use
the same specifications to verify both FP adders. Table 3 shows the CPU time in seconds
and the maximum memory required for the verification of both FP adders. The CPU time
is the total time for verifying all specifications. The FP adder II can not be verified by
conditional symbolic simulation without the short-circuiting technique. The maximum
memory is the maximum memory requirement of verification of these specifications.
For both FP adders, the verification can be done within two hours and requires less
than 55 MB. Each individual specification can be verified in less than 3 minutes. The
verified specifications cover 99.78% of the input space for FP adders in IEEE round-
to-nearest mode. The reason for uncovered input space (0.22%) is that the circuit does
not implement the cases where either operand with denormal, N a N or oo values, and
where the result of true subtraction is a denormal value.

CPU Time (Sec.) Max. Memory(MB)
Case FP adder I FP adder II FP adder I FP adder II

True addition 3283 3329 49 55
True subtraction (far) 2654 2668 35 35

True subtraction (close) 994 1002 53 48

Table 3. Performance measurements of verification of FP adders. FP adder I is Huff's FP
adder with the bugs fixed. FP adder II is FP adder I with the compare unit in Figure 1.b. For true
subtraction,far represents the cases [Ex - Ey I > 1, and close represents the cases I Ex - Ey [_< 1.

In our experience, the choice of decomposition type of the subtrahend's variables for
true subtraction cases is very important to the verification time. The best decomposition
type of the subtrahend's variables is negative Davio decomposition. If the subtrahend's
variables use the positive Davio decomposition, the *PHDDs for OUT can not be built
after a long CPU time (> 4 hours).

498

7 Conversion Circuits
The overflow flag erratum of the FIST instruction (FP to integer conversion) [12] in
Intel's Pentium Pro and Pentium II processors has illustrated the importance of verifi-
cation of conversion circuits [14] which convert the data from one format to another.
These circuits perform conversions between any of the three number formats: integer,
IEEE single precision, and IEEE double precision.

We believe that the verification of conversion circuits is much easier than the verifi-
cation of FP adders, since these circuits are much simpler than FP adders and only
have one operand (i.e. less input variables). For example, the specification of the
double-to-single operation, which converts data from double precision to single pre-
cision, can be written as "(overflow_flag = expected_overflow) & (not overflow4qag

(output = expected_output))", where overflow_flag and output are directly from
the circuit, and expected_overflow and expected_output are computed in terms of the
inputs. Expected_outputis computed by Round((-1) s x M x 2E-B). Similarly, ex-
pected_overflow can be computed from the inputs. This specification covers double
precision values which cannot be represented in single precision. For another exam-
ple, the specification of the single-to-double operation can be written as "output =
input", since every number represented in single precision can be represented in double
precision without rounding (i.e. the output represents the exact value of input).

8 Conclusions and Future Work
We presented a black box version of verification of FP adders with reusable specifica-
tions using extended word-level SMV, which was improved by using the Multiplicative
Power HDDs (*PHDDs), and by incorporating conditional symbolic simulation as well
as a short-circuiting technique. Based on case analysis, the specifications of FP adders
are divided into several hundred implementation-independent sub-specifications. Con-
ditional symbolic simulation and a short-circuiting technique make these specifications
reusable in any implementation. We used our system and reusable specifications to ver-
ify a FP adder from the University of Michigan. Our system found several bugs in Huff's
FP adder. Each specification was checked in less than 3 minutes or 5 minutes including
counterexample generation. A variant of the corrected FP adder was created and verified
to demonstrate the ability of our system to handle different implementations. For each
FP adder, verification finished in 2 CPU hours on a Sun UltraSPARC-II server. We
believe that our system and specifications can be applied to directly verify FP adders
and to help find errors.

The overflow flag erratum of the FIST instruction [12] in Intel's Pentium Pro and
Pentium II processors has illustrated the importance of verification of conversion circuits
which convert data from one format to another. Since these circuits are much simpler
than FP adders and have only one operand, we believe that our system can verify the
correctness of these circuits. We plan to verify the conversion circuits in the Aurora III
chip.

