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Abst rac t .  This paper presents a toolset for real-time verification 
of STATEMATE 1 designs. STATEMATE is a widely used design tool for 
embedded control applications. In our approach designs including all 
timing information are translated into untimed finite state machines 
(FSMs) which are verified by symbolic model-checking. Real-time 
requirements are expressed by TCTL formulae interpreted over discrete 
time. A reduction from TCTL model-checking to CTL model-checking 
is implemented in order to use a CTL model-checker for the verification 
task. Some experimental results of the toolset are given. 

1 I n t r o d u c t i o n  

In this paper we present a toolset for reai-time verification of STATEMATE designs 
[8-10]. STATEMATE is a widely used graphical specification tool for embedded 
control applications. The STATEMATE toolset captures the phases of specifica- 
tion, analysis, design and documentation of real-time systems. To cope with 
the complexity of real life applications, a system under development may be 
described graphically from three different viewpoints within STATEMATE. They 
cover structural  (Module-Charts), functional (Activity-Charts) and behavioral 
(Statecharts [7]) aspects of a system. 

For the real-time verification of STATEMATE designs we use the technique of 
model-checking. Model-checking is an automatic method for proving that  a given 
implementation of a design meets its requirement specification represented by a 
temporal  logic formula. As specification language, we use T C T L  as introduced 
in [2] restricted to a discrete time domain. Our T C T L  model-checking procedure 
aims at reuse of an industrial CTL model-checker [6] and contains two major 
new components: first a translation of STATEMATE designs into untimed FSMs 
and second an embedding of the discrete time T C T L  model-checking problem 
into CTL model-checking. 

The semantical foundation of our translation from STATEMATE designs into 
untimed FSMs [3], as required by the model-checker [6], can be found in [5]. Our 
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toolset supports real-time verification for the synchronous (step) semantics as 
well as for the asynchronous (super-step) semantics provided by the STATEMATE 
simulator and therefore for both of the semantics given in [9]. Furthermore, 
in addition to almost the complete language of Statecharts, the language of 
Activity-Charts is also covered by our toolset. 

In this tool-paper we demonstrate the feasibility of our approach to real-time 
model-checking on some case studies. Two of them are industrial sized applica- 
tions provided by our project partners. The first one originates from the SACRES 
project and is provided by British Aerospace. It is a Storage Management System 
of an aircraft. The second one was provided by ESG 2 in the KORSYS project. 
This case study is a Helicopter Monitoring System which monitors engine and 
fuel parameters. 

2 M o d e l i n g  R e a l - T i m e  F e a t u r e s  o f  STATEMATE 

STATEMATE distinguishes between the synchronous simulation semantics (step 
semantics) and the asynchronous simulation semantics (super-step semantics). In 
the step semantics, each step of a design corresponds to exactly one discrete time 
unit, time increases uniformly and the environment can influence the valuation 
of variables at every step. In contrast, in the super-step semantics a system 
performs a chain of internal steps until a stable state (no more internal steps 
are possible) is reached. Only in a stable state time progresses and the system 
accepts new stimuli. 

In order to perform real-time verification of STATEMATE, designs have to be 
translated into a format interpretable by the model-checker. Our toolset trans- 
lates designs in two steps. A STATEMATE design is first translated into an in- 
termediate language called SMI (STATEMATE InterMediate). We defined SMI as 
a language for the translation of high-level formalisms into FSMs 3. In a second 
phase, the generated SMI code is translated into a FSM for model-checking. 

SMI is a simple imperative programming language containing concepts to 
model hierarchy, parallelism, and nondeterminism of STATEMATE designs. The 
data-types and expression language of SMI are powerful enough to cover a wide 
range of STATEMATE types. The cyclic behavior of a STATEMATE design is rep- 
resented as a non-terminating loop in SMI code. One execution of this loop 
corresponds to exactly one step of the design. In SMI all control information, all 
variables and all events of the STATEMATE design are encoded by variables. 

STATEMATE provides two ways to introduce explicit timing information into a 
Statechart which both relate events and actions to the discrete virtual simulation 
clock. The first alternative allows to trigger transitions by timeout events. The 
second alternative for introducing timing information into a Statechart allows to 
delay the execution of actions for some time units by a scheduled action. To cope 
with timing aspects of a design the translation process introduces clock variables 
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OCCAM into SMI 



539 

for t imeout events and scheduled actions. All clocks are running synchronously. 
Because we require all t ime expressions to evaluate to a constant at compile 
time, finite domains for the clocks can be determined. 

