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Abstract In this paper we continue investigations of proof theory of default
logic. It turns out that, similarly to classical logic, default theories can be
represented in normal forms.

1 Introduction and preliminaries

In this paper we develop a representation theory for default logic of Reiter
([Rei80]). The question is whether one can find “normal forms” for default
theories, that is, if there are syntactical constraints which can be imposed
on default theories without changing extensions. In this section we intro-
duce basic definitions and recall fundamental concepts of default logic. We
introduce the notion of representability of default theories in Section 2 and
prove a number of results of both positive and negative nature. A weaker
notion, semi-representability, is studied in Section 3. We prove that with
this weaker notion we can represent every default theory by a default the-
ory with all rules either monotonic (that is justification-free) or semi-normal
([Eth88]). In Section 4 we discuss another structure associated with default
logic, a weak extension. We show that every finite family of finitely gener-
ated theories can be represented as a family of weak extensions of a suitably
constructed default theory. A result on autoepistemic expansions is given as
a corollary.

We use standard logical notation. The reader is referred to [Fit90] and
[Men64] for the unexplained concepts. The presentation of default logic
follows one we gave in [MT93].
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Definition 1.1 (Basic definitions)

1. A default rule is a triple r =< α,L, ω > where α, ω are sentences
of a propositional language L, and L = {β1, . . . , βm} a finite set of
formulas of L. Such rule is usually written as α:β1,...,βm

ω
. Elements of

L are called justifications of r. When a rule has no justifications we
call r monotonic.

2. The formula ω is called a consequent of r. The set of consequents of
rules in D is denoted by CONS(D).

3. A default theory is a pair (D,W ) where D is a set of default rules, and
W ⊆ L.

4. A default rule r =< α,L, ω > is normal if L = {ω}. That is, a normal
rule is of the form α:ω

ω
.

5. A normal theory is a theory (D,W ) where D consists of normal rules
only.

6. A semi-normal default rule is a rule of the form α:γ∧ω
ω

.

7. A semi-normal theory is a theory (D,W ) in which every default is
semi-normal.

8. A weakly semi-normal theory is a default theory (D,W ) such that
every rule in D is either monotonic or semi-normal.

Definition 1.2 (S-derivations, extensions for default theories)

1. Let S ⊆ L. Let (D,W ) be a default theory. An S-derivation of a
formula ϕ in (D,W ) is any finite sequence < ψ1, . . . , ψn > such that
ψn = ϕ and for all i ≤ n at least one of the following holds:

(a) ψi is a tautology or

(b) ψi ∈W or

(c) ψi is the result of applying modus ponens to some ψj , ψk, j, k < i
or

(d) There is a rule α:β1,...,βm

ψi
∈ D such that α = ψj for some j < i

and ¬β1, . . . ,¬βm /∈ S.

2. CnDS (W ) is the set of all formulas possessing an S derivation in (D,W ).

3. S is called an extension of (D,W ) if S = CnDS (W ).

Definition 1.3 (Generating defaults, weak extensions)
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1. Let S ⊆ L. A default rule r = α:β1,...,βm

ω
is called a generating default

for S if α ∈ S and ¬β1, . . . ,¬βm /∈ S.

2. If S ⊆ L and (D,W ) is a default theory then S is called a weak
extension of (D,W ) if S = Cn(W ∪C) where C consists of consequents
of generating defaults for S.

Theorem 1.4 (Reiter) Every extension is a weak extension. In particular,
if S is an extension of (D,W ) then for some C ⊆ CONS(D), S = Cn(W ∪
C.

Theorem 1.5 (Reiter) 1. If S1, S2 are two different extensions of a de-
fault theory (D,W ), then S1 ⊆ S2 implies that S1 = S2.

2. If S1, S2 are two different extensions of a normal theory (D,W ), then
S1, S2 are incompatible. That is S1 ∪ S2 is inconsistent.

