In Multi-Agent Systems M ethodologies and Applications: Proceedings of the Second Australian Workshop on
Distributed Artificial Intelligence, C. Zhang and D. Lukose, (eds.), Lecture Notesin Artificial I ntelligence, 1286,
48-62, Springer-Verlag, 1997

Making and Breaking Engagements: An
Operational Analysis of Agent Relationships

Mark d’Inverno! and Michael Luck?

1 School of Computer Science, University of Westminster, London, W1M 8JS, UK.
Email: dinverm@westminster.ac.uk
2 Department of Computer Science, University of Warwick, Coventry, CV4 TAL, UK.
Email: mikeluck@dcs.warwick.ac.uk

Abstract. Fundamental to the operation of multi-agent systems is the
concept of cooperation between individual agents by which the over-
all system exhibits significantly greater functionality than the individual
components. Not only is it important to understand the structure of such
relationships in multi-agent systems, it is also important to understand
the ways in which cooperative relationships come about. This is partic-
ularly true if such an analysis is to be relevant to, and useful for, the
construction of real systems for which the invocation and destruction of
such relationships is critical. This paper extends previous work concerned
with formalising the structure of inter-agent relationships to provide an
operational analysis of the invocation and destruction of engagement and
cooperation within our formal agent framework.

1 Introduction

Fundamental to the operation of multi-agent systems is the concept of coop-
eration between individual agents. If single agent systems can cooperate, they
can exploit the capabilities and functionality of others to achieve their own in-
dividual goals. This moves beyond the advantages of robustness in traditional
distributed systems in the face of individual component failure since components
can be replaced and cooperation configurations realigned. It allows the specific
expertise and competence of different agents to complement each other so that
in addition to general resilience, the overall system exhibits significantly greater
functionality than individual components.

Durfee, for example, defines a multi-agent system as a collection of problem
solvers that “work together” to achieve goals that are beyond the scope of their
individual abilities [2]. This notion of agents helping each other, working together
or cooperating in some way is common. Huberman and Clearwater similarly
characterise multi-agent systems by the interaction of many agents trying to
solve problems in a cooperative fashion [3], and Lesser describes a multi-agent
system as a computational system in which several semi-autonomous agents
interact or work together to perform some tasks or satisfy some goals [4].

Since cooperation underlies the structure of multi-agent systems, it is impor-
tant to be able to model and anlayse it in detail in the context of a well-founded
framework. Moreover, the ways in which cooperative relationships come about

are also important for a complete understanding of the nature of cooperation.
This is especially true if such an analysis is to be relevant to real systems for
which the invocation and destruction of such relationships is critical.

Previous work has focussed on taxonomising the types of interactions that oc-
cur between agents in a multi-agent system, distinguishing in particular between
engagements of non-autonomous agents and cooperation between autonomous
agents [7]. This work was based on our agent hierarchy which defined agency
and autonomy, and specified how autonomy is distinct but is achieved by moti-
vating agency and generating goals [5]. In this paper we aim to extend this work
on cooperation and engagement by describing the operations necessary for their
invocation and destruction, and providing a formal specification in the context
of the existing framework. First, we briefly review the agent framework and the
nature of engagement and cooperation within it. We then address the invoca-
tion and destruction of such structures, enumerating the variety of situations in
which they arise. Finally, we discuss what benefits such an analysis provides.

2 Background

To present a mathematical description of our definitions, we use the specification
language, Z [8]. Space constraints prohibit a detailed explanation of the notation
here, but our use should be clear from the combination of text and formalism.
(A brief introduction to Z can be found in the appendix of [1].) In this section,
we sketch previous work on the agent framework. Details may be found in [5, 7].

An object comprises a set of motivations, a set of goals, a set of actions, and
a set of attributes such that the attributes and actions are non-empty.

—_ Object
attributes : P Atiribute
capableof : P Action
goals : P Goal
motivations : P Motivation

attributes # { } A capableof # {}

An object, described by its features and capabilities, is just an automaton and
cannot engage other entities to perform tasks, nor is it itself used in this way.
However, it serves as a useful abstraction mechanism by which it is regarded
as distinct from the remainder of the environment, and can subsequently be
transformed into an agent, an augmented object, engaged to perform some task
or satisfy some goal. Viewing something as an agent means that we regard it as
satisfying or pursuing some goal. Furthermore, it means that it must be doing
so either for another agent, or for itself, in which case it is autonomous. If it is
for itself, it must have generated the goal through its motivations. Autonomous
agents are thus just agents that can generate their own goals from motivations.

