
NASA-CR-201396

Research Institute for Advanced Computer Science
NASA Ames Research Center

Parallel Implementation of
an Adaptive Scheme for

3D Unstructured Grids on the SP2

Leonid Oliker

Rupak Biswas
Roger C. Strawn

RIACS Technical Report 96.11 May 1996

Parallel Implementation of
an Adaptive Scheme for

3D Unstructured Grids on the SP2

Leonid Oliker

Rupak Biswas

Roger C. Strawn

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA via Contract NAS 2-13721 between NASA and the Universities
Space Research Association (USRA). Work was performed at the Research Institute for Advanced Computer

Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.

Parallel Implementation of an Adaptive Scheme
for 3D Unstructured Grids on the SP2

Leonid Oliker t, Rupak Biswas 1, and Roger C. Strawn 2

1 RIACS, NASA Ames Research Center, Moffett Field, CA 94035, USA

2 US Army AFDD, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract. Dynamic mesh adaption on unstructured grids is a powerful

tool for computing unsteady flows that require local grid modifications

to efficiently resolve solution features. For this work, we consider an

edge-based adaption scheme that has shown good single-processor per-

formance on the C90. We report on our experience parallelizing this code

for the SP2. Results show a 47.0X speedup on 64 processors when 10%

of the mesh is randomly refined. Performance deteriorates to 7.7X when

the same number of edges are refined in a highly-localized region. This

is because almost all the mesh adaption is confined to a single proces-

sor. However, this problem can be remedied by repartitioning the mesh

immediately after targeting edges for refinement but before the actual

adaption takes place. With this change, the speedup improves dramati-

cally to 43.6X.

1 Introduction

Unstructured grids for solving computational problems have two major advan-

tages over structured grids. First, unstructured meshes enable efficient grid gen-

eration around highly complex geometries. Second, appropriate unstructured-

grid data structures facilitate the rapid insertion and deletion of points to allow

the mesh to locally adapt to the solution.

Two solution-adaptive strategies are commonly used with unstructured-grid

methods. Regeneration schemes generate a new grid with a higher or lower con-

centration of points in different regions depending on an error indicator. A major

disadvantage of such schemes is that they are computationally expensive. This

is a serious drawback for unsteady problems where the mesh must be frequently

adapted. However, resulting grids are usually well-formed with smooth transi-

tions between regions of coarse and fine mesh spacing.

Local mesh adaption, on the other hand, involves adding points to the exist-

ing grid in regions where the error indicator is high, and removing points from

regions where tile indicator is low. The advantage of such strategies is that rela-

tively few mesh points need to be added or deleted at each refinement/coarsening

step for unsteady problems. However, complicated logic and data structures are

required to keep track of the points that are added and removed.

For problems that evolve with time, local mesh adaption procedures have

proved to be robust, reliable, and efficient. By redistributing tile available mesh

points to capture flowfield phenomena of interest, such procedures make stan-

dard computational methods more cost effective. Highly localized regions of mesh

refinement are required in order to accurately capture shock waves, contact dis-

continuities, vortices, and shear layers. This provides scientists the opportunity

to obtain solutions oll adapted meshes that are comparable to those obtained
on globally-refined grids but at a much lower cost.

Advances in adaptive software and methodology notwithstanding, parallel

computational strategies will be an essential ingredient in solving complex real-

life problems, tlowever, parallel computers are easily programmed with regular

data structures; so the development of efficient parallel adaptive algorithms for
unstructured grids poses a serious challenge.

Figure 1 depicts our framework for parallel adaptive flow computation. The

mesh is first partitioned and mapped among the available processors. The ini-

tialization phase distributes the global data among the processors and generates

a database for all shared objects. The flow solver then runs for several iterations,
updating solution variables that are typically stored at the vertices of the mesh.

If desired, local mesh adaption is then performed, generating a new computa-
tional mesh. A quick evaluation step determines if the new mesh is sufficiently

unbalanced to warrant a repartitioning. If the current partitioning indicates that
it is adequately load balanced, control is passed back to the flow solver. Oth-

erwise, a mesh repartitioning procedure is invoked to divide the new grid into

subgrids. If tile cost of remapping the data is less than the computational gain
that would be achieved with balanced partitions, all necessary data is appropri-

ately redistributed. Otherwise, the new partitioning is discarded and the flow

calculation continues on the old partitions. The finalization step combines the

local grids on each processor into a single global mesh. This is usually required
for some post-processing tasks, such as visualization, or to save a snapshot of

the grid on secondary storage for future restart runs.