Definition 1.6 (Operator associated with default theories) Given a default
theory (D,W ) and a theory S ⊆ L, the operator RDS is the mapping from
subsets of L to subsets of L defined by:

RDS (T ) = Cn(T ∪ {ω : For some r ∈ D, r =
α : β1, . . . , βm

ω
and α ∈ T,

¬β1, . . . ,¬βm /∈ S}

Proposition 1.7 (A characterization of extensions) A theory S ⊆ L is an
extension of (D,W ) if and only if S is the least fixpoint of RDS over W .

Definition 1.8 (Double disjunctive normal form) A formula ϕ is in double
disjunctive form if ϕ is of the form

∨
ψi where each ψi is the negation of a

clause.

Proposition 1.9 For every formula Θ there is a formula ϕ such that ϕ is
in double disjunctive form, and Θ ≡ ϕ is a tautology.

2 Representation of Default Theories

One way of looking at the normal form theorems in propositional logic is
this. Assign to a formula the set of all its models. It is quite obvious that
ϕ ≡ ψ is a tautology if and only if ϕ and ψ possess exactly the same models.
Then the normal form theorems say that for every formula ϕ there exists
a formula ψ in, say, disjunctive normal form with precisely the same set of
models. We lift this way of looking at normal form to the present context.
To this end we introduce the notion of equivalent default theories and the
associated notion of representability.

3



Definition 2.1 (Representability)

1. Let (D,W ), (D′,W ′) be default theories. We say that (D,W ) is equiva-
lent to (D′,W ′) (in symbols (D,W ) ≈ (D′,W ′)) if (D,W ) and (D′,W ′)
have exactly the same extensions.

2. Let R be a class of default theories, let (D,W ) be a default theory.
We say that (D,W ) is representable in R if there is (D′,W ′) ∈ R such
that (D,W ) is equivalent to (D′,W ′).

3. A class R of default theories represents default logic if every default
theory is representable in R.

It is quite obvious that ≈ is an equivalence relation. This, in turn, implies
that if (D,W ) is representable in R then every theory equivalent to (D,W )
is also representable in R.

Example 2.1 Let W1 = {p}, D1 = {p:¬r
q
, q:s
t
}, W2 = {p, q}, D2 = { q:¬u

t
}.

Then theories (D1,W1), (D2,W2) are equivalent. N

We first prove a negative result. Let N be a class of all normal default
theories. One can ask if N represents default logic. The answer to this
question is negative. We base it on Theorem 1.5 which says that not only
are extensions of a normal default theory inclusion-incompatible, but they
are, actually, pairwise inconsistent.

Proposition 2.2 The class N of all normal default theories does not rep-
resent all default theories.

Proof: Let p, q ∈ At, p 6= q, D = { :¬p
q
, :¬q

p
}, W = ∅. Theory (D,W )

possesses two extensions Cn({p}), and Cn({q}). The theory Cn({p}) ∪
Cn({q}) is consistent. Therefore (D,W ) is not N -representable. �

The proof of Proposition 2.2 tells us that the reason for non-representabi-
lity of (D,W ) in N is that two of its extensions are consistent each with the
other. In a sense it is the only reason.

Definition 2.3 A theory T is finitely generated if there exists a finite set of
sentences {ϕ1, . . . , ϕk} such that Cn(T ) = Cn({ϕ1, . . . , ϕk}).
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We will now prove the following result.

Proposition 2.4 Let 〈Tα:α < γ〉 be a collection of pairwise inconsistent,
finitely generated consistent theories (γ can be finite or infinite). Then there
exists a normal default theory (D,W ) such that 〈Tα:α < γ〉 are precisely the
extensions of (D,W ).

Proof: Let {ϕα,0, . . . ϕα,kα
} be generators of theory Tα. Let ψα = ϕα,0 ∧

. . .∧ϕα,kα
. Then Tα = Cn({ψα}). Our assumption is that for α 6= β, Tα∪Tβ

is an inconsistent theory, that is {ψα ∧ ψβ} is an inconsistent theory.

