
SCR*: A Toolset for Speci fy ing and
Analyz ing Software Requ irements *

Constance Heitmeyer, James Kirby, Bruce Labaw and Ramesh Bharadwaj

Naval Research Laboratory, Code 5546, Washington, DC 20375, USA

Abst rac t . A controversial issue in the formal methods community is
the degree to which mathematical sophistication and theorem proving
skills should be needed to apply a formal method and its support tools.
This paper describes the SCR (Software Cost Reduction) tools, part
of a "practical" formal method--a method with a solid mathematical
foundation that software developers can apply without theorem proving
skills, knowledge of temporal and higher order logics, or consultation with
formal methods experts. The SCR method provides a tabular notation
for specifying requirements and a set of "light-weight" tools that detect
several classes of errors automatically. The method also provides support
for more "heavy-duty" tools, such as a model checker. To make model
checking feasible, users can automatically apply one or more abstraction
methods.

1 I n t r o d u c t i o n
Given the high frequency of requirements errors, the serious accidents they may
cause, and the high cost of correcting them, tools that aid software developers
in the early detection of requirements errors are crucial. To be effective, the
tools must be usable by software developers on industrial-strength projects and
should be based on a formal model of requirements. The formal model provides
a solid basis for formal analysis of the specification, which detects many classes
of errors automatically.

For a requirements tool to be useful to software developers, the tool must
be part of a development method that provides guidance on those decisions
the requirements specification should record and those it should not (i.e., the
method distinguishes requirements decisions from design decisions) and guidance
on making, evaluating, and recording the decisions. The development method
should also provide notations that software developers can apply easily in con-
structing a requirements specification. Finally, the method should not require
the developers to be experts in the formal model underlying the tool.

The SCR (Software Cost Reduction) requirements method is a formal method
based on tables for specifying the requirements of safety-critical software sys-
tems. Designed for use by engineers, the method has been applied to a variety
of practical systems, including avionics systems, telephone networks, and nu-
clear power plants. Originally formulated by NRL researchers to document the

* This work was supported by the Office of Naval Research and SPAWAR.

527

requirements of the Operational Flight Program (OFP) of the US Navy's A-7
aircraft [11, 1], SCR has been used in practice by a number of industrial orga-
nizations, such as Grumann, Bell Laboratories, Ontario Hydro, and Lockheed,
to specify software requirements. For example, in 1993-94, Lockheed used SCI~
tables to specify the complete requirements of the C-130J OFP [5], a program
containing more than 230K lines of Ada code.

Introduced in 1995 [8, 9], SCR* is an integrated suite of tools supporting
the SCR requirements method. Figure 1 illustrates SCR*, which includes a spec-
ification editor for creating a requirements specification, a dependency graph
browser for displaying the variable dependencies in the specification, a consis-
tency checker for detecting well-formedness errors (e.g., type errors and miss-
ing cases), a simulator for validating the specification, and a model checker for
checking application properties. Currently, more than 50 organizations in the US,
Canada, UK, and Germany, including industrial and government organizations
as well as universities, are experimenting with SCR*.

I SPECIFICATION I
EDITOR I J |GR~ H BROWSERJ

tabp~lacsr

formal
requ ire men t s A l ' ~ , . , , . ~ _ == -
specs

| CONSlST~.NC'Y | I
I CHECKER

,opp;. v li0o io.
veri£ieat£on I ! i |

Fig. 1. SCR*: Tools supporting the SCR requirements method

To date, SCR* has been applied successfully in three external pilot projects.
In the first, researchers at NASA's IV&V Facility used SCR* to detect missing
cases and nondeterminism in the prose requirements specification of software for
the International Space Station [4]. In the second project, engineers at Rockwell-
Collins used SCR* to expose 24 errors, many of them serious, in the requirements
specification of an example flight guidance system [14]. Of the detected errors,
a third were uncovered in constructing the specification, a third in running the
consistency checker, and the remaining third in executing the specification with
the simulator. In a third project, researchers at the JPL (Jet Propulsion Labo-
ratory) used SCR* to analyze specifications of two components of NASA's Deep
Space-1 spacecraft for errors [13].

In a fourth pilot project, NRL applied the SCR tools, including a newly in-
tegrated model checker [3], to a'sizable contractor-produced requirements spec-

528

ification of the Weapons Control Panel (WCP) for a safety-critical US military
system [10]. The tools uncovered numerous errors in the contractor specification,
including a serious safety violation. Translating the contractor specification into
the SCR tabular notation, using SCR* to detect specification errors, and build-
ing a working prototype of the WCP required only one person-month, thus
demonstrating the utility and cost-effectiveness of the SCR method.

