
The Railroad Crossing Problem:
Towards Semantics of Timed Algorithms

and
Their Model Checking in High Level Languages

D a n i ~ l e B e a u q u i e r 1
Universitg Paris-12 and L.I.T.P., Paris, France

A n a t o l S l i s s e n k o 2

Universitd Paris-12 and L.I.T.P., Paris, France
and Laboratory for Theory of Algorithms,

S P I [FtAN t, St-Petersburg, Russia

A b s t r a c t . The goal of this paper is to analyse semantics of algorithms
with explicit continuous time with further aim to find approaches to au-
tomatize model checking in high level, easily understandable languages.
We give here a general notion of t imed transit ion system and its formula
representation that are sufficient to deal with some known examples of
t imed algorithms. We prove that the general semantics gives the same
executions as direct, more intuitive interpretations of executions of algo-
rithms. In a way, we try to give a general t reatment of considerations of
Yu.Gurevich and his co-authors concerning concrete Gurevich machines
(called evolving algebras in [Gur95]), in particular, related to Railroad
Crossing Problem [GH96]. Besides that we formalize specifications of
this problem in a high level language which permits to rewrite directly
natural language formulations, and to give a formal proof of correctness
of the railroad crossing algorithm using rather a small amount of logical
means, and this leads to hypotheses how automatize inference search.

1 I n t r o d u c t i o n

T h e goal of th is work is to make a formal analys is of mode l checking for a par -
t i cu la r p rob l em wi th expl ic i t t ime cons t ra in ts , namely, the Ra i l road Cross ing
P r o b l e m , in o rde r to find an a p p r o p r i a t e genera l no t ion of t imed t r a n s i t i on sys-
t e m to descr ibe semant ics of a lgor i thms wi th cont inuous t ime. Cont inuous t ime
has m a n y in tu i t ive and a lgor i thmic advan tages wi th respec t to d iscre te t ime (as

1 Address: University Paris-12, Dept. of Informatics, 61, Av. du Gdn. de Gaulle, 94010
Crdteil, France. E-mail: beauquier@univ-paris12.fr

2 Address: University Paris-12, Dept. of Informatics, 61, Av. du Ggn. de Gaulle, 94010
Crdteil, France. E-marl: sIissenko@univ-paris12.fr

t St-Petersburg Inst. for Informaties and Automation of the Acad. Sci. of Russia

202

well as in classical domains as mechanics or physics). The underlying question
is whether one can hope to find algorithmic tools supporting model checking
if easily comprehensible languages are used to describe specifications. Usually,
easily comprehensible languages have no general efficient algorithms for model
checking not to speak about satisfiabilty. We hope that some useful algorithmic
tools can be developed for classes of problems containg practical ones, and the
presented analysis leads to some hypotheses on what features of systems under
consideration might assure efficiency.
Our analysis of the Railroad Crossing Problem is based on Gurevich-Huggins
paper [GH96]. The profound analysis of treatment of continuous time given in
[GH96] was an essential stimulus for our work.
Efficient algorithms for model checking are mostly associated with temporal log-
ics [Eme90] as requirement specification languages, and with timed automata
[AD94] or regular process algebras [Mil90] as algorithms specification languages.
Whatever impressive be the achievements of research on temporal logics and
their applications to model checking (e. g. [Emeg0, Eme96, MP92]), some of
their evident shortcomings such as hardness of understanding of temporal logic
formulas inhibit their wide practical applications. Lack of explicit time is among
the shortcomings of temporal logics, and it is not easy to remedy them (see,
e. g. [Han94]), not speaking that the initial idea of temporal logics was to avoid
explicit usage of time. On the other hand, easily understandable formalisms usu-
Mly have no eff• algorithmic support even for particular interesting classes
of practical problems. As two "high-level" languages for specification we take:
Gurevich machines [Gur95] for specifying algorithms, and an extension of theory
of real addition to specify requirements. Gurevich machines have the following
advantages: they are self-explanatory and, thus, well understandable in concrete
situations, they have lucid underlying theoretical ideas, in particular, concerning
the semantics, and they permit to change levels of abstraction easily.

