
Real-Time Verification of STATEMATE Designs

Udo Brockmeyer and Gunnar Wittich *

OFFIS, Escherweg 2, 26121 Oldenburg, Germany
{Brockmeyer, Witt ich}©OFFIS. Uni-Oldenburg. d e

Abst rac t . This paper presents a toolset for real-time verification
of STATEMATE 1 designs. STATEMATE is a widely used design tool for
embedded control applications. In our approach designs including all
timing information are translated into untimed finite state machines
(FSMs) which are verified by symbolic model-checking. Real-time
requirements are expressed by TCTL formulae interpreted over discrete
time. A reduction from TCTL model-checking to CTL model-checking
is implemented in order to use a CTL model-checker for the verification
task. Some experimental results of the toolset are given.

1 I n t r o d u c t i o n

In this paper we present a toolset for reai-time verification of STATEMATE designs
[8-10]. STATEMATE is a widely used graphical specification tool for embedded
control applications. The STATEMATE toolset captures the phases of specifica-
tion, analysis, design and documentation of real-time systems. To cope with
the complexity of real life applications, a system under development may be
described graphically from three different viewpoints within STATEMATE. They
cover structural (Module-Charts), functional (Activity-Charts) and behavioral
(Statecharts [7]) aspects of a system.

For the real-time verification of STATEMATE designs we use the technique of
model-checking. Model-checking is an automatic method for proving that a given
implementation of a design meets its requirement specification represented by a
temporal logic formula. As specification language, we use T C T L as introduced
in [2] restricted to a discrete time domain. Our T C T L model-checking procedure
aims at reuse of an industrial CTL model-checker [6] and contains two major
new components: first a translation of STATEMATE designs into untimed FSMs
and second an embedding of the discrete time T C T L model-checking problem
into CTL model-checking.

The semantical foundation of our translation from STATEMATE designs into
untimed FSMs [3], as required by the model-checker [6], can be found in [5]. Our

* Part of this work has been funded by the Commission of the European Commu-
nities under the ESPRIT project 20897, SACRES and the German BMBF project
KORSYS, grant number 01-IS-519-E-0

1 STATEMATE is a registered trademark of i-Logix Inc.

538

toolset supports real-time verification for the synchronous (step) semantics as
well as for the asynchronous (super-step) semantics provided by the STATEMATE
simulator and therefore for both of the semantics given in [9]. Furthermore,
in addition to almost the complete language of Statecharts, the language of
Activity-Charts is also covered by our toolset.

In this tool-paper we demonstrate the feasibility of our approach to real-time
model-checking on some case studies. Two of them are industrial sized applica-
tions provided by our project partners. The first one originates from the SACRES
project and is provided by British Aerospace. It is a Storage Management System
of an aircraft. The second one was provided by ESG 2 in the KORSYS project.
This case study is a Helicopter Monitoring System which monitors engine and
fuel parameters.

2 M o d e l i n g R e a l - T i m e F e a t u r e s o f STATEMATE

STATEMATE distinguishes between the synchronous simulation semantics (step
semantics) and the asynchronous simulation semantics (super-step semantics). In
the step semantics, each step of a design corresponds to exactly one discrete time
unit, time increases uniformly and the environment can influence the valuation
of variables at every step. In contrast, in the super-step semantics a system
performs a chain of internal steps until a stable state (no more internal steps
are possible) is reached. Only in a stable state time progresses and the system
accepts new stimuli.

In order to perform real-time verification of STATEMATE, designs have to be
translated into a format interpretable by the model-checker. Our toolset trans-
lates designs in two steps. A STATEMATE design is first translated into an in-
termediate language called SMI (STATEMATE InterMediate). We defined SMI as
a language for the translation of high-level formalisms into FSMs 3. In a second
phase, the generated SMI code is translated into a FSM for model-checking.

SMI is a simple imperative programming language containing concepts to
model hierarchy, parallelism, and nondeterminism of STATEMATE designs. The
data-types and expression language of SMI are powerful enough to cover a wide
range of STATEMATE types. The cyclic behavior of a STATEMATE design is rep-
resented as a non-terminating loop in SMI code. One execution of this loop
corresponds to exactly one step of the design. In SMI all control information, all
variables and all events of the STATEMATE design are encoded by variables.

STATEMATE provides two ways to introduce explicit timing information into a
Statechart which both relate events and actions to the discrete virtual simulation
clock. The first alternative allows to trigger transitions by timeout events. The
second alternative for introducing timing information into a Statechart allows to
delay the execution of actions for some time units by a scheduled action. To cope
with timing aspects of a design the translation process introduces clock variables

2 Elekronik Systeme GmbH, Munich, Germany
3 In other projects, we translate VHDL, a subclass of Petri-Nets, and a subclass of

OCCAM into SMI

539

for t imeout events and scheduled actions. All clocks are running synchronously.
Because we require all t ime expressions to evaluate to a constant at compile
time, finite domains for the clocks can be determined.

Because after the translation of a STATEMATE design into SMI all necessary
clocks are represented by a finite number of bounded variables, untimed FSMs
can be generated out of the code. The construction is such that one step of the
FSM corresponds to one execution of the complete loop-body of the SMI code.
Thus, in step semantics in each state of the FSM timers are increased by one.
In super-step semantics, timers are increased only in certain states, while they
remain unchanged in all other states.

3 R e a l - T i m e M o d e l C h e c k i n g

As specification logic we use T C T L as introduced in [2] interpreted over discrete
time. Verification is performed by translating T C T L into CTL automatically
and model-checking a suitable extended model against the resulting formulae
with a slightly enhanced CTL model-checker.

