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Abstract:

Non-uniform complexity measures origined in Automata and Formal
Langquages Theory are characterized in terms of well-known uniform
complexity classes. The initial index of languages is introduced by
means of several computational models. It is shown to be closely
related to context-free cost, boolean circuits, straight 1line

programs, and Turing machines with sparse oracles and time or space
bounds.

Resum:

Es caracteritzen mesures no uniformes de complexitat originades
en Teoria d'Automats y Llenguatges Formals, mitjancant classes
uniformes. Es presenten definicions de 1'index inicial dels
llengquatges formals amb diversos models de computacié. Es demostra
la relacié d’aquests amb el cost incontextual, els circuits

booleans, els programes rigids 1 les maquines de Turing amb oracles
esparsos 1 fites de temps o d’espai.



I. TIntroduction.

The study of the complexity of formal languages has been done
last times from several different viewpoints. Our work is centered
on two of the most succesful of them: on the one hand, bounds on
concrete resources used by algorithms in deciding the languages,
such as time and memory; on the other one, functions describing the
growth of descriptions of the finite initial subsets of the
langquage. We call these two approaches, respectively, “uniform
complexity" and "non-uniform complexity", following an wusual
practice. Names seem to be origined by the fact that the first
approach studies the complexity of algorithms deciding the whole
language in a uniform manner, while the second allows a different
description for each initial subset without asking all of them to
perform similar computations.

The uniform measures we shall use rely on the multitape Turing
machine ( TM for short ) as a formal model of algorithm. This model
is described later. Time is identified with number of elementary
steps in the computation; memory is identified with space used in
the work tapes. Bounds on these resources will define our uniform
complexity classes. Sometimes our model will have restrictions in
the moves of the input tape head: we consider “on-line" machines,

whose input can be read only once. Nondeterministic machines will
also be used.

Some non-uniform measures are classical notions of the Theory of
Computing; one of the most widely used ones is the circuit size
measure ( see, v. gr., [Sa,761 ), It is defined by counting the
number of boolean gates needed to sythesize the characteristic
funtion of a finite set. Other non-uniform measures have originated
from Automata and Langquage Theory, like context-free cost L[BCMW,811],



or 1initial index C[Ga.83]. Also, straight 1line programs with
set-theoretic operations, as in L[GLF,771 will be considered.

This work is based on a characterizationl usually credited ¢to
A, Meyer. He used oracles in order to "break up" the uniformness of
the TM model. proving that a set can be described by a polynomially
growing set ‘of boolean circuits if and only if it was possible to
recognize this set by a TM within polynomial time, with the aid of a
“sparse" oracle. Sparse oracles have only a polynomially growing
number of words. We wuse similar techniques to characterize
polynomial classes under several non-uniform complexity measures.
We prove, for example, that a set can be described by a polynomially
growing set of finite automata 1f and only if it is possible to
recognize this set by an on-line TM within log-space with the aid of
a sparse oracle. Similarly, a set can be described by a
polynomially growing set of context-free grammars if and only if 1t
is possible to recognize this set by &an on-line TM within
logarithmic space, with the aid of a sparse oracle and of an

unbounded pushdown store. Other characterizations are proven along
the way.

In particular. we analyze the initial index, measured with
finite automata. in section 1II. HWe characterize the polynomial
class for this measure and we obtain several interesting
consequences about the uniform class NLOGon: this class is not
closed under complements, and possess complete sets with respect to
on-line log-space reductions. We study in section III the
context-free cost. and we characterize it in terms of straight 1line
programs, 1initial index measured by pushdown automata. and on-line
versions of the auxiliary pushdown machines of Cook [Co.711.
Compliete sets are found for some of the uniform classes., as well as
properties like non-closure under complements: it is interesting to
note that the off-line classes studied by Cook are however closed



under complements. Section IV is devoted to the study of circuit
size complexity, which we characterize by means of more powerful
versions of straight line programs. In a short final section we
revise the results of the previous ones, and suggest some lines of

further research and a conjecture about formula size and off-line
log-space.