[Partitioning]
1

[Mapping I
l

I lnitializati°n I

Fiow solution [

I I Finalization [

Execution _-

Fig. 1. Overview of our framework for parallel adaptive flow computation

Notice from the framework in Fig. 1 that the computational load is balanced
and the runtime communication reduced only for the flow solver but not for the

meshadaptor.Thisis acceptablesincetheflowsolveris usuallyseveraltimes
moreexpensive.However,parallelperformanceforthemeshadaptionprocedure
canbesignificantlyimprovedif themeshis repartitionedandremappedin a
load-balancedfashionafteredgesaretargetedforrefinementandcoarseningbut
beforeperformingtheactualadaption.

It isobviousfromFig.1 thata quickmeshadaptionprocedureisa critical
partof theframework.Thispaperpresentsanefficientparallelimplementation
ofadynamicmeshadaptioncodewhichhasshowngoodsequentialperformance.
Theparallelversionconsistsofanadditional3,000linesofC++ withMessage-
PassingInterface(MPI),allowingportabilityto anysystemsupportingthese
languages.Thiscodeisa wrapperaroundtheoriginalmeshadaptionprogram
writtenin C,andrequiresalmostnochangesto theserialcode.Onlyafewlines
wereaddedto link it with theparallelconstructs.Anobject-orientedapproach
allowedthis to beperformedinacleanandefficientmanner.

2 Mesh Adaption Procedure

We give a brief description of the tetrahedral mesh adaption scheme [1] that
is used in this work to better explain the modifications that were made for

the distributed-memory implementation. The code, called 3D_TAG, has its data

structures based on edges that connect the vertices of a tetrahedral mesh. This

means that the elements and boundary faces are defined by their edges rather

than by their vertices. These edge-based data structures make the mesh adaption

procedure capable of performing anisotropic refinement and coarsening.
At each mesh adaption step, individual edges are marked for coarsening,

refinement, or no change. Only three subdivision types are allowed for each

tetrahedral element and these are shown in Fig. 2. The 1:8 isotropic subdivision

is implemented by adding a new vertex at the mid-point of each of the six edges.
The 1:4 and 1:2 subdivisions can result either because the edges of a parent

tetrahedron are targeted anisotropically or because they are required to form
a valid connectivity for the new mesh. When an edge is bisected, the solution

quantities are linearly interpolated at the mid-point from its two end-points.
Mesh refinement is performed by first setting a bit flag to one for each edge

that is targeted for subdivision. The edge markings for each element are then

combined to form a 6-bit pattern. Elements are continuously upgraded to valid

patterns corresponding to the three allowed subdivision types until none of the

1:8 1:4 1:2

Fig. 2. Three types of subdivision are permitted for a tetrahedral element

patternsshow any change. Once this edge-marking is completed, each element
is independently subdivided based on its binary pattern.

Mesh coarsening also uses the edge-marking patterns. If a child element has

any edge marked for coarsening, this element and its siblings are removed and

their parent is reinstated. Parent edges and elements are retained at each refine-
ment step so they do not have to be reconstructed. Reinstated parent elements

have their edge-marking patterns adjusted to reflect that some edges have been

coarsened. The refinement procedure is then invoked to generate a valid mesh.

Details of the data structures are given in [1]; however, a brief description
of the salient features is necessary to understand the distributed-memory im-

plementation of the mesh adaption code. For each vertex, a pointer to the first

entry in the edge sublist is stored in edgen. The edge sublist for a vertex contains
pointers to all the edges that are incident upon it. Such sublists eliminate ex-

tensive searches and are crucial to the efficiency of the overall adaption scheme.
For each edge, we store its two end-points in vertex [2], the two boundary faces

it defines in bfac [2], and a pointer to the first entry in the element sublist in

e:l.ems. The element sublist for an edge contains pointers to all the elements that

share it. The tetrahedral elements have their six edges stored in tedge [6], while
for each boundary face, we store the three edges in bedge [3].

