
Verifying Mobile Processes in the 
HAL Environment* 

G. Ferrari 1 , S. Gnesi 2, U. Montanari 1, M. Pistore 1, and G. Ristori 1'2 

1 Dipartimento di Informatica, Universit~ di Pisa 
Istituto di Elaborazione dell'Informazione - C.N.R., Pisa 

Gioia Ristori has recently left th is /or  a 

better world. She will however remain 

with us for ever. 

1 I n t r o d u c t i o n  

The H D  A u t o m a t a  Laboratory (HAL) is an integrated tool set for the specifi- 
cation, verification and analysis of concurrent and distributed systems. A basic 
notion for the HAL environment is that of his tory-dependent  au tomata  (HD- 
automata) [11]. As ordinary automata, they are composed of states and of tran- 
sitions between states. However, states and transitions of HD-automata are en- 
riched with sets of local names. In particular, each transition can refer to the 
names associated to its source state but can also introduce new names, which 
can then appear in the destination state. Hence, names are not global and static 
entity but they are explicitly represented within states and transitions and can 
be dynamically created. HD-automata have shown to be appropriate to model 
systems whose behaviours are his tory  dependent,  i.e., systems where the ob- 
servable behaviour of a step of a computation may depend on what has been 
done in the past steps of the same computation. An interesting example of his- 
tory dependent behaviours is provided by mobile processes as specified in the 
r-calculus [6]. Its primitives are simple but expressive: channel names can be 
created, communicated (thus giving the possibility of dynamically reconfigurat- 
ing process acquaintances) and they are subjected to sophisticated scoping rules. 
In the 7r-calculus history dependency manifests itself as the ability of referring 
names created at run-time by previous communications. In [7] a procedure is 
described which allows f in i tary  7r-calculus agents to be represented by finite- 
state HD-automata. Similar mappings have been defined for CCS with causality 
and for CCS with localities [10]. Moreover, finite HD-automata have been also 
obtained for history-preserving semantics of Petri nets [8, 9]. 

The HAL environment includes modules which implement decision procedures 
to calculate behavioural equivalences, and modules which support verification 
of behavioural properties expressed as formulae of suitable temporal logics. In 

* Work partially founded by CNR Integrated Project Metodi e Strumenti  per la Pro- 
gettazione e la Verifica di Sistemi Etcrogenei Connessi mediante Reti di Comuni- 
cazione, CNR Integrated Project Modelli e Metodi per la Matematica e l'Ingegneria 
and Esprit Working Group CONFER2. 



512 

this note we provide an overview of the current implementation of the HAL 
environment. The environment has been successfully applied in the specification 
and verification of mobile processes defined as 7r-calculus agents. Two major 
case studies of mobile agents (the handover protocol for mobile telephones, and 
a web browser specification) were carried out within the HAL environment. A 
fuller account of the case studies may be found in [4, 5]. 

2 S y s t e m  O v e r v i e w  

Figure 1 presents an overview of the HAL environment. The dashed boxes in- 
dicate work-in-progress, i.e., modules which are under development. The HA/ 
environment allows r-calculus agents to be translated into ordinary automata, so 
that existing equivalence checkers can be used to calculate whether the r-calculus 
agents are bisimilar. The environment also supports verification of logical for- 
mulae expressing desired properties of the behaviour of r-calculus agents. To 
this purpose, we found convenient to exploit a logic with modalities indexed by 
r-calculus actions, and to implement a translation of this r-logic into a logic for 
ordinary automata. Hence, existing model checkers can be used to verify whether 
or not a formula holds for a given r-calculus agent. 