Agent
Object

goals # { }

__AutonomousAgent
Agent

motivations # { }

For ease of exposition, we further refine the agent hierarchy with two new
definitions. A neutral-object is an object that is not an agent, and a server-agent
is an agent that is no? an autonomous agent.

—_ Neutral Object
Object

goals = { } A motivations = {}

__ServerAgent
Agent

motivations = { }

Now, we consider a multi-agent system as a collection of objects, agents
and autonomous as defined below. In this view, a multi-agent system contains
autonomous agents which are all agents, and in turn, all agents are objects. An
agent is either a server-agent or an autonomous agent, and an object is either a
neutral-object or an agent.

— MultiAgentSystem Components
objects : P Object

agents : P Agent
autonomousagents : P AutonomousAgent
neutralobjects : P NeutralObject

serveragents : P ServerAgent

autonomousagents C agents C objects
agents = autonomousagents U serveragents
objects = neutralobjects U agents

3 Engagement and Cooperation

In this section, we briefly review previous work that categorised inter-agent re-
lationships into two distinct classes, engagements and cooperations. We provide
formal descriptions and brief explanations. For a full exposition on the nature
of these relationships, see [7]. Note, however, that there have been several minor
modifications to the earlier formal specification.

3.1 Engagement

A direct engagement occurs when a neutral-object or a server-agent adopts some
goals. In a direct engagement, a client-agent with some goals uses another server
agent to assist them in the achievement of those goals. A server-agent either
exists already as a result of another engagement, or is instantiated from a neutral-
object for the current engagement. No restriction is placed on a client-agent.
We define a direct engagement below to consist of a client agent, client, a
server agent, server, and the goal that server is satisfying for client. An agent
cannot engage itself, and both agents must have the goal of the engagement.

__DirectEngagement

client : Agent
server : ServerAgent
goal : Goal

client # server
goal € (client.goals N server.goals)

The set of all direct engagements in a system is given by direngagements in
the following schema. For any direct engagement in direngagements, there can
be no intermediate direct engagements of the goal, so there is no other agent, ¥,
where client engages y for goal, and y engages server for goal.

__SystemFEngagements
MultiAgentSystem Components
direngagements : P DirectFngagement

V eng : direngagements @ = (3 y : Agent; e, es : direngagements |
e1.goal = ea.goal = eng.goal ® e1.server = eng.server A
ez.client = eng.client A e1.client = e3.server = y)

An engagement chain represents a sequence of direct engagements. Specifi-
cally, an engagement chain comprises a goal, goal, the autonomous client that
generated the goal, autoagent, and a sequence of server-agents, agentchain, where
each agent in the sequence directly engages the next. For any engagement chain,
there must be at least one server-agent, all agents must share goal, and each
agent can only be involved once. seq represents a non-empty sequence.

__FEngagementChain

goal : Goal
autoagent : AutonomousAgent
agentchain : seq1 Agent

goal € autoagent.goals
goal € | J{s : Agent | s € ran agentchain ¢ s.goals}
#(ran agentchain) = #agentchain

The set of all engagement chains in a system is given in the schema below
by engchains. For every engagement chain, ec, there must be a direct engage-
ment between the autonomous agent, ec.autoagent, and the first client of ec,
head ec.agentchain, with respect to the goal of ec, ec.goal. There must also
be a direct engagement between any two agents which follow each other in
ec.agentchain with respect to ec.goal. In general, an agent engages another agent
if there is some engagement chain in which it precedes the server agent.