3 Distributed-Memory Implementation

The parallel implementation of the 3D_TAG mesh adaption code consists of three

phases: initialization, execution, and finalization. The initialization step consists

of scattering the global data across the processors, defining a local numbering
scheme for each object, and creating the mapping for objects that are shared

by multiple processors. The execution step runs a copy of 3D_TAG on each

processor that refines or coarsens its local region, while maintaining a globally-

consistent grid along partition boundaries. Parallel performance is extremely

critical during this phase since it will be executed several times during a flow

computation. Finally, a gather operation is performed in the finalization step

to combine the local grids into one global mesh. Locally-numbered objects and
corresponding pointers are reordered to represent one single consistent mesh.

In order to perform parallel mesh adaption, the initial grid must first be par-
titioned among the available processors. A good partitioner should divide the

grid into equal pieces for optimal load balancing, while minimizing the number

of edges along partition boundaries for low interprocessor communication. It is

also important that within our framework, the partitioning phase be performed

rapidly. There are several excellent heuristic algorithms for solving the NP-hard
graph partitioning problem [6]. Since mesh partitioning is beyond the scope of

this paper, we will assume that a reasonable partition for our test meshes is

available, and address this issue in future work. For the record, we used the

multilevel spectral Lanczos partitioning algorithm with local Kernighan-Lin re-
finement from the Chaco software package [2].

3.1 Initialization

The initialization phase takes as input the global initial grid and the correspond-

ing partitioning that maps each tetrahedral element to exactly one partition.
The element data and partition information are then broadcast to all processors

which, in parallel, assign a local, zero-based number to each element. Once the

elements have been processed, local edge information carl be computed.

In three dimensions, an individual edge may belong to an arbitrary number of

elements. Since each element is assigned to only one partition, it is theoretically

possible for an edge to be shared by all the processors. For each partition, a local

zero-based number is assigned to every edge that belongs to at least one element.

Each processor then redefines its elements in tedge [6] in terms of these local

edge numbers. Edges that are shared by more than one processor are identified

by searching for elements that lie on partition boundaries. A bit flag is set to

distinguish between shared and internal edges. A list of shared processors (SPL)

is also generated for each shared edge. Finally, the element sublist in elems for

each edge is updated to contain only the local elements.
The vertices are initialized using the vertex [2] data structure for each edge.

Every local vertex is assigned a zero-based number on each partition. Next the

local edge sublist for each vertex is created from the appropriate subset of the

global edges array. Like shared edges, each shared vertex must be assigned its
SPL. A naive approach would be to thread through the data structures to the

elements and their partitions to determine shared vertices. A faster approach

is based on the following two properties of a shared vertex: it must be an end-

point for at least one shared edge, and its SPL is the union of its shared edges'
SPLs. However, some communication is required when using this method. An

example is shown in Fig. 3 where the SPL is being formed in P0 for the center
vertex that is shared by three other processors. Without communication, P0

would incorrectly conclude that the vertex is shared only with P1 and P3. For

each vertex containing a shared edge in its edges sublist, that edge's SPL is
communicated to the processors in the SPLs of all other shared edges until

the union of all lhe SPLs is formed. For the cases in this paper, this process

required no more than three iterations, and all shared vertices were processed as
a function of the number of shared edges plus a small communication overhead.

Before communication
P0 shares center vertex with P 1, P3

e ® e

After communication
P0 shares center vertex with P1, P2, P3

Fig. 3. Example showing the communication need to form the SPL for a shared vertex

The final step in the initialization phase is the local renumbering of the
external boundary faces. Since a boundary face belongs to only one element, it

is never shared among processors. Each boundary face is defined by its three

edges in bedge [3], while each edge maintains a pair of pointers in bfac [2] to

the boundary faces it defines. Since the global mesh is closed, an edge on the
external boundary is shared by exactly two boundary faces. However, when the

mesh is partitioned, this is no longer true. An affected edge creates an empty

ghost boundary face in each of the two processors for the execution phase which

is later eliminated during the finalization stage.

A new data structure has been added to the serial code to represent all this

shared information. Each shared edge and vertex contains a two-way mapping
between its local and its global numbers, and a SPL of processors where its

shared copies reside. The maximum additional storage depends on the number
of processors used and the fraction of shared objects. For the cases in this paper,

this was less than 10% of the memory requirements of the serial version.

3.2 Execution

The first step in the actual mesh adaption phase is to target edges for refinement

or coarsening. This is usually based on an error indicator for each edge that is
computed from the flow solution. This strategy results in a symmetrical mark-

ing of all shared edges across partitions since shared edges have the same flow

and geometry information regardless of their processor number. However, ele-

ments have to be continuously upgraded to one of the three allowed subdivision

patterns shown in Fig. 2. This causes some propagation of edges being targeted
that could mark local copies of shared edges inconsistently. This is because the

local geometry and marking patterns affect the nature of the propagation. Com-

munication is therefore required after each iteration of the propagation process.