To model-check a T C T L formula with a CTL model-checker, we transform
the FSM by adding an additional specification clock. The upper bound of this
clock is determined out of the given T C T L formula. This specification clock
is incremented whenever time progresses. According to the selected semantics,
these states are characterized by a t ime condition given as a SMI expression.

A similar reduction for a derivate of dense time T C T L is given in [11]. Unlike
as in the approach in [11], where additional time transitions between transitions
of the system are introduced, we can avoid this blow up by extending CTL (and
thus the model-checker, too). Thus, we reduce the number of steps performed
by the model-checker while doing its work significantly.

4 E x p e r i m e n t a l R e s u l t s

In this section we present some experimental results obtained with our tools.
Figure 1 gives a coarse overview of our toolset. STATEMATE designs are trans-
lated by STM2SMI into SMI code out of which FSMs are generated by the
tool SMI2FSM. FSM2FSM-T serves to add the specification clock to a FSM.
Finally, T C T L 2 C T L realizes the reduction from T C T L to CTL. The model-
checker (MC) we use is the ROBDD [1] based assumption/commitment style
CTL model-checker provided by our project partner SIEMENS [6].

Table 1 overviews the results for three examined case studies 4. The TLC is
the well known traffic light controller enhanced by timing information modeling
the delay of changing the lights. The second example is a component of a Storage
Management System (SMS) of an aircraft. This industrial sized application was
provided by our project partner British Aerospace. Finally, we model-checked a
Helicopter Monitoring System (HMS) which was provided by our project par tner

4 All results were evaluated on a Sun SPARC 20 running at 60 MHz

540

ESG. The second column contains the times needed for the translation from
STATEMATE into SMI. For the TLC we chose super-step semantics, while the
other two designs were translated for step semantics. The third column shows
the times to generate FSMs. Column four and five are indicating the complexity
of the studies. Finally, in the MC column, times for model-checking of relevant
real-time properties on the given models are presented.

Fig. 1. The Toolset

Beyond these experiences with verifying moderately sized STATEMATE de-
signs against T C T L formulae, we already have very encouraging results on ver-
ifying substantially larger STATEMATE designs against CTL formulae. Some of
these results are presented in [3, 4]. There we have shown, that our tools are
very powerful in generating FSMs and performing CTL model-checking. Indus-
trial sized applications with several hundred state bits could be handled. These
models already contain all clocks that model t imeouts and scheduled actions
of STATEMATE designs. Because for T C T L model-checking only the additional
specification clock has to be added, we will apply our toolset on these designs,
too, and we expect to be able to verify relevant real-time properties for them.

Model stm2smi smi2fsm # of bits # of BDD MC I
in s in s input/state nodes in s

TLC 2.56 0.45 18/33 2485 12.1
SMS 4.82 6.41 13/53 3284 11.6
HMS 6.78 1.60 321103 4195 87.4

Table 1. Experimental Results

541

5 Conclus ions and Future Work

In this paper a toolset for real-time verification of STATEMATE designs against
T C T L formulae has been presented and its usability on some case studies was
demonstrated. Because of the complexity of STATEMATE~ there are some rare
used features not yet covered by the tools. Our future work is about closing this
gap in order to support even these features. Also, we have a lot of ideas for
optimizations tha t can be performed in order to generate smaller FSMs out of
STATEMATE designs. Some of these ideas have already been implemented and
results have been presented in [3]. Applying these optimizations, we expect to
be able to verify real-t ime properties of much bigger designs in the near future.

A c k n o w l e d g m e n t . We thank our project par tners British Aerospace, ESG,
SIEMENS and i-Logix for providing the tools, case studies and for discussions.
Fur thermore we thank Werner D a m m and Mart in Fr/inzle for helpful discussions.

References
1. S.B. Akers. Binary decision diagrams. In Transactions on Computers , No. 6 in

Vol. C-27, pages 509-516, IEEE, 1978
2. R. Alur, C. Courcoubetis and D. Dill. Model-Checking for Real-Time Systems. In

Proceedings of the 5th Symposium on Logic in Computer Science, pages 414-425,
Philadelphia, June 1990.

3. U. Brockmeyer and G. Wittich. Tamagotchis need not die - Verification of STATE-
MATE Designs. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS'98), March 1998

4. W. Damm, U. Brockmeyer, H.J. Holberg, G. Wittich and M. Eckrich. Einsatz
formaler Methoden zur ErhShung der Sicherheit eingebetteter Systeme im KFZ.
VDI/VW Gemeinschaftstagung, 1997

5. W. Damm, H. Hungar, B. Josko and A. Pnueli. A Compositional Real-Time
Semantics of STATEMATE Designs. In Proceedings of COMPOS 97, edt. H.
Langmaack and W.P. de Roever, Springer Verlag, to appear 1998

6. T. Filkorn, SIEMENS AG. Applications of Formal Verification in Industrial Au-
tomation and Telecommunication. In Proceedings, Workshop on Formal Design
of Safety Critical Embedded Systems, April 1997

7. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8, 1987.

8. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring and M. Trakhtenbrot. STATEMATE: A working environment for the
development of complex reactive systems. In IEEE Transactions on Software En-
gineering , 16:403 - 414, 1990

9. D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. In ACM
transactions on software engineering and methodology, Vol 5 No ~ , 1996

10. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The STATE-
MATE Approach. i -LOGIX INC., Three Riverside Drive, Andover, MA 01810,
June 1996. Part No, D-1100-43

11. T. A. Henzinger and O. Kupferman. From Quantity to Quality. In Proceedings of
Hybrid and Real-Time Systems (HART'97), March 1997