__SystemFEngagementChains

SystemFEngagements
engchains : P FngagementChain

Y ec : engchains; s1, s2 : Agent o
(3 d : direngagements o d.goal = ec.goal A d.client = ec.autoagent
A d.server = head ec.agentchain) A
{81, $2) in ec.agentchain = (3 d : direngagements o
d.client = s; A d.server = s3 A d.goal = ec.goal)

3.2 Cooperation

Two autonomous agents are said to be cooperating with respect to some goal
if one of the agents has adopted goals of the other. This notion of autonomous
goal acquisition applies both to the origination of goals by an autonomous agent
for its own purposes, and the adoption of goals from others, since in each case
the goal must have a positive motivational effect [6]. For autonomous agents,
the goal of another can only be adopted if it has such an effect, and this is also
exactly why and how goals are originated. Thus goal adoption and origination
are related forms of goal generation. The term cooperation can be used only when
those involved are autonomous and, potentially, capable of resisting. If they are
not autonomous, nor capable of resisting, then one simply engages the other.

A cooperation describes a goal, the autonomous agent that generated the
goal, and those autonomous agents who have adopted that goal from the gener-
ating agent. In addition, all the agents involved have the goal of the cooperation,
an agent cannot cooperate with itself, and the set of cooperating agents must
be non-empty. Cooperation cannot, therefore, occur unwittingly between agents,
but must arise as a result of the motivations of an agent and that agent recog-
nising the goal in another.

__Cooperation
goal : Goal
generatingagent : AutonomousAgent
cooperatingagents : P AutonomousAgent

goal € generatingagent.goals
Y aa : cooperatingagents o goal € aa.goals
generatingagent ¢ cooperatingagents

cooperatingagents # { }

The set of cooperations in a multi-agent system is given by the cooperations
variable in the schema, SystemCooperations. The predicate part of the schema
states that for any cooperation, the union of the cooperating agents and the
generating agent is a subset of the set of all autonomous agents which have that
goal. As a consequence, two agents sharing a goal are not necessarily cooperating.
In addition, the set of all cooperating agents is a subset of all autonomous agents
of the system since not all are necessarily participating in cooperations.

__SystemCooperations
MultiAgentSystem Components
cooperations : P Cooperation

V ¢ : cooperations e (c.cooperatingagents U {c.generatingagent}) C
{a : autonomousagents | c.goal € a.goals ® a}
U{c : cooperations e c.cooperatingagents} C autonomousagents

4 Operational Aspects of Engagement and Cooperation

So far we have provided an analysis of the structure of multi-agent systems based
on inter-agent relationships. In this section, we provide an operational analysis
of how these cooperations and direct engagements are created and destroyed,
and how this affects the configuration of inter-agent relationships.

There are four principal operations to be considered, as follows:

— aserver-agent adopting the goals of an agent giving rise to a new engagement;

— a server-agent being released from some or all of its agency obligations by
an engaging agent, thus destroying a direct engagement;

— an autonomous agent adopting the goal of another, so that either a new
cooperation is formed, or the agent joins an existing cooperation;

— an autonomous agent destroying the goals of an existing cooperation, re-
sulting in either the destruction of the cooperation, or the removal of the
autonomous agent from the cooperation.

To provide an operational account of these relationships we must specify
how they are affected when new cooperations and engagements are invoked
and destroyed. Before considering the operations in detail we first specify some
general functions to create relationships from individual components. Thus,
MakeEng, MakeEngChain and MakeCoop below simply construct the schema
types, Engagment, EngagementChain and Cooperation respectively. The func-
tions, MakeEng and MakeCoop, are partial; MakeFEng is not defined if the two
agents involved in the cooperation are the same, and MakeCoop is not defined
if the single autonomous agent initiating the cooperation is in the set of other
autonomous agents. Note that P, AutonomousAgent, represents non-empty sets

of elements of type AutonomousAgents. The schema also makes use of the mu-
expression. In general, the value of a in the mu-expression, pa : A | p, is the
unique value of type A which satisfies predicate p. 3

MakeEng : (Goal x Agent x ServerAgent)—+» DirectEngagement
MakeEngChain : (Goal x AutonomousAgent x seq1 ServerAgent)
—» EngagementChain
MakeCoop : (Goal x AutonomousAgent x P, AutonomousAgent)
— Cooperation

Y g: Goal; a: Agent; aa : AutonomousAgent; s : ServerAgent;
ch : seq1 ServerAgent; aas : P, AutonomousAgent e

MakeEng(g,a,s) = (pd : DirectEngagement |

d.goal = g A d.client = a A d.server = s) A
MakeEngChain(g, a, ch) = (p ec : EngagementChain |

ec.goal = g A ec.autoagent = a A ec.agentchain = ch) A
MakeCoop(g, aa, aas) = (pu ¢ : Cooperation |

c.goal = g A c.generatingagent = aa A c.cooperatingagents = aas)

Next, we define the generic function, cut, which takes an injective sequence
(where no element appears more than once) and an element, and removes all the
elements of the sequence which appear after this element. If the element does
not exist in the sequence, the sequence is left unaltered.