Let dα = :ψα

ψα
for α < γ. Let (D,W ) be a default theory where

D = {dα:α < γ}, W = ∅. It is clear that (D,W ) is a normal default
theory. We claim that Tα, α < γ, are precisely extensions of (D,W ).
By Theorem 1.4 the only candidates for extensions of (D,W ) are of the
form T = Cn({ψα0

, . . . ψαξ
. . . : ξ < η}). But if η > 1 that is if more than

one generator is selected, then such theory T is inconsistent. But then
CnDT (W ) = Cn(∅) 6= T . Thus the only possible candidates for extensions are
Tα’s. Since ψα, ψβ are pairwise inconsistent therefore, for α 6= β, ¬ψα ∈ Tβ .
Therefore for every α < γ, the only rule applicable with respect to Tα is dα.
But then:

CnDTα
(W ) = Cn({ψα}) = Tα.

Thus Tα’s are precisely extensions of (D,W ). �

Corollary 2.5 If all extensions of (D,W ) are finitely generated, consistent,
and pairwise inconsistent, then (D,W ) is representable in N . N

One can read Proposition 2.4 and similar results as saying that once the
desired images of the world are known then it is “easy” to design a default
theory determining them. Of course it is precisely what does not happen.
In practice the process is different; we usually have a collection of facts and
rules and then look for images of reality, not conversely.

We have a simple but useful property of the relation ≈.

Proposition 2.6 (a) If Cn(W1) = Cn(W2) then for every D, (D,W1) ≈
(D,W2).
(b) If W ⊢ α ≡ α′, W ⊢ ψ1 ≡ θ1, . . . ,W ⊢ ψk ≡ θk, W ⊢ γ ≡ γ′, then for

every D and W , (D ∪ {α:ψ1,...ψk

γ
},W ) ≈ (D ∪ {α

′:θ1,...θk

γ′
},W ).
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Proof: In both (a) and (b) we prove that for every S ⊆ L, formulas S-
provable in each of the two default theories are precisely the same. This
implies that these theories have precisely same extensions. �

We will prove now a simple representability result. Given W ⊆ L, let
DW be the following collection of rules:

DW = {
:

ϕ
:ϕ ∈W}

That is, every ϕ ∈ W is transformed to a rule rϕ which has no prerequisite
and no justifications and has ϕ as the consequent.

Proposition 2.7 Let T ⊆ L. Then T is an extension of (D,W ) if and only
if T is an extension of (D ∪DW , ∅).

Proof: Let RD∪DW

T ↑ n(∅) denote the result of the n-fold iteration of the

operator RD∪DW

T on the empty set. By induction on n we prove that for all

n, RD∪DW

T ↑ n(∅) ⊆ RDT ↑ n + 1(W ) and RDT ↑ n(W ) ⊆ RD∪DW

T ↑ n + 1(∅).
This implies that the least fixpoint of RDT (·) aboveW and the least fixpoint of

RD∪DW

T (·) are identical. Therefore extensions of (D,W ) and of (D∪DW , ∅)
coincide. �

Corollary 2.8 Every default theory is representable in the class of default
theories (D,W ) with W = ∅. N

The practical role of Corollary 2.8 is restricted. The reason is that often
we think about default rules as the part of the reasoning mechanism that
does not change (or at least changes rarely), and of W as the data, that can
change frequently. In this setting Proposition 2.7 says that in case of data
that changes very rarely, we can build it into the reasoning system.

We prove now two technical results. They play the role of distributive
laws and will be used below to prove a subtler normal form result.

Proposition 2.9 Let d = ϕ:β1,...,βk

γ1∧γ2
be a default rule and let d1 = ϕ:β1,...,βk

γ1

d2 = ϕ:β1,...,βk

γ2
be two rules arising from d by weakening the consequent of

r. Then for every set of rules D and every W ⊆ L, (D ∪ {d},W ) ≈ (D ∪
{d1, d2},W ).
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Proof: Notice that for every context S ⊆ L, d is applicable with respect to
s if and only if both d1 and d2 are applicable with respect to S. All three
of these rules possess the same prerequisite. This implies that any time d
is used in an S-derivation, we can use d1 and d2, and vice versa. Therefore
for any formula ψ, any S proof of ψ from W using rules from D ∪ {d} can
be transformed to an S-proof from W using rules from D ∪ {d1, d2} and

conversely. This means that Cn
D∪{d}
S (W ) = Cn

D∪{d1,d2}
S (W ). Hence the

default extensions of both theories (D ∪ {d},W ) and (D ∪ {d1, d2},W ) are
the same. �

In Proposition 2.9 we proved distributivity of consequents with respect to
conjunction. Next, we prove the distributivity of justifications with respect
to alternative.