2 The SCR Requirements Model

An SCR requirements specification describes the required system behavior as
the composition of a nondeterministic environment and a (usually) deterministic
system [7]. The system environment contains monitored and controlled quanti-
ties, quantities that the system monitors and controls. The environment nonde-
terministically produces a sequence of input events, where an input event is a
change in some monitored quantity. Beginning in some initial state, the system
responds to each input event in turn by changing state and possibly changing
one or more controlled quantities. In SCR, the system behavior is assumed to be
synchronous--the system completely processes one input event before processing
the next input event.

The SCR formal model, a special form of the classic state machine model,
represents a system Z' as a 4-tuple, ~ = (S, So, E m, T), where S is a set of states,
So _C S is the initial state set, E m is the set of input events, and T is the transform
describing the allowed state transitions [7]. In the formal model presented in
[7], the transform T is deterministic, a composition of smaller functions called
table functions, derived from the tables in an SCR specification. The formal
model requires the information in each table to satisfy certain properties. These
properties guarantee that each table describes a total function.

In SCR, two relations, NAT and REQ, describe the required system behavior.
NAT specifies the natural constraints on the system behavior--constraints im-
posed by physical laws and the system environment. REQ specifies the relation
that the system must enforce between the monitored and controlled quantities.
To specify REQ concisely, the SCR method uses mode classes, conditions, and
events. A mode class organizes the system states into equivalence classes, each
called a mode. The SCR model includes a set R F containing the names of all
variables (e.g., monitored and controlled variables, mode classes) in a given spec-
ification and a function mapping each variable in RF to a set of values. In the
model, a state is a function mapping each variable in R F to its value, a condition
is a predicate defined on a system state, and an event is a predicate defined on
two system states when any state variable changes.

3 The SCR Tools

Specif icat ion Edi tor . To create, modify, or display a requirements specifica-
tion, the user invokes the specification editor [8]. Each SCR specification is orga-
nized into dictionaries and tables. The dictionaries define the static information
in the specification, such as the names and values of variables and constants, the
user-defined types, etc. The tables specify how the variables change in response

529

to input events. One important class of tables specifies the behavior of controlled
variables.

D e p e n d e n c y G r a p h Browser . Understanding the relationship between dif-
ferent parts of a large specification can be difficult. To address this problem,
the Dependency Graph Browser (DGB) represents the dependencies among the
variables in a given SCR specification as a directed graph [9]. By examining
this graph, a user can detect errors such as undefined variables and circular
definitions. The user can also use the DGB to display and extract subsets of
the dependency graph, e.g., the subgraph containing all variables upon which a
selected controlled variable depends.

Cons i s t ency Checker. The consistency checker [7, 9] analyzes a specification
for properties derived from the SCR requirements model. It exposes syntax and
type errors, variable name discrepancies, missing cases, unwanted nondetermin-
ism, and circular definitions. When an error is detected, the consistency checker
provides detailed feedback to facilitate error correction. A form of static analy-
sis, consistency checking is performed without execution of the specification or a
teachability analysis and is hence more efficient than model checking. In devel-
oping an SCR specification, the user normally invokes the consistency checker
first and postpones more heavy-duty analysis such as model checking until later.
By exploiting the special properties guaranteed by consistency checking (e.g.,
determinism), later analyses can be more efficient [3].

S imula tor . To validate a specification, the user can run the simulator [9] and
analyze the results to ensure that the specification captures the intended behav-
ior. Additionally, the user can define invariant properties believed to be true of
the required behavior and, using simulation, execute a series of scenarios to de-
termine if any violate the invariants. To provide input to the simulator, the user
either enters a sequence of input events or loads a previously stored scenario.

The simulator supports the construction of front-ends, tailored to particular
application domains. One example is a customized front-end for pilots to use in
evaluating an attack aircraft specification (see Figure 2). Rather than clicking
on monitored variable names, entering values for them, and seeing the results of
simulation presented as variable values, a pilot clicks on visual representations of
cockpit controls and sees results presented on a simulated cockpit display. This
front-end allows the pilot to move out of the world of requirements specification
and into the world of attack aircraft, where he is the expert. Such an interface
facilitates customer validation of the specification. A second customized front-
end, part of the WCP prototype mentioned above, has also been developed.

Mode l Checker . Recently, the explicit state model checker Spin [12] was in-
tegrated into SCR* [3]. After using SCR* to develop a formal requirements
specification, a developer can obtain an automatic translation of the specifica-
tion into Promela, the language of Spin, and then invoke Spin within the toolset
to check properties of the specification. Currently, the model checker analyzes
invariant properties. The user can use the simulator to demonstrate and validate
any property violation detected by Spin.