—[X]
cut : (iseq X x X) — iseq X

Vr:X;s,t:seqX o cut(s,z)=1<%
lastt =2 A(Ju:seq X e s =1 u)

We also define a total function that creates a new object by ascribing a set
of goals to an existing object. It is valid for any object and any set of goals. This
is detailed elsewhere with a complete formalisation of goal generation [6].

ObjectAdoptGoals : (Object x P Goal) — Object

Y gs : P Goal; old, new : Object o
ObjectAdoptGoals(old, gs) = new < new.goals = old.goals U gs
A new.capableof = old.capableof A new.attributes = old.attributes

This allows us to define two further functions, FztendChain and CutChain.
The first takes an engagement chain and an object, and extends the engagement
chain to include the object. The second function cuts an engagement chain after
the occurrence of an object.

% For example, the expression pn:N|(n*n)mod2=0A0 < (n*n) < 10! binds the
variable n to the value 10.

FExtendChain : EngagementChain x Object — FngagementChain
CutChain : FngagementChain x Agent —+ EngagementChain

Y ¢ : EngagementChain; e : Object o

EztendChain(c,e) = (p new : EngagementChain |
new.goal = c.goal A new.autoagent = c.autoagent
A new.agenichain = c.agentchain™

{ObjectAdoptGoals(e,{c.goal})) A

CutChain(c, e) = (p new : EngagementChain |
new.goal = c.goal A new.autoagent = c.autoagent
A new.agentchain = cut(c.agentchain, e)))

Formally, the structure of multi-agent systems is defined below. It states that
a multi-agent system must contain at least one relationship between two agents.

—_ MultiAgentSystemStructure
MultiAgentSystem Components
SystemFEngagements
SystemFEngagementChains
SystemCooperations

cooperations + #direngagements > 1

4.1 Making Engagements

When a new direct engagement is formed between an agent and a server agent,
the associated engagement chain may be altered in several ways. The different
possibilities depend on whether the engaging agent is at the tail, the head, or in
the middle of the chain. Consider an engagement chain where A4 is an autonomous
agent at the head of the chain directly engaging the server-agent, 51, which is
directly engaging server-agent, S2, in turn directly engaging 53, as in Figure 1(a).

— If the last agent in the chain, $3, engages a neutral-object, O, the chain is
extended to include the engagement between $3 and O, as in Figure 1(b).

— If the autonomous agent, A, directly engages O, a new engagement chain is
created solely comprising A and O, as in Figure 1(c).

— If any server-agent, other than that at the tail of the engagement chain,
engages O, then a new engagement chain is formed between them. Thus if
51 engages O, the existing chain is unchanged, but a new chain is formed
from the engagements up to and including S'1 in the original chain, with the
addition of the new engagment of O by 51, as in Figure 1(d).

The aspects of forming a new engagement common to all three scenarios are
described in the next schema. Here, the engaging agent, ageni?, the engaged ob-
ject, €7, the goal of the engagement, goal?, and an optional engagement chain,
chain?, are given as input to the operation, and the structure of the multi-
agent system changes. The predicate part states that the object is a system
object, and the agent is a known agent with the goal, goal?. If no engagement

o o o A
S Shemen R
AN
o o G oo Go
digSbermen » =
= = (2> o
e a—
SIS EREC (s
I new direct
y engagement
@) (b) (© (d)

Fig. 1. Alternative ways to make engagements

chain already exists, so that chain? is not defined, then ageni? must be au-
tonomous. Conversely, if chain? is defined, agent? must be a server-agent, the
goal of chain? must be goal?, and agent? must be part of chain?. (Formal defini-
tions for optional, defined, undefined and the are given in the appendix.) There
is no change to the set of cooperations, but the set of direct engagements is
updated to include the new engagement between the agent and the object.