Acknowledgements
We thank Prof. Brown, Dr. Huff and Mr. Riepe at University of Michigan for providing
us with Huff's FP adder and valuable discussions. We thank Dr. John Zhong at SGI for

499

helping us to synthesize the FP adder into flattened, gate-level Verilog. We also thank
Bwolen Yang and Henry A. Rowley for proofreading this paper.

References

1. BROCK, B., KAUFMANN, M., AND MOORE, J. S. ACL2 theorems about commerical micro-
processors. In Proceedings of the Formal Methods on Computer-Aided Design (November
1996), pp. 275-293.

2. BRYANT, R. E. Graph-based algorithms for boolean function manipulation. In IEEE Trans-
actions on Computers (August 1986), pp. 8:677-691.

3. BRYANT, R. E., AND CHEN, Y.-A. Verification of arithmetic circuits with binary moment
diagrams. In Proceedings of the 32nd ACM/IEEE Design Automation Conference (June
1995), pp. 535-541.

4. CARREhO, V. A., AND MINER, P. S. Specification of the IEEE-854 floating-point standard
in HOL and PVS. In High Order Logic Theorem Proving and Its Applications (September
1995).

5. CHEN, Y.-A., AND BRYANT, R.E. *PHDD: An efficient graph representation for floating
point circuit verification. In Proceedings of the International Conference on Computer-
Aided Design (November 1997), pp. 2-7.

6. CHEN, Y.-A., AND BRYANT, R. E. Verification of floating-point adders. Tech. Rep. CMU-
CS-98-121, School of Computer Science, Carnegie Mellon University, 1998.

7. CHEN, Y.-A., CLARKE, E. M., HO, P.-H., HOSKOTE, Y., KAM, T., KHAIRA, M., O'LEARY, J.,
AND ZHAO, X. Verification of all circuits in a floating-point unit using word-level model
checking. In Proceedings of the Formal Methods on Computer-Aided Design (November
1996), pp. 19-33.

8. CLARKE, E. M., FUJITA, M., AND ZHAO, X. Hybrid decision diagrams overcoming the
limitations of MTBDDs and BMDs. In Proceedings of the International Conference on
Computer-Aided Design (November 1995), pp. 159-163.

9. CLARKE, E. M., KHAIRA, M., AND ZHAO, X. Word level model checking - Avoiding the
Pentium FDIV error. In Proceedings of the 33rd ACM/IEEE Design Automation Conference
(June 1996), pp. 645-648.

10. COE, T. Inside the Pentium Fdiv bug. Dr. Dobbs Journal (April 1996), pp. 129-135.
11. COUDERT, O., AND MADRE, J.C. A unified framework for the formal verification of se-

quential circuits. In Proceedings of the International Conference on Computer-Aided Design
(November 1990), pp. 126--129.

12. FISHER, L. M. Flaw reported in new intel chip. New York Times (May 6 1997), D, 4:3.
13. HAMAGUCHI, K., MORITA, A., AND YAJIMA, S. Efficient construction of binary moment

diagrams for verifying arithmetic circuits. In Proceedings of the International Conference
on Computer-AidedDesign (November 1995), pp. 78-82.

14. HUFF, T. R. Architectural and circuit issues for a high clock rate floating-point processor.
PhD Dissertation in Electrical Engineering Department, University of Michigan (1995).

15. JAL~, P., AND GOPALAKRISHNAN, G. Efficient symbolic simulation-based verification using
the parametric form of boolean expressions. In 1EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (August 1994), pp. 1005-1015.

16. MCMILLAN, K. L. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
17. QUACH, N., AND FLYNN, M. Design and implementation of the SNAP floating-point adder.

Tech. Rep. CSL-TR-91-501, Stanford University, December 1991.