On-line TM’'s are. to our opinion, an interesting model which
should be studied more deeply; when the memory bounds are less than
linear., we consider that off-line machines are somewhat irrealistic,
because access to the whole input file in both directions is not
usually feasible in the present computers. Sequential files do not
usually allow to go back to the previous record, while random access
files should be considered as work space and taken in account when
measuring the space complexity of the algorithms that use them.

We consider that the facts proven in this paper, and the
techniques used in the proofs, support as an intuitive consequence
that the borderline between Automata and Formal Language Theory and
Complexity Theory lies in some sense nearby the question of whether
the computational model chosen has or has not the ability of reading
back 1its input. On-line models are more adequate when dealing with
notions arisen from Automata Theory than off-line models are.



ITI. Rational complexity.

The first non-uniform measure which we consider is the initial
index., due to Gabarrd CGa,831.

Definition 1. Given a language L < ZE *, we define the initial index
of L as the function ap ¢ N --> N given by:

aL(n) = min £ {JA]| / A is a nondeterministic automaton
such that L(A) =L ) £" 3

where |[|A|| denotes the number of states in A. In the same
manner we define the deterministic initial index daL as:

daL(n) =min £ |jA||] / A is a deterministic automaton
such that L(A) =L N £ 7 3.

From these two complexity measures we define the following
complexity classes:

{L/3kENwitha (n) = 0(n¥) 3

{L/3kE€N with dag(n) = o(nk) 1.

Pol
Pol

da

It 1is easy to show that if Lp is the set of palindromes over a
two letter alphabet, then its complement ﬁp has the property
EP € Pola but ﬁp € Polda
( see LGa.B83] ) and therefore Pol, & Pol .
da & a



HWe consider as our first uniform complexity model the on-line
oracle Turing machines working within space logarithmic in the
length of the input. On-line machines have been considered
previously in the literature CHLS,65], [HU,691.

An on-line oracle machine M 1is a multitape Turing machine,
deterministic or nondeterministic, with a read-only input tape; k
read-write work tapes; a distinguished write-only tape called the
query tape: and three distinguished states called QUERY, YES, and
NO. The input head moves left to right, and it cannot back to the
left. At some moments in the computation, M can write symbols on
the query tape; when M enters the QUERY state, it transfers to the
state YES if the contents of the query tape is in some oracle set B;
otherwise. M transfers into the state NO. 1In either case the query
tape is instantly erased.

As usual, Turing machines are described as tuples < Q, £ , k, g ’
dq» F > where Q is the set of states, 2 1s the alphabet, k is the
number of tapes, 8 1s the transition function. 9 is the initial
state. and F is the set of accepting states. The language accepted
by such a machine M relative to an oracle B, denoted L(M,B), 1is
defined also in the usual way.

A machine M may be forced to operate within log-space. The
machine is started 1in an initial configuration in which the work
tapes have begin and end markers, leaving in between only a
logarithm of the length of the input as work space. If attempt is
made to cross left of the begin marker or right of the end marker.
the computation 1s aborted and the machine stops in a rejecting

state. Observe that no bound is set over the length of the oracle
tape.



By a work tape configuration of a machine we mean a description
of the contents of each work tape, including information about the
current position of the work tape head.

This model of computation defines the following complexity
classes:

NLOGon(B) = { L /L is accepted by a nondeterministic
on-line machine with oracle B within log-space 1}
DLOGon(B) = { L /L is accepted by a deterministic on-1line

machine with oracle B within log-space 1}

In order to compare uniform an non-uniform measures we will
"break up" the uniformity with the aid of sparse oracles. A set S
is sparse if there is a polynomial p(.) such that for every n it
holds that

11£% N s < ptn).

Given an alphabet Zf. SP will denote the class of all sparse
subsets of 25*.

Theorem 1.

(1) Pol = U NLOG__(S).

S € 8P

da = l ‘ DLOGon(S).

S € 8P

(11) Pol



Proof . We shall show first that i1if L = L(M,S) for some
nondeterministic on-line machine M within log-space with a sparse
oracle 8, then L has polynomial initial index.