—_GeneralFngage
agent? : Agent
e? : Object
goal? : Goal
chain? : optional [EngagementChain]
AMultiAgentSystemStructure

e? € objects
agent? € agenls
goal? € agent?.goals
undefined chain? & agent? € autonomousagents
defined chain? =
(agent? € serveragents A\
(the chain?).goal = goal? A
agent? € ran (the chain?).agentchain)
cooperations’ = cooperations
direngagements’ = direngagementsU

{MakeEng(goal?, agent?, (Object AdoptGoals (e?, {goal?})))}

The distinct aspects of the ways in which the set of engagement chains are
affected in each scenario are detailed below. First, the engaging agent is a server-
agent at the end of the chain so that the chain is extended to include this new
direct engagement.

__FEngageFxtendChain
GeneralEngage

defined chain? A e? = last (the chain?).agentchain =
engchains’ = engchains\ chain?U

{EztendChain((the chain?),e?)}

Second, the engaging agent is autonomous, and a new engagement chain is
formed from goal?, agent?, and the sequence consisting of agent? and the newly
instantiated agent.

—_StartNewChain
GeneralEngage

agent? € autonomousagents =
engchains’ = engchainsU
{MakeEngChain(goal?, agent?,{agent?, ObjectAdoptGoals (e?, {goal?})})}

Third, if agent? is not at head or tail of the chain, then the original chain
is unchanged, and a new chain is formed from the direct engagements in the
original chain up to the agent, plus the new direct engagement between agent?
and the newly instantiated object.

— CutandAddChain
GeneralEngage

(defined chain?) A (e? # last (the chain?).agentchain)
A €? # (head (the chain?).agentchain) =
engchains’ = engchainsU

{EztendChain((CutChain((the chain?), agent?)),e?)}

The operation of making an engagement can then be defined using schema
disjunction. Thus, the Engage operation is applied when any of the following
three occur: CutandAddChain, EngageEztendChain or StartNewChain.

Engage = EngageEztendChain V StartNewChain V CutandAddChain

4.2 Breaking Engagements

If an autonomous agent or a server-agent in an engagement chain disengages
another server-agent, either through destroying the goal itself or because the
agent is no longer required to achieve it, all subsequent engagements in the chain

are destroyed. This is because the subsequent agents no longer satisfy a goal that
can be attributed to an autonomous agent. Thus, whenever an engagement is
broken, all subsequent engagements of that engagement chain are also broken.
The schema, Disengage, formally defines the breaking of a direct engagement
between engaging and engaged agents, engaging? and engaged? respectively, and
specifies the propagation of broken direct engagements for the goal, goal?, down
through the associated engagement chain, chain?. All of these components are in-
puts. The predicates ensure that there is a direct engagement between engaging?
and engaged? with respect to goal?, that chain? is an engagement chain, and
that the goal of the chain is equal to the input goal?. The set of cooperations
remains unchanged, but the engagement chain, chain?, is removed from the sys-
tem and replaced with the chain resulting from cutting the original chain at the
engaging agent. Finally, the direct engagements are updated accordingly.

__Disengage
engaging? : Agent
engaged? : ServerAgent
goal? : Goal
chain? : EngagementChain
AMultiAgentSystemStructure

MakeEng(goal?, engaging?, engaged?) € direngagements
chain? € engchains
chain?.goal = goal?
cooperations’ = cooperations
engchains’ = engchains \ {chain?} U { CutChain(chain?, engaging?)}
direngagements’ = direngagements\
{d : DirectEngagement |
({d.client,d.server) in chain?.agentchain)
A d.goal = chain?.goal @ d}U
{d : DirectEngagement |
({d.client,d.server) in (CutChain(chain?, engaging?)).agentchain
A d.goal = chain?.goal) e d}

4.3 Joining a Cooperation

A cooperation occurs when an autonomous agent generates a goal by recog-
nising that goal in another autonomous agent. There are two cases when one
autonomous agent, C, adopts the goal, g, of another, G. If no cooperation ex-
ists between any other autonomous agents and G with respect to g, then a new
cooperation structure is created. Alternatively, if a cooperation already exists
between another agent and G with respect to g, then C joins this cooperation.