Every processor sends a list of all the newly-marked local copies of shared edges

to all the other processors in their SPLs. This process may continue for several

iterations, and edge markings could propagate back and forth across partitions.

Figure 4 shows a two-dimensional example of two iterations of the propaga-
tion process across a partition boundary. The process is similar in three dimen-

sions. Processor P0 marks its local copy of shared edge GEl and communicates
that to P1. P1 then marks its own copy of GEl, which causes some internal

propagation because element marking patterns must be upgraded to those that

are valid. Note that P1 marks its third internal edge and its local copy of shared

edge GE2 during this phase. Information about the shared edge is then commu-

nicated to P0, and the propagation phase terminates. The four original triangles

can now be correctly subdivided into a total of 12 smaller triangles.
Once all edge markings are complete, each processor executes the mesh adap-

tion code without the need for further communication, since all edges are consis-

tently marked. The only task remaining is to update the shared edge and vertex

information as the mesh is adapted. This is handled as a post-processing phase.

New edges and vertices that are created on partition boundaries during re-

finement are assigned shared processor information. If a shared edge is bisected,

oE2/ I @ oE2
• Shared mark
o Internal mark

oE, ii j oE,

--- Shared edge
-- lntemal edge
..... New edge

Fig. 4. Two_dimensional example showing communication during propagation of edge

its two children and the center vertex inherit its SPL. tlowever, if a new edge is

created that lies across an element face, communication is sometimes required

to determine whether it is shared or internal. If it is shared, the SPL must be

formed. If the intersection of the SPLs of the two end-points of the new edge is

null, the edge is internal. Otherwise, communication is required with the shared

processors to determine whether they have a local copy of the edge. This com-
munication is necessary because no information is stored about the faces of the

tetrahedral elements. An alternate solution would be to incorporate faces as an

additional object into the data structures, and maintaining it through the adap-

tion. tlowever, this does not compare favorably in terms of memory or CPU time

to a single communication at the end of the refinement procedure.

Figure 5 depicts the top view of a tetrahedron in processor P0 that shares

two faces with P1. In P0, the intersection of the shared processor lists for the

two end-points of each of the three new edges LE1, LE2, and LE3 yields P1.

However, when P0 communicates this information to P1, P1 will only have local

copies corresponding to LE1 and LE2. Thus, P0 will classify LE1 and LE2 as
shared edges but LE3 as an internal edge.

_ Sharedface with P1

Internal face of P0
-- Sharededge with PI

Internal edge of P0

LE3

Fig. 5. Example showing how a new edge across a face is classified as shared or internal

The coarsening phase purges the data structures of all edges that are re-

moved, as well as their associated vertices, elements, and boundary faces. No

new shared processor information is generated since no mesh objects are created

duringthisstep.tlowever,objects are renumbered as a result of compaction and

all internal and shared data are updated accordingly. The refinement routine is

then invoked to generate a valid mesh from the vertices left after the coarsening.

3.3 Finalization

Under certain conditions, it is necessary to create a single global mesh after

one or more adaption steps. Some post processing tasks, such as visualization,

need to processes the whole grid simultaneously. Storing a snapshot of a grid

for future restarts could also require a global view. Our finalization phase ac-

complishes this goal by connecting the subgrids into one global data structure.
Individual processors are responsible for correctly arranging the data so that a

host processor only collects and concatenates without further processing.

Each local object is first assigned a unique global number. Because elements

are not shared, each processor can assign the final global element number by per-

forming a scan-reduce add on the total number of elements. The global bound-

ary face numbering is also done similarly since they too are not shared among
processors. Assigning global numbers to edges and vertices is somewhat more

complicated since they may be shared by several processors. Each shared edge
(or vertex) is assigned an owner from its processor list which is then respon-

sible for generating the global number. Owners are randomly selected to keep

the computation and communication loads balanced. Once all processors com-

plete numbering their edges (or vertices), a communication phase propagates the

global values from owners to other processors that have local copies.
After global numbers have been assigned to every object, all data struc-

tures are updated to contain consistent global information. Since elements and

boundary faces are unique in each processor, no duplicates exist. All unowned

edge copies are removed from the data structures, which are then compacted.
However, the element sublists in elems cannot be discarded for the unowned

edges. Some communication is required to adjust the pointers in the local sub-

lists so that global sublists can be formed without any serial computation. The

pair of pointers in brae1"2] that were split during the initialization phase for
shared edges are glued back by communicating the boundary face information

to the owner. Vertex data structures are updated much like edges except for the

manner in which their edge sublists in edges are handled. Since shared vertices

may contain local copies of the same global edge in their sublists on different

processors, the unowned edge copies are first deleted. Pointers are next adjusted

as in the elems case with some communication among processors. A final gather

operation by the host processor generates the global mesh.