1.1 In formal Descr ipt ion of the Rai l road Crossing Prob lem.

The Railroad Crossing Problem appears in various forms in papers on model
checking of timed systems, we take a general version from [GH96]. An informal
description of Railroad Crossing Problem is as follows. A railroad crossing has
several parallel train tracks and a common gate. Each track admits in each direc-

tion two sensors, one at some distance of the crossing in order to detect incoming
of a train and another one just after the crossing in order to detect the train
is leaving. An automatic controller receives the signals from the sensors and on
the basis of these signals, decides to send to the gate a signal close or open. The
correctness requirements to satisfy by the controller (i. e. by the algorithm to

construct) are the following ones:
Safety. If a train is in the crossing, the gate is closed.

Liveness. The gate is open as much as possible.
Note that safety alone is easy to satisfy with the gate always closed.
Some assumptions are usually done. It is assumed that a train cannot arrive on
a track (in the zone of control) before the previous one has left this track. If a
train is coming from the left, it leaves the crossing on the right and conversely.

203

The situation when a train does not leave the crossing is not excluded. It takes at
least t ime drain for a train to reach the crossing after the sensor has detected its
incoming. And it takes at m o s t dopen (respectively, dclos~) to the gate to be really
opened (respectively, closed) after the reception of signal to open (respectively,
to close) if the opposite signal is not sent in between. To exclude degenerated
case, it is assumed that at least dclose < drain.
In our analysis of the problem we separate two concerns: declarative requirement
specification and operational algorithm specification. Even if not to discuss au-
tomation of the specification analysis, formalizing the two basic poles of spec-
ifications imposes a kind of discipline and facilitates specification verification.

2 Requirement Specification Language
As specification language we take an extension of the theory of real addition with
symbols of functions defined either on time domain or on finite domains specific
to problem under consideration and having values also of these types. Clearly,
the satisfiability problem is undecidable even for rather moderate extensions of
this kind.

2.1 Continuous Time.
The interpreted part of the language consists of a domain for time. Here we
take as t ime the set of reals T0=ds R, and, for the purposes of t reatment of in-
stantaneous actions, extend it to the set T by non standard numbers and, for
technical reasons, by a special symbol oc to follow [GH96]. For basic requirement
specifications, tha t t reat user's properties of the system under consideration, we
use only To.

The t reatment of infinitesimals will be semantical, and we will distinguish the
two sets, that of standard time To and its extension T by non standards elements.
Defining extensions of functions over standard reals to non standard ones in our
case is always evident.
The symbol oo has the property: Vt c T (t < oo).
We fix two functions giving for every t c T two non standard reals t - and
t + such that t - < t < ~+ and S t a n d a r d P a r t (t -) = S t a n d a r d P a r t (t +) =
S t a n d a r d P a r t (t) .

The properties of t+ and t - used in our proof of correctness can be easily for-
mulated, and we omit them here as we do not discuss the proof in detail.
An initial specification of the problem is usually of declarative nature, and in-
cludes specification of the environment to control and that of requirements of
control. The signature of these specifications do not include the functions repre-
senting the own identifiers of an algorithm to construct as solution for the prob-
lem of control. However, the signature of initial specifications contains functions
representing inputs which will be also used by the algorithm. The identifiers
of the algorithm, whose values implicitely depend on time, may not contain
time parameter explicitely, contrary to the corresponding functions of the logic
language. To distinguish by style the identifiers of the algorithm and the corre-
sponding identifiers which depend on time: roman is used for time dependant

204

identifiers and italic for the identifiers of the algorithm; the constants indepen-
dent of t ime will be in italic in both cases.

2.2 S i g n a t u r e o f Log ic S p e c i f i c a t i o n s for t h e R a i l r o a d C r o s s i n g
P r o b l e m .

Specifying a problem we speak about s tandard t ime To, and then to make precise
semantics and to give a formal proof of correctness of an algorithm necessitates
to extend the domain of t ime to 7-. With this extension the domain of t ime
variables and t ime depending functions are extended to 7- in an obvious way.
Time Variables and Constants :
�9 t, T, 4, ~, t~, t o , . . , are variables for time:
�9 drain, dmax, dopen, dclose are non interpreted s tandard constants for time; their
meta-meaning is the following:

- After the moment an incoming train having been detected, it takes t ime
between drain and d,~x, d,~i~ _< d ,~x, for the train to reach the crossing.