Proposition 2.10 Let d = ϕ:(δ1∨δ2),...,βk

γ
be a default rule and let d1 =

ϕ:δ1,...,βk

γ
d2 = ϕ:δ2,...,βk

γ
be two rules arising from d by strengthening justifica-

tions of d. Then for every set of rules D and every W ⊆ L, (D∪{d},W ) ≈
(D ∪ {d1, d2},W ).

Proof If S is closed under consequence then ¬(δ1 ∨ δ2) /∈ S if and only if
¬δ1 /∈ S or ¬δ2 /∈ S. Indeed, ¬(δ1 ∨ δ2) is equivalent to ¬δ1 ∧ ¬δ2 and the
equivalence follows.

Next, observe that all the rules d, d1, and d2 possess the same prerequisite
(premise) and the same consequent. This means that for every formula ψ
an S-derivation of ψ from W using rules from D ∪ {d} is, actually an S-
derivation of ψ from W using rules from D ∪ {d1, d2}. Indeed, the sequence
itself does not change, only the reason why a formula is put in that sequence
change! Similarly, every S-proof of ψ using rules of D ∪ {d1, d2} is an S-
derivation of ψ using rules in D ∪ {d}. As in the proof of 2.9 this implies

that Cn
D∪{d}
S (W ) = Cn

D∪{d1,d2}
S (W ). Hence the default extensions of both

theories (D ∪ {d},W ) and (D ∪ {d1, d2},W ) are the same. �

Recall, that a clause is a formula of the form s1 ∨ . . .∨ sk where s1 . . . sk
are literals, that is atoms or negated atoms. Clause is the set of all clauses
of the language L.

We will present now a much deeper representability result (due to Yang
and others [YBB92]). First, recall that every propositional theory T has
precisely the same consequences as the theory T ′ = Cn(T ) ∩ Clause. That
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is, every theory is faithfully represented by a set of clauses. We show an
analogous result for default logic.

Definition 2.11 1. A default rule d = ϕ:β1,...,βk

γ
is called clausal if:

(a) ϕ is a conjunction of clauses.

(b) Each βj is negation of a clause.

(c) γ is a clause.

2. A default theory (D,W ) is clausal if W consists of clauses, and every
rule in D is clausal.

Theorem 2.12 (Yang, [YBB92]) For every default theory (D,W ) there
exists a clausal default theory (D′,W ′) such that (D,W ) ≈ (D′,W ′).

Proof: We construct our desired theory (D′,W ) in three stages, enforcing,
respectively, conditions (a), (b), and (c). By Proposition 2.6 we can, of
course, assume that W consists of clauses.

First, for every default rule r = ϕ:β1,...,βk

γ
in D consider any conjunctive

normal form ϕ′ of ϕ. Substitute the default rule r′ = ϕ′:β1,...,βk

γ
for r. A direct

application of Proposition 2.6 shows that the resulting theory (D1,W ) =
({r′ : r ∈ D},W ) has precisely the same extensions as (D,W ).

Next, again by Proposition 2.6 we can assume that every consequent
γ of a default rule in D1 is in a conjunctive normal form. Then the re-
peated application of Proposition 2.9 produces a theory (D2,W ) such that
(D2,W ) ≈ (D1,W ) (hence (D2,W ) ≈ (D,W )) and the consequents of rules
inD2 are clauses. In this fashion both the conditions (a) and (c) are enforced.