4 Results

The parallel 3D_TAG procedure has been implemented on the SP2 distributed-

memory multiprocessor located at NASA Ames Research Center. The code is

written in C and C++, with the parallel activities in MPI for portability.

Thecomputationalmeshistheoneusedtosimulatetheacousticsexperiment
of Purcell [3] where a 1/7th scale model of a UII-1tl helicopter rotor blade was
tested over a range of subsonic and transonic hover-tip Mach numbers. Numerical

results and a detailed report of the simulation are given in [5]. This paper reports

only on the performance of the parallel version of the mesh adaption code.

Timings for the parallel code are presented for one refinement and one coars-

ening step using various marking and load-balancing strategies. Two marking

strategies are used for the refinement step. The first set of experiments consists
of randomly marking 5% and 10% of the edges, while the second set consists of

marking the same numbers of edges in a single compact region of the mesh. In

general, we expect real marking patterns to lie somewhere in between these two

significantly different scenarios. Since the coarsening procedure and performance
are similar to the refinement method, only one case is presented where 35% of

the edges of the largest mesh obtained after refinement are randomly coarsened.

Table 1 presents the progression of grid sizes through the two adaption steps

for each marking strategy. Notice that the meshes obtained after refinement for
the randomly-marked cases are much larger than those for the locally-marked

cases even though exactly the same number of edges are marked. This is due to

the difference in the propagation of edge markings. The random cases cause sig-

nificantly more propagation since refinement is scattered throughout the mesh.
The local cases, on the other hand, cause propagation only at the boundary be-

tween the refined and the unrefined regions since all edges internal to the refined

region are already marked.

Table 1. Progression of grid sizes through refinement and coarsening

Vertices Elements Edges Bdy Faces

Refinement Initial mesh 13,967 60,968 74,343 16,818
5% random marking 24,293 114,415 143,011 8,550
5% local marking 17,920 82,259 104,178 7,999
10_ random marking 54,389 284,086 345,425 13,606
10_ local marking 21,851 103,582 129,976 8,962

Coarsening Initial mesh 54,389 284,086 345,425 13,606
350"/orandom marking 25,689 122,850 152,853 8,630

4.1 Refinement Phase

Table 2 presents the timings and parallel speedup for the refinement step with
tile random marking of edges. The performance is excellent with ef_ciencies of

almost 90% on 32 processors and 60% to 73% on 64 processors. Notice that the
communication time is less than 10% of the total time for up to 16 processors.

On 32 and 64 processors, the communication time although still quite small,

becomes comparable to the computation time and begins to adversely affect

tile parallel speedup. This indicates that the saturation point has been reached

for this example in terms of the number of processors that should be used. For

example, on 64 processors, each partition contains less than 1,000 elements with

31% of the edges on partition boundaries. Since additional work and storage are

necessary for shared edges, the speedup deteriorates ms the percentage of such

edges increases. Parallel mesh refinement when 10% of the edges are marked

shows better performance than the 5%-marked case due to a bigger computation-

to-communication ratio. In general, performance will improve as the problem

size increases. This is because the computational time will increase while the

percentage of elements along processor boundaries will decrease.

Table 2. Performance for the refinement step when edges are marked randomly

5% Marked 10% Marked

% Shared Comp Comm Total Comp Comm Total

Procs Edges Time Time Speedup Time Time Speedup

1 0.0 12.941 0.000 1.00 39.237 0.000 1.00

2 3.2 6.652 0.090 1.92 19.698 0.045 1.99

4 12.1 3.659 0.094 3.45 10.091 0.105 3.85

8 23.2 1.927 0.107 6.36 5.245 0.281 7.10

16 23.9 0.952 0.100 12.30 2.638 0.233 13.67

32 29.2 0.323 0.129 28.63 1.098 0.287 28.33

64 31.0 0.246 0.091 38.40 0.646 0.189 46.99

Table 3 shows the timings and speedup when edges are marked in a sin-

gle compact region of the global mesh. The performance is extremely poor, with

speedups of only 5.1X and 7.7X on 64 processors. This is because we are simulat-

ing an almost worst case load balance behavior. This strategy primarily targets

elements on one processor only. Most of the other processors remain idle, since

none of their elements need to be refined. Noticeable speedup is achieved only

when using at least 16 processors. This is because the refinement region remains

confined to only one partition until enough processors are used. Once the re-

finement region straddles multiple partitions, parallelization becomes effective.