- The gate closes within t ime dczosr and opens within t ime dop~,~, more pre-
cisely: for each interval a = (t , t + dczos~] (respectively a = (t , t + dopr during
which the signal to close (respectively, to open) is in force, the gate is closed
(respectively, opened) at t + ddose (respectively, at t § dopr
�9 N o t a t i o n : Wait Time= ds drain - dclose will be used to describe a period of
t ime when a train though having been detected is far enough from the crossing

to permit to open the gate.
Variables and Constants tha t are used to describe railroad crossing:
�9 Tracks is the set of tracks, its cardinality I Trackst being fixed.
�9 x, y , . . . are variables for tracks.
�9 coming, empty are states of a track; they constitute the values of a function

describing the gate status.
�9 open, close are signals of control to open, respectively to close the gate. These
signals must be produced by the algorithm of control.
�9 opened, closed (and udef) are states of the gate.
Functions depending on time:
�9 TrackStatus : 2r z Tracks --~ {coming, empty} is an input function detecting
incoming of a train on a track and, respectively, outgoing of a train out of the
crossing on a track. I t is constant on intervals of the form Ix, y).
N o t a t i o n : Coming(t, x)=ds TrackStatus(t , x) = coming,

Empty(t , x)=<~r TrackStatus(t , x) = empty.
�9 Dir: T --4 {open, close} is a function representing the commands of control: to

open the gate or to close the gate.
�9 GateStatus: T --~ {opened, closed, udef} is a function representing the s tate
of the gate: whether it is opened or closed or its s tatus is undefined. This func-

t ion serves to specify the control.
�9 InCrossing : T ~ {true, false} is a predicate which expresses the fact tha t a
train is in the crossing (and, thus, the gate must be closed).
�9 An important technical notion characterizing when the controller may open
the gate is Safe To Open tha t we formulate in a form not equivalent to tha t of
[GH96] which is in some sense more precise with respect to intuitive demands

of dependabili ty:

205

SafeToOpenSp* (t)=,~
Vx (Empty(t , x) V VT- < t (V7' E [~-, t] Coming(T', x) -~ t < 7 + WaitTime).

The condition SafeToOpenSp*permits to open the gate whenever it is not dan-

gerous.

2.3 R a i l r o a d Cros s ing P r o b l e m : Spec i f i ca t i on o f t h e E n v i r o n m e n t .

(TrStInit) Vx Empty(0, x)
(At time 0 there are no trains on each track.)
(DirInit) Dir(0) = open
(At the initial moment the signal controlling the gate is open .)
(CrCm) Vt (InCrossing(t) --~ B x 37 < (t - d~m) VT' e [7, t] Coming(~-', x))
(If a train is in the crossing it had been detected on one of the tracks at least
d , ~ time before the current moment.)
(OpnOpnd) Vt(V7 c (t - dopes, t]Dir(~-) = open --~ GateStatus(t) = opened)
(If at t ime t the command has been open for at least a duration dop~n then the
gate is opened at time t.)
(ClsClsd) Vt(V7 c (t - d~los~, t]Dir(7) = close--~ GateSta tus(t)=closed)
(If at t ime t the command has been close for at least a duration d~los~ then the
gate is closed at t ime t.)
(dIneq) d~zos~ + dop~ < d , ~ < d,~ax
(These are trivial constraints on the durations involved, in particular, the time
for closing is smaller than the minimum time of reaching the crossing by any
train detected as coming.)
We append here a precision on the external functions that looks inessential from
"physical" point of view but is indispensable for defining semantics.
(TrStIntervals) V x V t (Empty(t , x) -~ E m p t y (t i f f E d , , x),

V x V t (Coming(t, x) -~ Coming(tinfCmg, x),
where t i n f E r n p = inf{T < t : WT ! C [T, t] Empty@', x)}
and tinfCmg = inf{~- < t : VT' e IT, t] Coming(7', x)}.
(Intervals of the same value of TraekStatus are closed from the left and opened
from the right.)
And to facilitate references we formulate the trivial property of the fact that
TraekStatus has exactly two values:
(TrStValues) V x Y t (Empty(t , x) ~-~ ~Coming(t, x))
(Absence of coming train means that the track is empty.)

2.4 R a i l r o a d Cross ing : Spec i f i ca t i on o f t h e C o n t r o l .

These specifications concern requirements to the control.
(Safety) Vt (InCrossing(t)--~GateStatus(t) = closed)
(When a train is in the crossing, the gate is closed).
(Dependability) Vt (VT E It - dop~n, t] SafeToOpenSp* (7) --~ GateStatus(t) =
opened)
(If the zone of control is safe to open for a duration of time greater than dop~
then the gate is open).