For any input w with |[w| = n, the log-space bound implies a
polynomial bound on the number of possible work tape configurations
of M. Hence. for each n we can construct from M a new
nondeterministic machine Mn accepting L f1.é:n which uses the same
oracle 3 and no work space. by incorporating into the finite control
of Mn all the work tape configurations of M on words of length n.
The number of states of Mn is bounded by a polynomial in n.

The working time of Mn being bounded by a polynomial, only a
polynomial length of words in the oracle can be queried by Mn to S,
which implies by the sparseness of S that only a polynomial number
of words can be queried by M with positive answer. We shall
construct a new machine Mn’ which incorporates also 1in 1ts finite
control a finite automaton An for the accesible part of S. These
automata An can be trivially constructed having size polynomially
bounded on n.

Thus, the states of Mn’ will be of the form < q, r, C >, where q
is a state of M, r 1s a state of An' and C is a work tape
configuration of M. For any symbol x currently scanned by the input
head. the transitions of Mn‘ are of the form:

(<q, r,. CH>, X)) b— (< q', ', C" >, k)

where k = 1 1if the input head moves and k 0 1f it does not

move. The state < q‘, r‘, C’ > is defined as follows:

(i) If q is not the QUERY state and M does not write on the query
tape when in configquration < q, C >, then r = r’ and q’ and C'
are such that { q, C > — <(q', C’ > 18 a transition of M;



(11) 1if M writes symbol y on the query tape, then C = C’, q’ is given
by the <transition function of M, and r’ 1s given by the
transition function of An applied to ( r, ¥y );

(i1i) 1f q is the query state, then q’ is the YES state if r 1s a

final state of An' and q’ 1s the NO state otherwise: moreover
r' is the initial state of An’ and C’' = Cﬂ

This machine is a finite automaton with X~transitions and size
polynomial in n. The elimination of the )-transitions does not
increase the number of states by more than a polynomial CHU,791.

On the contrary, let L € Pola. Then there exists a family
{ An /I'm > 01} of nondeterministic finite automata such that
L(An) = L f)z{n. We construct an on-line nondeterministic machine
with a sparse oracle S which accepts L within logarithmic space.

Let An = < 2{. Qn’ én’ 0, Fn >, where Qn is assumed to be a
sequence of nonnegative integers. Let § be a new symbol. We codify
the family of automata in the oracle S by defining:

S = { 0Msx$i89su / § € cfnu,x), and u = 1
if j € Fn and u = 0 otherwise 1.

As the size of the automata grows polynomially, it 1is easy to
see that S is sparse. Let p(.) be a polynomial bounding the number

of words in 8 and let b be an integer such that p(n) can be written
in log n symbols in base b.



The machine M will have three tapes, named 1, 2, and 3, which at
cach time will held representations of, respectively, the current
state of An' the next state of An and the length of the 1input ( in
binary . We shall denote by 1 and j the contents of tapes 1 and 2
respectively. Let x denote the symbol currently scanned by the
input head. The following nondeterministic procedure accepts input

w, with |w| = n, iff w € L(An), and M can be programmed according to
it.
Begin
X := first symbol of input;
write 0 on tape 1: -- initial state
while input last loop
guess j on tape 2; -- next state
write n-1 on tape 3; -- by filling it of ones
quess whether u = 0 or u = 1; -- 1in the finite control

write on the query tape 0n$x$1$j$u
-- use tape 3 to write O
N -- copy i from tape 1

e

n

-- copy j from tape 2
query the oracle about this word:;
if the answer is YES then
copy contents of tape 2 on tape 1;
X := next symbol of input
else reiject -- wrong guess
end while

if u = 1 then accept

else reject

end.

e have w € L(M,S) iff w € L(An). This shows that
L € NLOGnn(S).

N



The proof of the second part of the theorem is similar. The
only difference relies in that the procedure describing the actions
of the log-space machine which simulates the finite automata must no
longer be nondeterministic, and a systematic search over all
possible new states j is substituted for the guesses. Observe that
in the nondeterministic case no such systematic search could
substitute the guesses, because if a wrong computation of the
simulated nondeterministic automaton is taken there 1is no
possibility of backtracking the input head.