IIowever, the computation time does decrease somewhat for up to 8 processors,

even though all the work is performed by a single processor. This is due to the

reduction in the local mesh size for each individual partition. As a result, even

though one partition is performing all the work, it has a smaller number of
elements to process.

Due to the poor parallel performance when edges are marked in a single

compact region of the global mesh, it is worthwhile to load balance the mesh

adaption code based on the distribution of targeted edges before these edges are

actually refined. The mesh is repartitioned if the markings are skewed beyond

a specified tolerance. This significantly improves the performance of the mesh

refinement phase. As a bonus, a more balanced mesh is generated after the

refinement since the final grid is generally determined by the marking patterns.

Using this methodology, the localized-marking experiment was run again

after performing a repartitioning step based on edge markings. A simple heuris-

Table3. Performance for the refinement step when edges are marked in a single

compact region of the global mesh

5% Marked 10% Marked

% Shared Comp Comm Total Comp Comm Total

Procs Edges Time Time Speedup Time Time Speedup

1 0.0 5.581 0.000 1.00 8.806 0.000 1.00

2 3.2 4.351 0.000 1.28 7.517 0.000 1.17

4 12.1 3.828 0.006 1.46 7.036 0.008 1.25

8 23.2 3.362 0.008 1.66 6.462 0.008 1.36

16 23.9 3.230 0.012 1.72 4.232 0.012 2.07

32 29.2 0.982 0.710 3.30 1.188 0.955 4.11

64 31.0 1.083 0.021 5.06 1.104 0.044 7.67

tic of assigning an additional weight to elements containing edges that have

been marked for refinement was given to the partitioner. Table 4 presents the

performance results of this repartitioned local refinement phase. The commu-

nication times are not reported but are considered when calculating the total

speedup. Note that the parallel speedups are now comparable to those for the

random-marking case. This demonstrates that mesh adaption can deliver excel-

lent speedups if the marked edges are equidistributed among the processors.

Table 4. Performance for the repartitioned refinement step when edges are marked in

a single compact region of the global mesh

Procs

5% Marked 10% Marked

Elements in Comp Total # Elements in Comp Total

Min Set Max Set Time Speedup Min Set Max Set Time Speedup

1 60,968 60,968 5.581 1.00 60,968 60,968 8.806 1.00

2 9,069 51,899 2.486 1.72 6,867 54,101 3.977 1.80

4 5,575 28,983 1.446 3.44 3,074 42,701 2.376 3.47

8 2,120 14,498 0.824 6.62 1,272 21,358 1.244 6.89

16 389 7,249 0.287 12.19 595 10,670 0.622 12.91

32 190 3,629 0.251 21.22 281 5,340 0.352 24.26

64 95 1,812 0.132 36.24 141 2,670 0.147 43.59

4.2 Coarsening Phase

The coarsening phase consists of three major steps: marking edges to coarsen,

cleaning up all the data structures by removing those edges and their associated

vertices and tetrahedral elements, and finally invoking the refinement routine to

generate a valid mesh from the vertices left after the coarsening.

Timings and parallel speedup when 35% of the edges of the largest mesh

obtained by refinement are randomly coarsened are presented in Table 5. Note

thatthecomputationtimedoesnot includethefollow-upmeshrefinementtime.
It is, instead,onlythetimerequiredto markedgesto coarsen.Thiswasdone
so asto demonstratetheparallelperformanceof themodulesthat areonly
requiredduringthecoarseningphase.Noticethat thecommunicationtimeis
negligiblewhilethecleanuptimeisdominant.Sincethecleanuptimedepends
on thefractionof sharedobjects,performancedeterioratesastheproblemsize
isover-saturatedbyprocessors.