Formally, the following schema, GeneralCooperate describes the general sys-
tem change when a cooperating agent, coopagent?, adopts the goal, goal?, of
the generating agent, genagent?, where all are inputs. The predicate part of the
schema states that genageni? has goal?, that coopagent? does not, and that both

agents are autonomous. The sets of direct engagements and engagement chains
remain unchanged.

— GeneralCooperate
goal? : Goal

genagent?, coopagent? : AutonomousAgent
AMultiAgentSystemSitructure

goal? € genagent?.goals

goal? & coopagent?.goals

{genagent?, coopagent?} C autonomousagents
direngagements’ = direngagements
engchains’ = engchains

Then a new cooperation is formed when there is no existing cooperation for
goal? with genageni? as the generating agent. This is described formally below.

— NewCooperation

GeneralCooperate

= (3 ¢ : cooperations o c.goal = goal? A c.generatingagent = genagent?) A
cooperations’ = cooperationsU
{MakeCoop(goal?, genagent?, {coopagent?})}

If such a cooperation does exist, then coopagent? is added to it. Specifi-
cally, it adopts the goal, goal?, and joins the cooperation, as specified in the
JoinCooperation schema.

—JoinCooperation

GeneralCooperate

J ¢ : cooperations e c.goal = goal? A c.generatingagent = genagent? A
c.goal = goal? A c.generatingagent = genagent? A
cooperations’ = cooperations\ {c}U
{MakeCoop(goal?, genagent?, c.cooperatingagentsU
{ObjectAdoptGoals(coopagent?, {goal?})})}

4.4 Breaking or Leaving a Cooperation

There are three cases for autonomous agents destroying the goal of a cooperation
in which they are involved, illustrated in Figure 2. First, the generating agent,
G, destroys the goal of a cooperation with the result that the cooperation is itself
destroyed. This does not imply that C'l and C2 have destroyed the goal. Second,
the cooperation is also destroyed when the only cooperating agent destroys the
cooperation goal. Finally, when there are many cooperating agents, one of which
destroys the cooperation goal, the cooperation is not destroyed but modified so
that only one agent leaves the cooperation.

7~ ion 7~
coop%rr%lt(l%jn 27N \(t:)(rJ%lp()ee'rjati on 4868%@% c():r? operation > \E)cr)glf)%rr‘ati on
(@ (b) (©

Fig. 2. Breaking a cooperation

In all three cases, however, the state is changed and the set of engagements is
unaltered as defined by CommonBreakCooperation. A goal, goal?, a cooperation,
coop?, and, optionally, two autonomous agents, genagent?, and coopagent? are
inputs. The preconditions state that either genagent? or coopagent? is input.
In addition, the schema checks that genageni? is the generating agent and that

coopagent is a cooperating agent of coop?. The sets of direct engagements and
engagement chains are unchanged.

__CommonBreakCooperation
goal? : Goal

coop? : Cooperation

genagent?, coopagent? : optional [AutonomousAgent]
AMultiAgentSystemStructure

#(genagent? U coopagent?) = 1
genagent? C {coop?.generatingagent}
coopagent? C coop?.cooperatingagents
direngagements’' = direngagements
engchains’' = engchains

Each of the three different scenarios can now be specified formally as re-
finements to this general operation schema. First, the generating agent of the
cooperation destroys the goal of the cooperation. The cooperation, coop?, is
destroyed and removed from cooperations.

—_GeneratingAgentDestroys Cooperation
CommonBreakCooperation

defined genagent? =
cooperations’ = cooperations\ {coop?}

Second, the only cooperating agent destroys the goal of the cooperation. In
this case, the cooperation is similarly destroyed and removed from cooperations.

— CooperatingAgentDestroys Cooperation
CommonBreakCooperation

(defined coopagent? A coopagent? = coop?.cooperatingagents)
= cooperations’ = cooperations \ {coop?}

Finally, a cooperating agent which is not the only cooperating agent destroys
the goal of the cooperation. It is removed from the cooperation and the remaining
cooperation is added to cooperations.