As a corollary of theorem 1, we can state the following known
result CHU,691, CGr,761:

Corollary 1. DLOG, S NLOG .

Proof. The set of the palindromes is not in NLOGon, because its
initial index 1is exponential [Ga,83]1. However, is complement is;
hence NLOGon is not closed under complements.

We can use the ideas from the construction 1in theorem 1 to
establish a completeness result for the class NLOGOn with respect to
reductions computed by deterministic on-line log-space transducers.
let us consider the following problem, which we could call the
"Replicated Automaton Problem" ( "RAP" for short ). For any
automaton A and any input word w = xlxz...xn, RAP has as input
A$xl$A$x2$A$...$A$xn$A, and the problem consists of deciding whether
w is accepted by A. Therefore we can specify:

RAP = { A$xl$A$xz$A$...$A$xn$A /I w = Xi1Xpe oo X, and w € L(A) 3.



It is easy to see that RAP is in NLOGon: apply the following
procedure, which works on-line in log-space:

Beqgin
kead symbols coding A and identify its initial state;
q := 1lnitial state of A;
read until §;
while input last loop
read x.;
read symbols coding A and identify q‘ = é (q,xi);
q = q’
end while;
1f q is a final state then accept

else reiject
end.

To prove the completeness of RAP, we shall build for any
log-space on-line nondeterministic Turing machine M a function f,
computable by a deterministic on-line log-space transducer which
constructs for each w a specific instance of RAP in such a way that
w € LM <=> f(w) € RAP.

The computation of f is given by the following procedure:

Function £ is
procedure write automaton is
for each i from 0 to s loop
interpret 1 as a configuration of M;
write couples (i,j) such that i F?r K

8



end loop
end write automaton:;

begin of f
read w = LI PTRED Y
8 := number of possible configurations of M on w;

for each k from 1 to |w| loop
call write automaton;

write ‘'$’;

write X,

write ‘'$’;
end loop;
call write automaton; ’
end.

Hence RAP is complete.

In CKL,80] non-uniform complexity measures are defined by means
of "advice functions". The classes of the form C/poly, of the
problems decidable by machines of the form C with the aid of a
polynomially 1long advice function, have been characterized by
Sch6ning [Schd,831 as the union of C(S) over all S € SP, under very
weak sufficient conditions. The proof does not work directly for
our on-line model of computation. However, a similar
characterization may be proposed by repeating several times the
advice in between each two symbols of the input, in the same way as
done above for the automata. If codings of the advice h(|x|) for x
is allowed in the following way:

h(lxl)xlh(lxl)xzh(lxl)...xnh(lxl)



then a similar characterization holds and it can be proven that

Pola = NLOGon/poly.

Diana Schmidt has shown how to apply diagonalizations to
complete sets for NLOGOn and other similar classes, showing that
there exist infinite families of incomparable ( with respect to
log-space reductions ) non-complete sets in NLOGon. See [Schm,841.

10



IIT. Context-free complexity.

In the previous section we have characterized the languages with
polynomial approximations in terms of finite automata. We shall now
deal with languages having polynomial .approximations in terms of
context-free grammars. The size ||G]|| of a context-free grammar G
is defined as the number of rules it contains. This measure has
been used before in [BCMW,811].

Definition 2. Given a language L, the context-free cost of L is
given by
cfp(n) = min € ||G]] /LG =L N £° 3,

It i3 easy to prove that every context-free language L has
ch(n) = O(nz). It suffices to construct the intersection of a
grammar for L and the n+l state automaton recognizing 2{". Using
this complexity measure we define the following complexity class:

PolCf = {L /3 k€N with ch(n) O(nk) 1.

The straight line programs are another way of measuring the
complexity of finite functions [BM,75]1. These programs have been
used by Goodrich, Ladner, and Fischer CGLF,77]1 to compute finite
languages. They introduced the union-concatenation cost, which
consists 1in counting the number of operations needed by a
straight-line program, using only unions and concatenations.