206

3 A l g o r i t h m f o r t h e R a i l r o a d C r o s s i n g C o n t r o l l e r

We s tar t with a Gurevich machine solution of the the Railroad Crossing Problem.
The solution is simular to [GH96], and just makes more precise one detail. This
solution is self-explanatory, tha t is why we do not repeat the basic notions of
Gurevich machines tha t can be found in [GH96] or in more detail in [Gur95].

3.1 G u r e v i c h M a c h i n e S o l u t i o n o f R a i l r o a d C r o s s i n g P r o b l e m .

External (input) functions:
�9 C T the current time;
�9 Tracks is the set of tracks; x, y , . . . are variables for tracks (this is not an input
but nevertheless it is external, and no algorithm can change it);
�9 TrackStatus(x) : Tracks -~ {coming, empty} is an external function represent-
ing for every track x the track status.
Internal functions (output or strictly internal):
�9 Dir is the signal to open/close the gate generated by the algorithm; Dir E
{open, close};
�9 DeadLine : Tracks--* To is the first moment of appearance of a train on a
given track plus Wai tT ime , and this value is then used to decide on control of

the gate, see SafeToOpen below;
�9 Time constants drain, d,~ax, dopen and dclose are the same as in logical specifi-

cations.
N o t a t i o n : Sa f eToOpen*=~,/ Vx (TrackStatus(x) = empty V C T < DeadLine(x)).
R e m a r k . The corresponding t ime dependant function for SafeToOpen* (x) will
be SafeToOpen* (t, x), and we are to prove that this function correctly represents

SafeToOpenSp* (t, x) of logical specifications.
Intuitive assumption on t ime durations in [GH96] says tha t

Actions of algorithms are performed instantaneously.
This thesis needs a precision. Such a precision will be done in subsection 3.2, in-
formal discussion concerning many interesting subtleties can be found in [GH96].
An algorithm for the Railroad Crossing Controller in terms of Gurevich machines

is given on Fig. 1.

3.2 S e m a n t i c s o f t h e a l g o r i t h m .
Clear, tha t functioning of the algorithm for a given input can be represented
as a map from time to its states. As an input the algorithm has a vector
function of t ime (TrackStatus(t,x))xcTracks. Its inner state is a vector func-
tion (Dir(t), (DeadLine(t, x))xe Tracks). To illustrate the problem of interpreting
instantaneous actions consider an execution of the operator

if TrackStatus(x) = empty a n d DeadLine(x) < eo
t h e n DeadLine(x) := oc endif .

Assume that at a moment t the if-condition is valid. At what moment DeadLine(x)
becomes oo? Clear, not at t otherwise DeadLine(x) will have two different val-
ues at the same moment. So, at a moment ~- tha t is greater tha t t but smaller
tha t any moment to the right of t. There is no such moment among s tandard
reals. Thus, it is reasonable to at t r ibute such an event to some moment t + which
surpasses t in an infinitesimal. Sure, our construction must be independent of

choices of such infinitesimals.

207

v a r x r a n g e s ove r Tracks;
Initial v~lues:

DeadLine(x) := cr for all x E Tracks;
Dir = open;

fo ra l l x in p a r a l l e l r e p e a t
b l o c k

if TrackStatus(x) = coming a n d DeadLine(x) =
t h e n DeadLine(x) := C T + WaitTime

e n d i f
i f TrackStatus(x) = empty a n d DeadLine(x) < c~

t h e n DeadLine(x) := ~ ;
e n d i f
if Dir = open a n d ~SafeToOpen* t h e n Dir := close e n d i f
if Dir = close a n d SafeToOpen* t h e n Dir := open e n d i f

e n d b l o c k

F ig . 1. Railroad Crossing Controller.