530

Fig. 2. Customized simulator front-end for an attack aircraft specification

The number of reachable states in a state machine model of real-world soft-
ware is usually very large, sometimes infinite. To make model checking practical,
we have developed sound methods for deriving abstractions from SCR specifica-
tions [3]. The methods are practical: none requires ingenuity on the user's part,
and each derives a smaller, more abstract model automatically. Based on the
property to be analyzed, these methods eliminate irrelevant variables as well
as unneeded detail from the specification. For example, prior to invoking Spin
to check the WCP specification for a safety property, we used our abstraction
methods to automatically reduce the number of variables from 258 to 55 and
to replace several real-valued variables with finite-valued variables, thus making
model checking feasible [10].

4 Comparison with Other Tools

The method most closely related to SCR is the Requirements State Machine
Language (RSML) and associated tools [6]. In [2], Anderson et al. describe the
use of the model checker SMV to analyze a component of the TCAS-II spec-
ification expressed in RSML. Unlike our approach to limiting state explosion
which reduces the specification by applying sound abstraction methods, Ander-
son et al. propose a more efficient encoding for the BDD representation of the

531

RSML specification. More recently, Park et al. [15] have used the Stanford Va-
lidity Checker (SVC) to check the consistency of RSML specifications. Their
approach is similar to that used by the consistency checker in SCR* [7, 9].

SCR* can be distinguished in three major ways from other tools. First, unlike
most commercial tools for requirements specification, SCR* has a solid math-
ematical foundation, thus allowing sophisticated analyses, such as consistency
checking and model checking, largely unsupported by current tools. Second,
the SCR tools, unlike most research tools, have a well designed user interface,
are integrated to work together, and provide detailed feedback when errors are
detected to facilitate their correction. Finally, users of SCR* can do consider-
able analysis wi~hou~ interaction with application experts or formal methods
researchers, therehy providing formal methods usage at low cost.

References
1. T. A. Alspaugh et al. Software requirements for the A-7 aircraft. Report 9194,

Naval Research Lab, Wash. DC, 1992.
2. R. J. Anderson et al. "Model checking large software specifications?' Proc. 4th

A CM SIGSOFT Syrup. Foundations of Software Eng., October 1996.
3. R. Bharadwaj and C. Heitmeyer. "Model checking complete requirements specifi-

cations using abstraction." Journal of Automated Software Eng. (to appear).
4. S. Easterbrook and J. Callahan. "Formal methods for verification and validation

of partial specifications: A case study." Journal of Systems and Software, 1997.
5. S. Faulk et al. "Experience applying the CoRE method to the Lockheed C-130J."

Proc. 9 th Annual Computer Assurance Conf. (COMPASS '9~), June 1994.
6. M. P. E. Heimdahl and N. Leveson. "Completeness and consistency analysis of

state-based requirements." Proc. 17 th Int'l Conf. on Software Eng. (ICSE'95),
Seattle, WA, Apr. 1995.

7. C. Heitmeyer, R. Jeffords, and B. Labaw. "Automated consistency checking of
requirements specifications." ACM Trans. Software Eng. and Method. 5(3), 1996.

8. C. Heitmeyer et al. "SCR*: A toolset for specifying and analyzing requirements."
Proc. 10 th Annual Conf. on Computer Assurance (COMPASS '95), June 1995.

9. C. Heitmeyer, J. Kirby, and B. Labaw. "Tools for formal specification, verification,
and validation of requirements." Proc. 12 th Annual Conf. on Computer Assurance
(COMPASS '97), June 1997.

10. C. Heitmeyer, J. Kirby, and B. Labaw. "Applying the SCR requirements method
to a weapons control panel: An experience report." Proc. 2 '~d Workshop on Formal
Methods in Software Practice (FMSP'98), St. Petersburg, FL, March 1998.

11. K. L. Heninger. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Trans. on Software Eng. SE-6(1), Jan. 1980.

12. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

13. R. R. Lutz and H.-Y. Shaw. "Applying the SCR* requirements toolset to DS-1
fault protection." Report D15198, Jet Propulsion Lab, Pasadena, CA, Dec. 1997.

14. S. Miller. "Specifying the mode logic of a flight guidance system in CoRE and
SCR." Proc. 2 "~a Workshop on Formal Methods in Software Practice (FMSP'98),
St. Petersburg, FL, March 1998.

15. D. Y. W. Park et al. "Checking properties of safety-critical specifications using
efficient decision procedures." Proc. 2 nu Workshop on Formal Methods in Software
Practice (FMSP'98), St. Petersburg, FL, March 1998.