Table5. Performancefor the coarsening step when edges are marked randomly

Comp Cleanup Comm Total

Procs Time Time Time Speedup

1 3.184 6.949 0.000 1.00

2 1.648 3.564 0.005 1.94
4 0.850 1.822 0.006 3.78

8 0.439 0.962 0.011 7.18

16 0.270 0.499 0.024 12.78

32 0.144 0.271 0.020 23.29

64 0.085 0.132 0.038 39.74

4.3 Initialization and Finalization Phases

Recall from Fig. 1 that unlike the execution phase where the actual adaption

is performed, it is not critical for the initialization and finalization procedures

to be very efficient since they are used rarely (or only once) during a flow com-

putation. Table 6 presents the results for these two phases. The initialization

step is performed on the starting mesh consisting of 60,968 elements, while the

finalization phase is for the adapted mesh consisting of 114,415 elements. It is

apparent from the timings that the performance bottleneck for the two steps

are the global broadcast (one-to-all) and gather (all-to-one) communication pat-

terns, respectively. These times generally increase with the number of processors

Table 6. Performance for the initialization and finalization steps when 5% of edges

are marked randomly

Initialization Finalization

Comp Bcast Total Comp Gather Total

Procs Time Time Speedup Time Time Speedup

1 4.500 0.328 1.00 4.035 0.682 1.00

2 2.479 0.645 1.55 2.312 0.665 1.58

4 1.523 1.175 1.79 1.494 0.676 2.17

8 0.962 0.918 2.57 1.019 0.714 2.72

16 0.568 1.008 3.06 0.647 0.785 3.29

32 0.409 1.214 2.97 0.393 0.890 3.68

64 0.242 1.503 2.77 0.286 0.977 3.73

soa speedup cannot be expected, llowever, tire computational sections of these

procedures do show favorable speedups of 18.6X and 14.1X on 64 processors. In

any case, tile overall run times of these routines are acceptable for our purposes.

Note that the broadcast and gather times are non-zero even for a single proces-

sor because the current implementation uses a host to perform the data I/O.

The number of processors shown ira Table 6 indicates those that are actually

performing the mesh adaption.

5 Summary

Fast and efficient dynamic mesh adaption is an important feature of unstructured

grids that make them especially attractive for unsteady flows. For such flows, the

coarsening/refinement step must be performed frequently, so its efficiency must

be comparable to that of the flow solver. For this work, the adaption scheme of

Biswas and Strawn [1] is parallelized for distributed-memory architectures.

The code consists of approximately 3,000 lines of C++ with MPI which

wrap around the original version written in C. The serial code was left almost

completely unchanged except for the addition of 10 lines which interface to the

parallel wrapper. This allowed us to design the parallel version using the serial

code as a building block. The object-oriented approach allowed us to build a clean

interface between the two layers of the program while maintaining efficiency.

Only a slight increase in space was necessary to keep track of the global mappings

and shared processor lists for objects on partition boundaries.

Parallel performance is extremely promising showing a 47-fold speedup on

64 processors compared to sequential execution. In the worst case when a single

compact region of the mesh is refined, speedup increased from 8- to 44-fold by

repartitioning the mesh using the edge-marking information. We are currently

in the process of combining this parallel mesh adaption code with a dynamic

partitioner and load balancer [4].

References

1. Biswas, R., Strawn, R.: A new procedure for dynamic adaption of three-dimensional

unstructured grids. Appl. Numer. Math. 13 (1994) 437-452

2. Hendrickson, B., Leland, R.: The Chaco user's guide -- Version 2.0. Sandia National

Laboratories Technical Report SAND94-2692 (1994)

3. Purcell, T.: CFD and transonic helicopter sound. 14th European Rotorcraft Forum

(1988) Paper 2

4. Sohn, A., Biswas, R., Simon, H.: A dynamic load balancing framework for unstruc-

tured adaptive computations on distributed-memory multiprocessors. 8th ACM

Symposium on Parallel Algorithms and Architectures (1996) to appear

5. Strawn, R., Biswas, R., Garceau, M.: Unstructured adaptive mesh computations of

rotorcraft high-speed impulsive noise. J. Aircraft 32 (1995) 754-760

6. Van Driessche, R., Roose, D.: Load Balancing Computational Fluid Dynamics Cal-

culations on Unstructured Grids. AGARD Report R-807 (1995)

This article was processed using the I6TEX macro package with LLNCS style

RIACS
Mail Stop T041-5

NASA Ames Research Center
Moffett Field, CA 94035