To make sure that the condition (b) is satisfied we use Proposition 1.9
and Proposition 2.6. Thus each βi can be assumed to be in double disjunctive
normal form, that is

∨
θj where each θj is a negated clause. Now we apply

repeatedly Proposition 2.10. In this fashion we get a set D′ of clausal rules
such that (D′,W ) ≈ (D,W ). �

Notice that if each βi has in its double disjunctive form si terms then
one default rule d produces s1 × . . .× sk rules. Hence the size of D′ may be
large relative to size of D.

Example 2.2 Let W = {p}, D = {p:(r∨s),(¬u∨w)
q

, p∧q:r,(w∨t)
s

}. Then W ′ =
W , and the new family of default rules is:
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D′ = {p:r,¬u
q

, p:r,w
q

, p:s,¬u
q

, p:s,w
q

, p∧q:r,w
s

, p∧q:r,t
s

}.

Theory (D′,W ′) is clausal. By Theorem 2.12 theories (D,W ) and (D′,W ′)
possess exactly the same extensions. N

Theorem 2.12 yields a theory that consists of simpler objects (clausal
default rules), but may be much larger than the original theory (D,W ). In
a sense the situation is similar to one we get when we represent a theory
T ⊆ L by the set of clauses. But here we have an additional step: after
all formulas α, βj , γ are put in disjunctive normal form, the theory D′ is
obtained in the process of splitting conclusions and justifications that once
again increases the size considerably.

Another fact worth mentioning is that the transformation described in
Theorem 2.12 does not preserve normality. That is, if (D,W ) is a normal
default theory, and D′ is computed as above, then (D′,W ) usually will not
be normal.

3 Semi-representability of default theories

We will prove now another representability result. This time, however, the
language in which we will construct suitable default theories will be an ex-
tension of the language L by means of new constants.

Definition 3.1 We say that a default theory (D,W ) is semi-representable
in the class of default theories D if there is an extension of the language L,
L′, and a theory (D′,W ′) ∈ D such that (D′,W ′) is a theory in the language
L′ and for every theory T ⊆ L, T is an extension of (D,W ) if and only if
there is an extension T ′ of (D′,W ′) such that T = T ′ ∩ L.

We turn our attention to semi-normal rules. The concept of a semi-
normal rule is a natural generalization of a normal default rule. The idea
is that the process of derivation here is weaker than in the case of normal
default theories. Instead of deriving ψ∧ γ out of ϕ and consistency of ψ∧ γ,
one cautiously derives only γ. This mode of reasoning does not, in general,
guarantee the existence of extensions.

Example 3.1 Let W = ∅, D = { :(p∧¬q)
p

, :(q∧¬r)
q

, :(r∧¬p)
r

} where p,q, r are
distinct atoms. Then (D,W ) is a semi-normal default theory without ex-
tensions. N
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A weakly semi-normal theory is very closed to semi-normal. Besides of
cautious derivations, as described above, we allow derivation steps which
employ rules that do not require justifications at all. These rules, in the
provability paradigm we use are applicable with respect to any context.

We will prove now a result on semi-representability of default theories.

Theorem 3.2 Every default theory is semi-representable in the class of
weakly semi-normal default theories.

Proof: Let (D′,W ′) be a default theory. For every default rule

r =
α : βr1, . . . , β

r
kr

γ

in D introduce kr new constants cr1, . . . , c
r
kr

. The language L′ is the extension
of the language L by all these constants (for all the rules of D).

Now, for every rule r as above consider kr + 1 new rules:
First kr rules are of the form:

dr,i =
α : (βri ∧ c

r
i )

cri

(i = 1, . . . , ir) and one more rule:

er =
cr1 ∧ . . . ∧ c

r
kr

:

γ

When r has no justifications then er = r and there are no rules dr,i at all.
Now, define Rr = {dr,1, . . . , dr,kr

, er}, and finally:

D′ =
⋃

r∈D

Rr

Clearly (D′,W ) is a weakly seminormal theory.
We will prove that:
(1) Every extension of (D,W ) extends to an extension of (D′,W ).
(2) For every extension T ′ of (D′,W ), the theory T ′ ∩ L is an extension of
(D,W ).
(3) If T ′, T ′′ are extensions of (D′,W ) and T ′ ∩ L = T ′′ ∩ L then T ′ = T ′′.
These three facts together clearly imply our theorem.