More formally, given an alphabet fi » & straight-line program

with wunions and concatenations ( uc-slp ) is defined as a sequence
of steps such that:



Step one has the form 1 <(--- x, X € ZE.
Step 1 has one of the following two forms:

(a) i<---x, x € £;

(b 1 <--- j 6 k

where j and k are previous steps of the program, and 6 € {U, ¢ 3.

Given a uc-slp /3, we associate a language Li to each step i of
in the following manner:
if i {--- x then Li = {x };

if 1 <--- j 6 k then Li = Lj e Lk’

For a uc-slp /3 with k steps, the language [V3 generated by /3
is Lk' Now we can define formally the union-concatenation cost of a
language:

Definition 3. For a language L, 1its union-concatenation cost is
given by the function

ucp (n) = min { k / there is a uc-slp 22 with k steps

such that L/3 =L N £" 3.

With respect to this measure we define the following complexity

class:

k

Poluc = {f{ L/ 3 k with ucL(n) = 0(n) 3.



[t was pointed out in CGLF,773 that uc-slp are closely related
to context-free grammars; as a matter of fact it is straightforward
to prove that these measures are polynomially related and therefore

Poluc = Polcf.

On the other hand it is easy to show that the set of the
palindroms over a two letter alphabet has linear uc cost; hence

Pola < POluc'

One more way of characterizing the class Polcf is in terms of
pushdown automata ( pda ). If P = ( Q, z,1,4, dgr Zge F ), then
its size |[|P|| is the total number of symbols which are necessary to
describe it, i. e.:

FIPY) = E It| with t = (q,u,z) J— (q',zlzz...kk) € 8
t €d

where |t| = Iquzq'zl...zkl.

It is well known that a language is context-free if and only if
it 1is recognized by a pda. As the size of grammars and the size of
equivalent pda can be polynomially related we can define _Polcf in
terms of pda, just in the same way as the initial index of section
I1:

Pol = { L/ 3 kand a family of pda’s Pn,:1 > 0, such
that |IP |l < n“and L(P) =L N £ 3.



The model of uniform computation we shall use in this section is
an on-line version of the Auxiliary Pushdown Automata ( apda ) due
to Cook [Co,713 ( see also CHU,791 ). We consider nondeterministic
on-line apda working within log-space and using sparse oracles S.
The convention regarding space bounds ( markers at both ends of work
tapes, no bound on oracle tape ) are the same as in the log-space
machines of the section II. Of course, no bound is imposed on the
pushdown store. Fixed an oracle S, we define the following uniform
complexity class:

ANLOGon(S) = £{ L / there exists an on-line log-space apda M
such that L = L(M,S) }I.

Using this model, we can prove a second equivalence between
uniform and non-uniform classes:

Theorem 2. Polcf = U ANLOGon(S).
3 € SP

Proof. The initial segments of any language accepted by an apda
under a sparse oracle can be accepted by a family of pda’s of
polynomial size. This can be proved exactly as the analogous part
of Theorem 1, by including the work tape configurations of the apda,
as well as an automaton for the oracle S, in the finite control of
the pda’s. The pushdown of the apda becomes the pushdown of the
pda’s.

For the converse, let L € Pol £* There exists a polynomial p(.)
and a family of pda’‘s Pn = Qn,Z P l'n, én’ A9+ Zq- Fn ) such
that ||Pn|| < p(n)» and L(’Pn) =L N 8. Observe that the
cardinality of the pushdown alphabet is bounded by p(n). Let s be
great enough so that in base s the value p(n) may be written within

log n cells. Thus we can encode each symbol in r-n as a number of

4



length log n in base s.

Encode the automata in the oracle S as follows:

S =q 0n$x$i$j$z$zl$...$zk$u /

(qj,zl...zk) € 3 n‘di-%,z) and u = 1 iff j € F 3.

We construct an apda M with oracle S which accepts L. M will

have five work tapes:

l.

Tape 1 will contain the current state of the Pn being simulated.
Tape 2 will contain the next state of Pn’
Tape 3 will contain the top symbol of the pushdown of Pn’

Tape 4 will contain the 1length of the currently applied
transition of Pn.