__CooperatingAgentlLeavesCooperation
CommonBreakCooperation

(defined coopagent? A coopagent? C coop?.cooperatingagents)
= cooperations’ = cooperations \ {coop?}U
{MakeCoop(goal?, coop?.generatingagent,
(coop?.cooperatingagents\ coopagent?))}

Schema disjunction is then used to define BreakCooperation.

BreakCooperation = GeneratingAgentDestroys Cooperation V
CooperatingAgentDestroysCooperation V CooperatingAgentlLeavesCooperation

5 Discussion

Identifying the structures and relationships between agents in multi-agent sys-
tems provides a way of understanding the nature of the system, its purpose and
functionality. This is typical of existing analyses. However, if we are to build
systems based on a recognition of these relationships, so that prior relationships
are not destroyed when new ones are created, we must extend such analyses into
operational areas. This paper has provided just such an analysis, explicating the
different kinds of structures that can arise, and showing how different configu-
rations of agents and relationships can evolve by invoking and and destroying
them. As part of the analysis, we have had to consider a range of scenarios and
the effects of changing relationships upon them.

This is particularly important for system developers aiming to build pro-
grams that are capable of exploiting a dynamic multi-agent environment. An
operational analysis is vital in providing a link from the structural account to
methods for accessing and manipulating these structures. If such operational
analyses are avoided, then the merit of research that aims to lay a foundation
for the practical aspects of multi-agent systems is limited. Indeed, most existing
research has concentrated on addressing either theoretical or practical problems,
and has not managed to cross the boundary between the two. Our work strives
to place a foot firmly in both camps. We have constructed a formal specification
of the structures necessary for an understanding of multi-agent systems and the
relationships therein, and we have also shown how it is possible to set about us-
ing this understanding in the development of practical systems. Certainly, more

work is required for a complete move from theory to practice, but the current
work takes us a large part of the way down that road.

References

1. M. d’Inverno and M. Luck. A formal view of social dependence networks. In
Proceedings of the First Australian DAI Workshop, Lecture Notes in Artificial In-
telligence, 1087, pages 115-129. Springer Verlag, 1996.

2. E. H. Durfee and T. Montgomery. MICE: A flexible testbed for intelligent coordina-
tion experiments. In Proceedings of the 1989 International Workshop on Distributed
Artificial Intelligence (IWDAI-89), 1989.

3. B. A. Huberman and S. H. Clearwater. A multiagent system for controlling building
environments. In Proceedings of the First International Conference on Multi- Agent
Systems (ICMAS-95), pages 171-176, San Francisco, CA, June 1995.

4. V. Lesser. Preface. In Proceedings of the First International Conference on Multi-
Agent Systems, page xvii, 1995.

5. M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In
Proceedings of the First International Conference on Multi- Agent Systems, pages
254-260. AAAT Press / MIT Press, 1995.

6. M. Luck and M. d’Inverno. Goal generation and adoption in hierarchical agent
models. In A7195: Proceedings of the Fighth Australian Joint Conference on Artificial
Intelligence. World Scientific, 1995.

7. M. Luck and M. d’Inverno. Engagement and cooperation in motivated agent mod-
elling. In Proceedings of the First Australian DAI Workshop, Lecture Notes in
Artificial Intelligence, 1087, pages 70—-84. Springer Verlag, 1996.

8. J. M. Spivey. The 7 Notation. Prentice Hall, Hemel Hempstead, 2nd edition, 1992.

Appendix: Z Extensions

We have found it useful in this specification to be able to assert that an element
is optional. The following definitions provide for a new type, optional T, for any
existing type, T, along with the predicates defined and undefined which test
whether an element of optional T is defined or not. The function, the, extracts
the element from a defined member of optional T'.

optional [X] == {zs : P X | #a2s < 1}
:[j\f]

defined _, undefined _ : P(optional [X])
the: optional [X] + X

V zs :optional [X] e defined zs & #1s = 1 A
undefined zs < # 25 = 0
V zs :optional [X] | defined zs
thezs = (pz: X |z € zs)

This article was processed using the INTRX macro package with LLNCS style