We prove now (1). First we make the following simple observation:
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Claim 3.3 Let T ⊆ L be consistent theory, and let {c1, . . . , cs} be a set of
new atoms. Then T+ = T∪{c1, . . . cs} is consistent. Moreover Cn(T+)∩L =
Cn(T ).

Proof of claim: Every valuation V of L can be extended to a valuation
V ′ of At∪{c1, . . . , cs} making c1, . . . , cs true. Since V ′ and V coincide on At,
they coincide on all the formulas of L as well. Therefore, if T is consistent,
so is T ′. Also, every formula of L unprovable from T is still unprovable from
T ′. Thus the second part of the claim is valid. � Claim

Continuing our argument for (1) we first find an extension T ′ of (D′,W )
which contains T . Consider the case when L is an extension of (D,W ). Since
we admit the possibility of justification free-rules in D, we know that L is an
extension of (D,W ) if and only if the closure of W under the justification-
free rules in D is inconsistent. Notice that the justification-less rules in D′

are of two types: those whose prerequisites are in L and new rules of the
form er. Since W ⊆ L, the closure of W under justification-free rules of D′

and the consequence operation of L′ is generated by the closure of W under
justification-free rules in D and tautologies of L′. This implies that L is an
extension of (D,W ) if and only if L′ is an extension of (D′,W ).
Therefore we can assume, from now on, that (D,W ) has only consistent
extensions. So, let T be a consistent extension of (D,W ). In order to see
what a desired T ′ is let us look at a rule r in D. If

r =
α : βr1, . . . , β

r
k

γ

two cases are possible. If T 6⊢ α set Cr = ∅. But if T ⊢ α define:

Cr = {cri :¬βi /∈ T}

Now set T ′ = Cn(T ∪
⋃
r∈D Cr). By Claim 3.3, T = T ′ ∩ L. Moreover T ′ is

closed under consequence.
Now, it is easy to see that T is an extension of (D,W ) if and only if T

is the closure of W under the propositional rules of proof and the rules from
DT , where DT = {α:

γ
: α:β1,...,βk

γ
∈ D ∧ ¬β1 /∈ T, . . .¬βk /∈ T}.

Let us now look at both DT and DT ′ . We notice that if r ∈ D has no
justification then r ∈ DT ′ and if r = α:β1,...,βk

γ
then whenever βi is consistent

with T then the rule α:
cr
i

belongs to DT ′ . The rule er is justification-free

and is always in DT ′ . It follows that unless all the formulas βi are consistent
with T , the rule er is not applicable. This implies that if T is an extension of
(D,W ) then for T ′ as defined above, all the constants from the set

⋃
r∈DT

Cr
can be T ′-proved and so, for every rule r ∈ DT , its consequent γ is proved
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using DT ′ as well. This implies that T ′ coincides with the closure of W under
the rules from DT ′ and so T ′ is an extension of (D′,W ).

Next, we prove (2). Let T ′ be an extension of (D′,W ). Consider the
collection of rules actually used in the reconstruction of T ′. These rules are
of three types: Either its consequent is a new constant (when the rule is of
the form dr,i, or it is a justification-free rule α:

γ
with γ ∈ L, or, finally, it is

of the form
cr
1
∧...∧cr

k
:

γ
again with γ ∈ L.

It is now clear that γ ∈ L is the consequent of an applicable default rule
(with respect to T ′) if and only if α ∈ T ′ ∩ L or if cr1, . . . , c

r
k all belong to

T ′. But this last case happens precisely when βr1, . . . , β
r
k are all consistent

with respect to T ′. But βr1, . . . , β
r
kr

all belong to L. Therefore βr1, . . . , β
r
kr

are
consistent with respect to T if and only if they are consistent with respect
to T ′ ∩ L. This implies that all the consequents of these applicable defaults
that are in L, are provable from W using rules of D with T ′∩L as a context.
It is also clear that no other consequent is provable. Therefore T ′ ∩ L is an
extension of (D,W ).