Tape 5 will succesively contain the symbols of the right hand

slde of the currently applied transition of Pn’

The apda performs the following procedure:

Begin

read first symbol of input x;

wyite 0 on tape 1;

write Z, on tape 3;

push the symbols of Z, from tape 3 into the pushdown;

while input last loop
Jquess j on tape 2; -~ next state




write on the query tape 0n$x$i$j$ :
-- x is the currently scanned
-- input symbol,
-- i is the contents of tape 1
pop log n symbols from pushdown to tape 3;
-- top of pushdown
write the contents of tape 3 on the query tape:

guess k on tape 4; -- in base s
-- it is the length of rule
for i := 1 to k do
quess z; on tape 5; -- in base s

write zi$ on the query tape;
push the symbols of Z;:
end for;
quess u =1 or u = 0;
write u into the query tape;
-- now the contents of the
-= query tape is:
-- 0"$x$191$2$2,%.. .92, $u
uer
f YE

~e

w

then
write tape 2 on tape 1;

read next input symbol x;
else reiject; -- wrong guess
end while;
if last accepted u is 1 then accept else reject
nd.

D

This proves the result.



Taking deterministic pda‘s ( dpda 7 for defining the non-uniform
complexity measure we can define a similar polynomial class. Taking
the deterministic version of apda‘s, it is possible to characterize
in a similar way the non-uniform class as the union over sparse
oracles S5 of ADLOGon(S), the class of the sets decidible by on-line
dapda‘'s with oracle S. The proof is similar, but more information
has to be encoded on the oracle in order to avoid the
nondeterministic guesses in the procedure above. The idea is to put
in S prefixes of the codings of the transitions of the dpda‘s to be
simulated, so that these transitions can be constructed
deterministically one symbol at each time.

In CGLF,771 it is proved that the set
fww/wedfo, 1 ]* }
has exponential context-free cost. However 1t 1is easy to
construct a log-space on-line nondeterministic Turing machine ( and
hence a log-space on-line apda ) which accepts its complement.
Therefore, we can state the following corollaries:

Corollary 2. ANLOGOn is not closed under complementation.

Corollary 3. ADLOG_ = & ANLOG = & P.

Corollary 4. Neither NLOGCm < AD]Z.OGon nor ADLOGOn < NLOGon.

Corollary 2 is inmediate when considering the set of squares
over a two letter alphabet, as indicated above. Corollary 3 follows
trom Corollary two, because both ADLOGOn and P are closed under
complementation. Corollary 4 follows from consideration, first, of
the complement of the set of squares, which is in NLOGOn but not in
ADLOGOH, and secondly of the set of palindroms with a central
geparator, which 1s deterministic context-free and hence in ADLOGon.
but not in NLOGon.



Corollary 3 contrasts the equality among the corresponding
off-line classes and P, which was proved by Cook LCd,71].

The classes ADLOGon and ANLOGon possess complete sets. In fact,
a construction very similar to the one in the section II allows to
define a "pda variant" of the problem RAP which turns out to be
complete with respect to on-line log-space reductions. We omit this
easy construction.



I[V. Boolean circuits complexity.,

In this section we shall compare again two non-uniform measures
with a uniform measure, and relate the classes by them defined with
the ones defined in the previous sections. We shall restrict our
attention to languages recognized by deterministic off-line Turing
machines with sparse oracles S within polynomial time, P(S); this
is the uniform measure for this section.

The first model of non-uniform measure will be the size of
straight line programs with union, concatenation, and intersection
( uci-slp ). This measure is just an extension of the uc-slp where
the set of operators is taken as 6 € {U, ,N3 CGLF,773.

Definition 4. For any given language L, its union-concatenation-
-intersection cost is given by the function

uciL(n) = min { k / there is a uci-slp /3 with k steps
such that L/; =L N &" 1.

The second model of non-uniform measures is the circuit-size
complexitv ( also known as combinational complexity ). This measure
has been known for a long time [Lu,581, [CSa,761].