Because after the translation of a STATEMATE design into SMI all necessary 
clocks are represented by a finite number of bounded variables, untimed FSMs 
can be generated out of the code. The construction is such that  one step of the 
FSM corresponds to one execution of the complete loop-body of the SMI code. 
Thus, in step semantics in each state of the FSM timers are increased by one. 
In super-step semantics, timers are increased only in certain states, while they 
remain unchanged in all other states. 

3 R e a l - T i m e  M o d e l  C h e c k i n g  

As specification logic we use T C T L  as introduced in [2] interpreted over discrete 
time. Verification is performed by translating T C T L  into CTL automatically 
and model-checking a suitable extended model against the resulting formulae 
with a slightly enhanced CTL model-checker. 

To model-check a T C T L  formula with a CTL model-checker, we transform 
the FSM by adding an additional specification clock. The upper bound of this 
clock is determined out of the given T C T L  formula. This specification clock 
is incremented whenever time progresses. According to the selected semantics, 
these states are characterized by a t ime condition given as a SMI expression. 

A similar reduction for a derivate of dense time T C T L  is given in [11]. Unlike 
as in the approach in [11], where additional time transitions between transitions 
of the system are introduced, we can avoid this blow up by extending CTL (and 
thus the model-checker, too). Thus, we reduce the number of steps performed 
by the model-checker while doing its work significantly. 

4 E x p e r i m e n t a l  R e s u l t s  

In this section we present some experimental results obtained with our tools. 
Figure 1 gives a coarse overview of our toolset. STATEMATE designs are trans- 
lated by STM2SMI into SMI code out of which FSMs are generated by the 
tool SMI2FSM. FSM2FSM-T serves to add the specification clock to a FSM. 
Finally, T C T L 2 C T L  realizes the reduction from T C T L  to CTL. The model- 
checker (MC) we use is the ROBDD [1] based assumption/commitment  style 
CTL model-checker provided by our project partner SIEMENS [6]. 

Table 1 overviews the results for three examined case studies 4. The TLC is 
the well known traffic light controller enhanced by timing information modeling 
the delay of changing the lights. The second example is a component of a Storage 
Management System (SMS) of an aircraft. This industrial sized application was 
provided by our project partner  British Aerospace. Finally, we model-checked a 
Helicopter Monitoring System (HMS) which was provided by our project par tner  

4 All results were evaluated on a Sun SPARC 20 running at 60 MHz 
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ESG. The second column contains the times needed for the translation from 
STATEMATE into SMI. For the TLC we chose super-step semantics, while the 
other two designs were translated for step semantics. The third column shows 
the times to generate FSMs. Column four and five are indicating the complexity 
of the studies. Finally, in the MC column, times for model-checking of relevant 
real-time properties on the given models are presented. 

Fig.  1. The Toolset 

Beyond these experiences with verifying moderately sized STATEMATE de- 
signs against T C T L  formulae, we already have very encouraging results on ver- 
ifying substantially larger STATEMATE designs against CTL formulae. Some of 
these results are presented in [3, 4]. There we have shown, that  our tools are 
very powerful in generating FSMs and performing CTL model-checking. Indus- 
trial sized applications with several hundred state bits could be handled. These 
models already contain all clocks that  model t imeouts and scheduled actions 
of STATEMATE designs. Because for T C T L  model-checking only the additional 
specification clock has to be added, we will apply our toolset on these designs, 
too, and we expect to be able to verify relevant real-time properties for them. 

Model stm2smi smi2fsm # of bits # of BDD MC I 
in s in s input/state nodes in s 

TLC 2.56 0.45 18/33 2485 12.1 
SMS 4.82 6.41 13/53 3284 11.6 
HMS 6.78 1.60 321103 4195 87.4 

Table 1. Experimental Results 
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5 Conclus ions  and Future Work 

In this paper  a toolset for real-time verification of STATEMATE designs against 
T C T L  formulae has been presented and its usability on some case studies was 
demonstrated.  Because of the complexity of STATEMATE~ there are some rare 
used features not yet covered by the tools. Our  future work is about  closing this 
gap in order to support  even these features. Also, we have a lot of ideas for 
optimizations tha t  can be performed in order to generate smaller FSMs out of 
STATEMATE designs. Some of these ideas have already been implemented and 
results have been presented in [3]. Applying these optimizations, we expect to 
be able to verify real-t ime properties of much bigger designs in the near future. 
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