In the current implementation the HAL environment consists essentially of 
five modules: three modules perform the translations from r-calculus agents to 
HD-automata, from HD-antomata to ordinary automata, and from r-logic for- 
mulae to ordinary ACTL formulae. The fourth module provides routines that 
manipulate the HD-automata. The fifth module is basically the JACK system 
[1] which works at the level of ordinary automata and performs the standard 
operations on them like behavioural verification and model checking. The idea 
behind the JACK environment is to combine different specification and verifica- 
tion tools, independently developed, around a common format for representing 
ordinary automata: the FC2 file format [2]. FC2 makes it possible to exchange 
automata between JACK tools. Indeed, the fifth module in HAkis simply a fil- 
ter that calls the already existing functionalities of JACK. Hence, the JACK 
bisimulation checker MAUTO is used to verify (strong and weak) bisimilarity 
of r-calculus agents. Automata minimization, according to weak bisimulation 
is also possible, by using the functionalities offered in JACK by the HOGGAR 
too1. Moreover, the ACTL model checker AMC is used for verifying properties of 
mobile processes, after that the r-logic formulae expressing the properties have 
been translated into ACTL formulae. 

The HAL environment supports a textual user interface to invoke the com- 
mands in the modules of the system. For instance the command "hdaut := 
buildHD agent" is used to to generate the HD-automaton hdaut associated to 
the r-calculus agent agent. The command "aut := buildFC2 hdaut" generates 
the ordinary automaton aut from hdaut. Appropriate diagnostic information is 
returned to the user. We are currently working on a graphical user interface. 



513 

CCS with +r-calculus 
+r-calculus localities Petri nets logic 

+ +  

locality logic 

, m a p  ' I 

(HD-automata) *~ HD-logic _ 

~ , model-and : 
equivalence i 

L check ', 

ordinary automata logic for ordinary automata 

JACK 

Fig. 1. The HA1 environment: an overview. 

The HA1 environment is written in C++  and compiles with the GNU C++  
compiler. It is currently running on SUN stations (under SUN-OS) and on PC 
stations (under Linux). 

3 A C a s e  S t u d y :  T h e  H a n d o v e r  P r o t o c o l  

As a case study we consider the specification of the core of the handover protocol 
for the GSM Public Land Mobile Network proposed by the European Telecom- 
munication Standards Institute. The specification is borrowed from [12]; it con- 
sists of four modules: 

- a Mobile Station, mounted in a car that moves through two different geo- 
graphical areas (cells); it provides services to an end user; 

- a Mobile Switching Centre, that is the controller of the radio communications 
within the whole area composed by the two cells; 

- two Base Station modules, one for each cell, that are the interfaces between 
the Mobile Station and the Mobile Switching Centre. 



514 

Table  1. Performance issue 

c o m m a n d  
hdaut := buildHD handover.pi 
aut := buildFC2 hdaut 
min-aut := minimize aut 
ve r i fy  no-loss-of-messages on min-aut 

istates t r a n s i t i o n s  t i m e  
11015! 21774! 4473 sec. 
32263 62990 442 sec. 

49i 91 10 sec. 
. . . .  6 sec. 

The observable actions performed by the Mobile Switching Centre are the input 
of the messages t ransmit ted  from the external environment through an input  
channel. The observable actions performed by the Mobile Station are the trans- 
missions, via an output  channel, of the messages to the end user. The commu- 
nications between the Mobile Switching Centre and the Mobile Station happen 
via the base corresponding to the cell in which the car is located. When the car 
moves from one cell to the other, the Mobile Switching Centre starts  a proce- 
dure to communicate  to the Mobile Station the names of the new transmission 
channels, related to the base corresponding to the new cell. The communication 
of the new channel names to the Mobile Station is done via the base tha t  is 
in use at the moment.  All the communications of messages between the Mobile 
Switching Centre and the Mobile Station are suspended until the Mobile Station 
receives the names of the new transmission channels. Then the base correspond- 
ing to the new cell is activated, and the communications between the Mobile 
Switching Centre and the Mobile Station continue through the new base. 

There are two kinds of correctness verification tha t  can be done in the en- 
vironment.  One is the checking tha t  the specification of the system is bisimilar 
to a more abst ract  service specification in which the system is simply seen as a 
particular buffer from the input channel to the output  channel. The other one is 
the checking of properties expressed as r-logic formulae, that  the specification 
must  satisfy to meet  the desired behaviour: for instance, no message can be lost 
from the input to the output  channel and the order of the messages must  be 
preserved. Both these kinds of verification have been successfully performed in 
our verification environment. 

