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Abst rac t .  A controversial issue in the formal methods community is 
the degree to which mathematical sophistication and theorem proving 
skills should be needed to apply a formal method and its support tools. 
This paper describes the SCR (Software Cost Reduction) tools, part 
of a "practical" formal method--a method with a solid mathematical 
foundation that software developers can apply without theorem proving 
skills, knowledge of temporal and higher order logics, or consultation with 
formal methods experts. The SCR method provides a tabular notation 
for specifying requirements and a set of "light-weight" tools that detect 
several classes of errors automatically. The method also provides support 
for more "heavy-duty" tools, such as a model checker. To make model 
checking feasible, users can automatically apply one or more abstraction 
methods. 

1 I n t r o d u c t i o n  
Given the high frequency of requirements errors, the serious accidents they may 
cause, and the high cost of correcting them, tools that  aid software developers 
in the early detection of requirements errors are crucial. To be effective, the 
tools must be usable by software developers on industrial-strength projects and 
should be based on a formal model of requirements. The formal model provides 
a solid basis for formal analysis of the specification, which detects many classes 
of errors automatically. 

For a requirements tool to be useful to software developers, the tool must 
be part of a development method that  provides guidance on those decisions 
the requirements specification should record and those it should not (i.e., the 
method distinguishes requirements decisions from design decisions) and guidance 
on making, evaluating, and recording the decisions. The development method 
should also provide notations that  software developers can apply easily in con- 
structing a requirements specification. Finally, the method should not require 
the developers to be experts in the formal model underlying the tool. 

The SCR (Software Cost Reduction) requirements method is a formal method 
based on tables for specifying the requirements of safety-critical software sys- 
tems. Designed for use by engineers, the method has been applied to a variety 
of practical systems, including avionics systems, telephone networks, and nu- 
clear power plants. Originally formulated by NRL researchers to document the 
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requirements of the Operational Flight Program (OFP) of the US Navy's A-7 
aircraft [11, 1], SCR has been used in practice by a number of industrial orga- 
nizations, such as Grumann, Bell Laboratories, Ontario Hydro, and Lockheed, 
to specify software requirements. For example, in 1993-94, Lockheed used SCI~ 
tables to specify the complete requirements of the C-130J OFP [5], a program 
containing more than 230K lines of Ada code. 

Introduced in 1995 [8, 9], SCR* is an integrated suite of tools supporting 
the SCR requirements method. Figure 1 illustrates SCR*, which includes a spec- 
ification editor for creating a requirements specification, a dependency graph 
browser for displaying the variable dependencies in the specification, a consis- 
tency checker for detecting well-formedness errors (e.g., type errors and miss- 
ing cases), a simulator for validating the specification, and a model checker for 
checking application properties. Currently, more than 50 organizations in the US, 
Canada, UK, and Germany, including industrial and government organizations 
as well as universities, are experimenting with SCR*. 
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Fig. 1. SCR*: Tools supporting the SCR requirements method 

To date, SCR* has been applied successfully in three external pilot projects. 
In the first, researchers at NASA's IV&V Facility used SCR* to detect missing 
cases and nondeterminism in the prose requirements specification of software for 
the International Space Station [4]. In the second project, engineers at Rockwell- 
Collins used SCR* to expose 24 errors, many of them serious, in the requirements 
specification of an example flight guidance system [14]. Of the detected errors, 
a third were uncovered in constructing the specification, a third in running the 
consistency checker, and the remaining third in executing the specification with 
the simulator. In a third project, researchers at the JPL (Jet Propulsion Labo- 
ratory) used SCR* to analyze specifications of two components of NASA's Deep 
Space-1 spacecraft for errors [13]. 

In a fourth pilot project, NRL applied the SCR tools, including a newly in- 
tegrated model checker [3], to a'sizable contractor-produced requirements spec- 
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ification of the Weapons Control Panel (WCP) for a safety-critical US military 
system [10]. The tools uncovered numerous errors in the contractor specification, 
including a serious safety violation. Translating the contractor specification into 
the SCR tabular notation, using SCR* to detect specification errors, and build- 
ing a working prototype of the WCP required only one person-month, thus 
demonstrating the utility and cost-effectiveness of the SCR method. 

2 The SCR Requirements  Model  

An SCR requirements specification describes the required system behavior as 
the composition of a nondeterministic environment and a (usually) deterministic 
system [7]. The system environment contains monitored and controlled quanti- 
ties, quantities that the system monitors and controls. The environment nonde- 
terministically produces a sequence of input events, where an input event is a 
change in some monitored quantity. Beginning in some initial state, the system 
responds to each input event in turn by changing state and possibly changing 
one or more controlled quantities. In SCR, the system behavior is assumed to be 
synchronous--the system completely processes one input event before processing 
the next input event. 

The SCR formal model, a special form of the classic state machine model, 
represents a system Z' as a 4-tuple, ~ = (S, So, E m, T), where S is a set of states, 
So _C S is the initial state set, E m is the set of input events, and T is the transform 
describing the allowed state transitions [7]. In the formal model presented in 
[7], the transform T is deterministic, a composition of smaller functions called 
table functions, derived from the tables in an SCR specification. The formal 
model requires the information in each table to satisfy certain properties. These 
properties guarantee that each table describes a total function. 