Finally, we prove (3). If T is an extension of (D,W ) and T ′ is an extension
of (D′,W ) and T ⊆ T ′ then T ⊆ T ′ ∩L, and by (2) T ′ ∩L is an extension of
(D,W ). Therefore T = T ′ ∩ L since different extensions of (D,W ) cannot
be included one in the other (Theorem 1.5). Consequently, if T1, T2 are two
extensions of (D′,W ), and T is an extension of (D,W ), and T ⊆ T1, T ⊆ T2

then T1 ∩ L = T = T2 ∩ L. Now let us look at the form of the rules in
D′. Those of these rules which are used to derive new constants have as
a justification a (single) formula of L. Therefore its consistency with Ti
depends only on Ti ∩ L. But for both i = 1, 2 this intersections T1 ∩ L and
T2 ∩L coincide. Therefore T1 and T2 contain precisely the same new atoms.
Since Ti is generated by Ti ∩ L and a collection of new atoms, T1 and T2

must be identical. �

4 Representation for weak extensions

Finally, we prove a representability result for weak extensions. We will show
that every finite set of finitely generated theories is precisely the collection
of weak extensions of a suitably chosen default theory.

Theorem 4.1 Let T1, . . . , Tk be a finite set of theories in L, each Tj finitely
generated. Then there exists a finite default theory (D,W ) such that T1, . . . ,
Tk are precisely the weak extensions of (D,W ).
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Proof: We can assume that Ti = Cn({ϕi}). Define a preordering in the
set {ϕi : i ≤ k} as follows:

ϕi ≺ ϕj ≡ ⊢ ϕj ⊃ ϕi

Clearly: ϕi ≺ ϕj ≡ Ti ⊆ Tj .
Define a default theory as follows: put W = ∅, and to define D first define
Zi = {ϕj : ¬(ϕj ≺ ϕi)}. Thus ϕj ∈ Zi if and only if 6⊢ ϕi ⊃ ϕi. Define
¬Z = {¬ψ : ψ ∈ Z}. Now we are ready to define our set of default rules D.
When ϕi is minimal in the ordering ≺, set

di =
: ¬Zi
ϕi

and for ϕi that is not minimal define:

di =
ϕi : ¬Zi
ϕi

Then set D = {di : 1 ≤ i ≤ k}. Clearly, (D,W ) is a finite default theory.
Firstly, we claim that every Ti is a weak extension of (D,W ). Indeed, it is
easy to see that di is the only applicable rule with respect to Ti. Notice that di
is the only applicable rule and the consequent of di is ϕi and Ti = Cn({ϕi}).
Therefore Ti is a weak extension – because it is generated by W and the
conclusion of (the only) generating rule.

Next, we prove that Ti’s are the only weak extensions of (D,W ). So
let T be a weak extension of (D,W ). Then T is generated by W and the
consequents of applicable default rules. Let d be such rule.
Case 1. d = :¬Zi

ϕi
. Then all the formulas ϕj , j 6= i do not belong to T . But

ϕi ∈ T . Since T is generated by some of formulas ϕn, T = Cn({ϕi}).
Case 2: di = ϕi:¬Zi

ϕi
. Here all the formulas ϕj such that 6⊢ ϕi ⊃ ϕj do not

belong to T , but ϕi ∈ T . As above T = Cn({ϕi}). �

It is perhaps worth mentioning that for minimal ϕii, Ti is also an exten-
sion of (D,W ).

Corollary 4.2 Let T1, . . . Tk be a finite set of stable theories in the language
LL such that for every i ≤ k, the theory Si = Ti ∩ L is finitely generated.
Then there is a finite theory I ⊆ LL such that Ti are precisely autoepistemic
expansions of I.

13



Proof: As shown in [MT89] under the translation ϕ:β1,...,βm

γ
7→ Lϕ ∧Mβ1 ∧

. . . ∧Mβm ⊃ γ, weak exensions of a default theory are precisely objective
parts of the autoepistemic expansions of the translation. Since for a stable
T , T = St(T ∩ L), corollary follows. �
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