S e m a n t i c s o f B l o c k A l g o r i t h m s . A t r a d i t i o n a l way of defining semant ics of
an a lgo r i t hm is to look a t i t as a t an a p p r o p r i a t e a u t o m a t o n and to define i ts
execu t ion as a m a p represen t ing the evolu t ion of i ts s t a t es wi th t ime. In our
case a s t a t e is a vec tor of values of identif iers and t h a t of t ime which can be
cons idered also as ident i f ier CT. Thus, a global state is a vec tor c o n s t i t u t e d by
values of ident i f iers f rom

Y = { (TrackStatus (x))x~ T~cks, (DeadLine (x))x~ Tracks, Dir, C T } .
W e d i s t ingu i sh internal and external, or input s ta tes , namely,

VE=t~ = {(TrackStatus(x))xE T~ck~, C T } ,
V i ~ , n = ((DeadLine(x))=c T~ack~, Dir }.

For every ident i f ier v E V the re is a predef ined range of values Ranger . For a set
U C V we deno te by S u t he co r respond ing set of values, i. e. Su=~/ I]~Eu Rangeu .
A run of an a lgo r i t hm is an o p e r a t o r t h a t for a given input , t h a t is for given
e x t e r n a l identif iers as funct ions of t ime, defines values of in te rna l ident i f iers also
as funct ions of t ime, now t ime is 7-.

T h e a lgo r i t hm under cons ide ra t ion has a b lock s t ruc tu re (tha t is a basic con-
s t r uc t i on of Gurev ich machines , see [Gur95])

i f C o n d l t h e n M] e n d i f
i f Cond2 t h e n M2 e n d i f

i f Condk t h e n Mk e n d i f
where Condi are condi t ions expressed by quant i f ier free formulas and Mi are as-
s ignmen t s of in te rna l identif iers , and all the i f - t h e n - o p e r a t o r s of the block are
execu ted s imul taneously .

R e m i n d t h a t i npu t funct ions, r epresen ted in a lgor i thms by inpu t identif iers , are
cons t an t on intervals of t he form [t, t~), where t, t ~ E To. Thus , for such a funct ion
Z and a m o m e n t t when its value becomes new, the p r o p e r t y Z (t -) y~ Z(t) =
Z (t +) holds.

208

We may consider tha t for t < 0 all the functions have value udef.
Let an input g be given, tha t is a set of functions of t ime representing t rack
s ta tus for every track. We know tha t each such a function changes its values in
isolated points of T0.
A global run of the algorithm for a given input is a vector function from t ime
T to the values of identifiers. As the algorithm cannot influence the input, to
define a run is to define its restriction to inner identifiers. This restriction will de
denoted below by p and call (internal) state trace or (internal) run. The global
run under definition will be denoted by/~(t).
Let an input g be given. I t is defined on :To, but can be trivially extended on
because it is piecewise constant.
The run p for this input is defined recursively, in a natural way.
To s tar t this recursion, note that /~(0) is defined by initial values of the al to-
r i thms tha t are presumed to be given.
Suppose tha t p(r) is defined for all 7 E [0, t], t >_ 0.
We assume tha t the value of p does not change while all the conditions remain

false.
Let t c be infimum of ~- _> t at which at least one of the conditions becomes true.
Extend p slightly beyond this moment: p(7) = p(t) for 7 c (t, t+).
Two cases may appear.
Case 1. There is a condition tha t is true at tc . The value p(t +) is defined as the
result of execution of the assignments corresponding to all the Condi tha t are
valid at t c . Sure, the assignments are taken for the values at t c and must be

t + consistent, otherwise the run is undefined on [c , oc).
Case 2. All the conditions are false at re. Then one of them is t rue at t+c (prop-

erty (Tlnf)) . Set p(t +) = p(t).
I t is evident tha t augmenting the t ime by infinitesimal steps infinitely says tha t
our algorithm has no physical sense. For the algorithm under consideration one
infinitesimal augmentat ion is sufficient, and then we have an advance of t ime

indeed.
One can also remark tha t for the concrete algorithm under consideration the

runs are deterministic.
For our algorithm (as well as for many others) one can represent a global run
/~ in a unique way as a finite or infinite sequence T4 = I0, So, I1, $1 , . . . , where
I0, I1, I 2 , . . . is an interval sequence partit ioning the time,/~ is constant on each

interval Ik and has the value Sk.

4 T i m e d T r a n s i t i o n S y s t e m s a n d i t s F o r m u l a

Representation.
As we remarked earlier a s tandard way of presentation of functioning of an
algorithm is this or tha t notion of abstract automaton. For algorithms with
t ime some of their features can be represented as t imed au tomata [AD94] or
various hybrid automata , e. g. [ACHH93], etc. We give here a notion to meet
the demands of describing the semantics of the algorithm we consider here or

intend to consider in the future.