In SCR, two relations, NAT and REQ, describe the required system behavior. 
NAT specifies the natural constraints on the system behavior--constraints im- 
posed by physical laws and the system environment. REQ specifies the relation 
that the system must enforce between the monitored and controlled quantities. 
To specify REQ concisely, the SCR method uses mode classes, conditions, and 
events. A mode class organizes the system states into equivalence classes, each 
called a mode. The SCR model includes a set R F  containing the names of all 
variables (e.g., monitored and controlled variables, mode classes) in a given spec- 
ification and a function mapping each variable in RF  to a set of values. In the 
model, a state is a function mapping each variable in R F  to its value, a condition 
is a predicate defined on a system state, and an event is a predicate defined on 
two system states when any state variable changes. 

3 The SCR Tools 

Specif icat ion Edi tor .  To create, modify, or display a requirements specifica- 
tion, the user invokes the specification editor [8]. Each SCR specification is orga- 
nized into dictionaries and tables. The dictionaries define the static information 
in the specification, such as the names and values of variables and constants, the 
user-defined types, etc. The tables specify how the variables change in response 
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to input events. One important class of tables specifies the behavior of controlled 
variables. 

D e p e n d e n c y  G r a p h  Browser .  Understanding the relationship between dif- 
ferent parts of a large specification can be difficult. To address this problem, 
the Dependency Graph Browser (DGB) represents the dependencies among the 
variables in a given SCR specification as a directed graph [9]. By examining 
this graph, a user can detect errors such as undefined variables and circular 
definitions. The user can also use the DGB to display and extract subsets of 
the dependency graph, e.g., the subgraph containing all variables upon which a 
selected controlled variable depends. 

Cons i s t ency  Checker.  The consistency checker [7, 9] analyzes a specification 
for properties derived from the SCR requirements model. It exposes syntax and 
type errors, variable name discrepancies, missing cases, unwanted nondetermin- 
ism, and circular definitions. When an error is detected, the consistency checker 
provides detailed feedback to facilitate error correction. A form of static analy- 
sis, consistency checking is performed without execution of the specification or a 
teachability analysis and is hence more efficient than model checking. In devel- 
oping an SCR specification, the user normally invokes the consistency checker 
first and postpones more heavy-duty analysis such as model checking until later. 
By exploiting the special properties guaranteed by consistency checking (e.g., 
determinism), later analyses can be more efficient [3]. 

S imula tor .  To validate a specification, the user can run the simulator [9] and 
analyze the results to ensure that the specification captures the intended behav- 
ior. Additionally, the user can define invariant properties believed to be true of 
the required behavior and, using simulation, execute a series of scenarios to de- 
termine if any violate the invariants. To provide input to the simulator, the user 
either enters a sequence of input events or loads a previously stored scenario. 

The simulator supports the construction of front-ends, tailored to particular 
application domains. One example is a customized front-end for pilots to use in 
evaluating an attack aircraft specification (see Figure 2). Rather than clicking 
on monitored variable names, entering values for them, and seeing the results of 
simulation presented as variable values, a pilot clicks on visual representations of 
cockpit controls and sees results presented on a simulated cockpit display. This 
front-end allows the pilot to move out of the world of requirements specification 
and into the world of attack aircraft, where he is the expert. Such an interface 
facilitates customer validation of the specification. A second customized front- 
end, part of the WCP prototype mentioned above, has also been developed. 

Mode l  Checker .  Recently, the explicit state model checker Spin [12] was in- 
tegrated into SCR* [3]. After using SCR* to develop a formal requirements 
specification, a developer can obtain an automatic translation of the specifica- 
tion into Promela, the language of Spin, and then invoke Spin within the toolset 
to check properties of the specification. Currently, the model checker analyzes 
invariant properties. The user can use the simulator to demonstrate and validate 
any property violation detected by Spin. 
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Fig. 2. Customized simulator front-end for an attack aircraft specification 

The number of reachable states in a state machine model of real-world soft- 
ware is usually very large, sometimes infinite. To make model checking practical, 
we have developed sound methods for deriving abstractions from SCR specifica- 
tions [3]. The methods are practical: none requires ingenuity on the user's part,  
and each derives a smaller, more abstract model automatically. Based on the 
property to be analyzed, these methods eliminate irrelevant variables as well 
as unneeded detail from the specification. For example, prior to invoking Spin 
to check the WCP specification for a safety property, we used our abstraction 
methods to automatically reduce the number of variables from 258 to 55 and 
to replace several real-valued variables with finite-valued variables, thus making 
model checking feasible [10]. 

4 Comparison with Other Tools 

The method most closely related to SCR is the Requirements State Machine 
Language (RSML) and associated tools [6]. In [2], Anderson et al. describe the 
use of the model checker SMV to analyze a component of the TCAS-II spec- 
ification expressed in RSML. Unlike our approach to limiting state explosion 
which reduces the specification by applying sound abstraction methods, Ander- 
son et al. propose a more efficient encoding for the BDD representation of the 
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RSML specification. More recently, Park et al. [15] have used the Stanford Va- 
lidity Checker (SVC) to check the consistency of RSML specifications. Their  
approach is similar to that  used by the consistency checker in SCR* [7, 9]. 

SCR* can be distinguished in three major  ways from other tools. First, unlike 
most commercial tools for requirements specification, SCR* has a solid math-  
ematical foundation, thus allowing sophisticated analyses, such as consistency 
checking and model checking, largely unsupported by current tools. Second, 
the SCR tools, unlike most research tools, have a well designed user interface, 
are integrated to work together, and provide detailed feedback when errors are 
detected to facilitate their correction. Finally, users of SCR* can do consider- 
able analysis wi~hou~ interaction with application experts or formal methods 
researchers, therehy providing formal methods usage at low cost. 
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