In Table 1 we report  the t ime spent in the different steps of a typical session of 
verification (performed on a SUN Ultra workstation) for the handover protocol, 
as well as the number  of states and transitions of the au tomata  tha t  are built in 
the different steps. 

4 C o n c l u d i n g  R e m a r k s  a n d  F u t u r e  W o r k s  

The current implementat ion of the HAL environment works just  on ~r-calculus 
agents and on r-logic formulae. As future developments we plan to extend the 
environment in several directions. The implementat ion of translation modules 
from other history dependent calculi to HD-au toma ta  is under development. 



515 

Moreover, we plan to include in HAL a verification module which implements 
decision procedures for behavioural equivalences and model checkers directly on 
HD-automata ;  this is convenient since ordinary au toma ta  have often dramati-  
cally more states and transitions than the corresponding HD-automata .  

The  Mobility Workbench (MBW) [13] is another  existing tool for verifying 
properties of r-calculus agent. In the MWB the verification of bisimulation equiv- 
alence made on the fly, tha t  is the s tate  spaces of the agents are built during 
the construction of the bisimulation relation. The model checking functionality 
offered by the MWB is based on the implementat ion of a tablean-based proof 
system [3] for the propositional #-calculus with name-passing. The main differ- 
ence between our approach and tha t  adopted in the MWB is tha t  in HALthe 
state space of a r-calculus agent is built once and for all. Hence, it can be mini- 
mized with respect to some minimization criteria and then used for behavioural  
verifications and for model checking of logical properties. 

References  

1. A. Bouali, S. Gnesi and S. Larosa. The integration project for the JACK environ- 
ment. BulIettin of the EATCS, 54, 1994. Detailed information about JACK are 
also available at h t t p : / / r e p l ,  i e i .  p i .  cnr. i~/Proj  ects/JACK. 

2. A. Bouali, A. Ressouche, V. Roy and R. de Simone. The FC2Tools set. In 
Proc. CAV'96, LNCS 1102. Springer Verlag, 1996. 

3. M. Dam. Model checking mobile processes. In Proc. CONCUR'93, LNCS 715. 
Springer Verlag, 1993. 

4. G. Ferrari, G. Ferro, S. Gnesi, U. Montanaxi, M. Pistore and G. Ristori. An 
automata-based verification environment for mobile processes. In Proc. TA CAE'gT, 
LNCS 1217. Springer Verlag, 1997. 

5. S. Gnesi and G. Ristori. A model checking algorithm for ~r-calculus agents. In Proc. 
ICTL'97. Kluwer Academic Publishers, 1997. 

6. R. Milner, J. Parrow and D. Walker. A calculus of mobile processes, Part I and II. 
Information and Computation, 100(1):1-77, 1992. 

7. U. Montanari and M. Pistore. Checking bisimilarity for finitary ~r-calculus. In Proc. 
CONCUR'95, LNCS 962. Springer Verlag, 1995. 

8. U. Montanari and M. Pistore. History dependent verification for partial order sys- 
tems. In Partial Order Methods in Verification, DIMACS Series, Vol. 29. American 
Mathematical Society, 1997. 

9. U. Montanari and M. Pistore. Minimal transition systems for history-preserving 
bisimulation. In Proc. STACS'97, LNCS 1200. Springer Verlag, 1997. 

10. U. Montanari, M. Pistore and D. Yankelevich. Efficient minimization up to location 
equivalence. In Proc. ESOP'96, LNCS 1058. Springer Verlag, 1996. 

11. U. Montanari and M. Pistore. History-Dependent Automata. To appear as Tech- 
nical Report, Department of Computer Science, University of Pisa, 1998. 

12. F. Orava and J. Parrow. An Algebraic Verification of a Mobile Network. Formal 
Aspects of Computing, 4:497-543, 1992. 

13. B. Victor and F. Moller. The Mobility Workbench - -  A tool for the 7r-calculus. In 
Proc. CAV'94, LNCS 818. Springer Verlag, 1994. 