Let us recall that a combinational circuit over variables

XpeooX is 1like a straight line program where each step i has the
form:

(& i (=== xj



tby 1 (=== =4

tcr 1 <--- §j A k where AG {V,AL}

If 1 (-——- x:i then the function calculated at step i is

l l. j.
It 1 <--- § A k then the function calculated at step i is
EjCupeeaugr = £o0upe..u) A £ (Upeeeu ).

If the combinational circuit ﬂ has k steps then the function

computed by ﬁ is f/—'* = fk'

Definition 5. For a finite language L over the alphabet { 0, 1 1,
its boolean complexity is given by the function

cL(n) = min £ k / there is a circuit Y with k steps
such that Vw |w| = n, fY (w) =1 iff w€ L 3.

We can define the following two non-uniform complexity classes:

. B , B _ k
POluci = { L /3 k with uc1L(n) = 0(n) 3.



l?-’ol‘~ = { L/ 3 k with cL(n) = O(nk) 3.

Using the language of the squares defined in tha last section,
Goodrich et al. have shown that Poluc g;, Polu CGLF,771. On the
other hand Meyer has proved that

Pol = l j P(3).
C

S € 3P

ci

We shall close the link among the above classes by stablishing
the equivalence between Polc and POluci' In one direction it has
been already shown in LGLF,77] that there exists a constant k such
that uciL(n) < ktc_tn)+n). We shall prove the converse. First let

L
us present some definitions and a technical lemma.

We say that a finite language L has length n if and only if all
the words w in L are of length |w| = n, and that L has a length if
it has length n for some n. A uci-slp /3 has coherent lengths if

and only 1if every variable 1 of’fs generates a lenguage having a
length. We show in the following lemma that we may transform a
uci-slp in another having coherent lengths, with small overhead.

Lemma 1. For every uci-slp /3 which 1is optimal for computing a
language L having 1length n, there exists a uci-slp x’ having

coherent lengths, computing L, whose size 1s 0(n3) times the size of

Proof. We will have in )/ variables of the form <i,p>, for each
variable i in /3 and each p <n; wvariable (i,p> will compute the
words of length p of the language computed by variable i of/3 .



We construct Y from/z, in the following way:

ta) If 1 <(--- x 1is an 1instruction of /.5, <i,1> <--- x 1is an
instruction of X

tby If 1 (--- 3 U k is an instruction of , then for each p add ¢to
the following instruction:

1. <i,p> <--- <j,p> U <k,p> if Ljﬂ ZP and Lkn s P are
nonempty.

2. <i,p> (=--- <j,p> if Lkl’) f_p is empty.

3. i,p> <--- <k,p> if L, N £P is empty.
3

Rules of type 2 and 3 can be later eliminated by a renaming
of variables.

tc) Intersection is handled in an analoguos way.

td) If i (--- j.k is an instruction of /s » then consider for each p
the following set:

a = - q
Ij,p i= € <a,t> / g+t = p, Ljf\ 5% and

LN Zt are nonempty 1.

For every p with Ii p nonempty add to Y the instruction:

(i,p) (--- Z <ieg? <k,B0

Ii,p

previuosly decomposed into leas than 2p elementary
instructions.



Ubserve that the optimality of (3 implies that no intermediate
language has length greater than n. The number of instructions
increases 1In this construction within a constant factor of n3. This

yields the desired upper bound.

Now we prove that from a uci-slp it 1is possible to build boolean
circuits with small overhead.

Theorem 3. For every language L over the alphabet { 0, 1 3,

5
cL(n) = 0 (n .uciL(n) ).

Proof . Let 2 be a uci-slp with coherent lengths for L () =N, We
construct a circuit over n input gates Xy.oo X accepting this
language.

Gates are numbered <i‘.p,q>, P <9< n, i a variable of 2 . We
will manage to obtain output 1 in gate <i,p,q> if and only if the
word formed by concatenation of the values ( 0 or 1 ) of the input
gates xp...xq is in the language computed by the variable 1 of/3 .
The output of the circuit will be the output of gate <k,l,n>, where
k is the last variable of/3 .

Construct the circuit c as follows:

ta) If i (--- 0 1is an instruction of /3 » then add to ¢ the
instruction <i,p,p> <(=---= xp for each p <_ n.

(b If i <---1 1is an instruction of /3 », then add to ¢ the
instruction <i,p,p> <--- xp for each p < n.



«d)

(e)

If i <--- j VU k is an instruction of /2 , then add to ¢ the

instruction <i,p,q> <--- <j,P,9> V <k,p,q9> for each p, q such
that the language Li has length g-p+l.

If 1 <-=- jN k is an instruction of & , then add to c the
instruction <i,p,q> <--- <j,p,q> A <k,p,q> for each p, q such
that the language Li has length g-p+l.

Finally, if 1 <--- j.k is an instruction of /3, then for each p,
q such that Li has length g-p+l1 and for each t, p <t < q, add
to ¢ the instruction <i,p,q> <(--- \é <j,p:t> A <k,t+l,q>, previ-
ously decomposed into less than g-p elementary instructions.

It is easy to check that the language accepted by the boolean

Circuit ¢ 1is the same as the language computed by the uci-slp /3.

Each variable in /3 vields at most n2 variables in c. The result
follows.

As a corollary of the theorem we stablish the desired result:

ucil

Corollary 5. Pol , = Polc.



V., Concluding remarks.

In the previous sections we have shown how to characterize
several known non-uniform complexity measures in terms of uniform
ones; sparse oracles have been allowed to the machines specifying
the wuniform classes. In this way, the families of sets with
polynomial non-uniform measure have been shown to coincide with the

ones defined by standard uniform complexity classes relativized to
sparse oracles,.

Getting together the previous results we obtain the following
diagram of the complexity classes we dealt with:

Pol Pol

FPol Pol Pol Pol
da

a
]
U P(S) U ANLOG(S) UNLOG(S) UDLOG(S)

where all the unions are taken over all sparse sets S.

Several variants of the presented results can be easily
obtained. For example, it 1is straightforward to prove that if
initial index is measured with bidirectional finite automata, then
the polynomial class is the same as LOGoff with sparse oracles.
This class fulfills the conditions proven sufficient in C[Schs,83]

for being the same as the corresponding "advice" class LOGoff/poly
in the notation of C[KL,801.



Also, a stack may be substituted for the pushdown in the initial
index with pda’'s, and the proof works in this case if the uniform
class is defined by auxiliary stack machines. A stack is a pushdown
with the additional feature that symbols not in the top can be read,
although can not be changed. For a study of the stack automata, see
CHU,69al. For machines with an auxiliary stack, see L[Co,711].

Many lines remain open along this line of research. We would
like to point out one of them, which will be one of our subjects of
research. It is not known whether restricting boolean circuits to
gates of fan-out one restricts or not the polynomial non-uniform
class. We observe that «circuits with fan-out one are somehow
similar to propositional formulae: in order to get twice the same
result you have to copy the whole synthesizing circuit. Evaluation
of fully parenthesized propositional formulae can be done within
log-space LLyn,773. We conjecture that polynomial size boolean
circuits with fan-out one are equivalent to polynomial size
propositional formulae. On the other hand, off-line 1log-space can
be shown easily to correspond, modulo sparse oracles, to polynomial
sizZe branching programs ( see, e.g., CBDFP,831 ). Is it true that
polynomial size propositional formulae describe exactly the
languages which can be recognized by off-line deterministic Turing
machines within log-space and with access to a sparse oracle? If
not, we propose a second uniform class which possibly corresponds to
polynomial formulae: alternating logarithmic time. ( This class
was suggested by M. Sipser. ) Observe that a classical result of
Spira ( see L[Sa,76]1 ) allows to transform a polynomial formula into
a circuit of 1logarithmic depth, hence in a new formula of
logarithmic depth. An alternating machine can evaluate such a
formula in logarithmic time, provided some kind of "random access"
to 1it. A point remains unclear, however: how to encode the
formulae in a sparse oracle? Which kind of "“oracle device" is
appropriate for a logarithmic time machine? We consider that all
those questions are worth to study.

[N
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