209

4.1 Timed Transition Systems

Let V be a finite set of function symbols which we will call identifiers to refer
to its further interpretation. They correspond to the signature of Gurevich ma-
chine. The set will be usually represented as a vector.
The set V is partitioned into two (disjoint) subsets VE~t~n and Y I n t r n of external
and internal identifiers, the set VE~t~ containing a symbol representing (cur-
rent) time. Below we tacitly assume that whenever given a V, some its.partition
into internal and external subsets is also given.
As global states there will figure vectors representing evaluations of all identifiers
fl'om V, i. e. elements of set Sv of the type I] ,~y Range~. An internal state
is a vector of type l~,cvl Range~, and an external state is a vector of type
rI ,cvE Range~. In place of" internal state" we will often use simply '"state ' .
The set of internal states will be usually denoted by S or S in t~ , and the set of
external states by S z ~ t ~ .
For U _C V and s E S denote by U[s] the restriction (projection) of vector~s onto
components given by U. Similar notation will be used for sets: U[E], where E is
a set, means {U[s] : s c E}.
A timed transition system is a tuple

(V, Sv , ~ro, Trans) ,
where
- V is a set of identifiers partitioned into V E x t r n and Vi~t~;
- Sv is the set of global states of the type described above, and consequently,
the internal and external states are defined as the corresponding projection sets
S = S z ~ n and SExton;
- ~o E S v is the global initial state;
- Trans C_ S v x S is a set of transitions (note that S v contains time).
Let S be a transition system of the form described above.
An input is a vector function whose each component corresponding to v E VExt~
has type

To x Dom~ --. Range, .
Any input is finally used in all our constructions in the context of properties.
We suppose that

All properties we use which involve inputs are piecewise constant.
We assume that each input is extended on T preserving all the properties we
use.

A given input $, such that VE~t~[$(O)] = Vs~t~[~0], determines runs of the
system. A global run is a vector function of time giving for each moment the
value of global state. In a run we distinguish external trace or simply input, de-
fined as above, and (internal) state trace composed from the components of the
run representing internal identifiers and giving the evolution of internal states
in the process of execution of the transition system. We will denote a run as
defined below by ~(t), and by p(t) its state trace.
To define a run for a given input is to define its state trace.
Trace p is defined recursively.
p(0) = v ; ~ [~ 0] .

210

Suppose tha t p is defined on [0, t], t _> 0.
Let c~(r) be the global s tate composed of p(t) and g(r) (the latter contains r) .
Let

to = inf{T >_ t : Bs e S ((a (r) , s) e Trans)}.
If to is undefined (i. e, the defining set is empty) then the trace p(r) is undefined
for r > t.
Assume tha t C0 is defined.
Extend p up to t+: p(r) = p(t) for r E (~,t+).
Consider the set D = {s E S : ((or(to), s) E Trans)}. Two cases are possible,
Case 1: D = {b. Set p(t +) = p(t).
Case 2: D r 0. Choose any s E D, and set p(t +) = s.
R e m a r k . To model transitions with t ime delay it is sufficient to consider t ran-
sitions as a subset of Sv x R>_o x S, and to adapt the definition of run.

4.2 F o r m u l a T i m e d T r a n s i t i o n S y s t e m .

We can effectively t reat only finitely represented transit ion systems. To arrive
at such a notion we are to coarse the states into finite number of sets (see e. g.
[ACHH93]). Rather a general way of such representation is representation in
terms of logic formulas.
To construct formulas we use variables for elements of Sv and S and the notat ion
for projections introduced above. A formula timed transition system is a tuple

(v, s . , Q, q0, r
where
- V, Sv , ~ro are as in t imed transition systems above;
- Q is a finite set of formula states, briefly F-states each one being a formula of
the form q(s) where ~ist of variables s consists of variables of all types Sv~
(thus, each formula represents a set of internal states);

- q0 E Q is the initial F-state, and it satisfies q0(VInt~n[a0]);
- ~b gives for each pair (p, q) of F-states a finite set r q) of formulas of the
form F (a , s), where r is of type Sv and s is of type S (the variables of a same
type are different in a and s), such that whatever be F E ~b(p, q), a global s tate

and an internal state s,
F(., s) -~ (p(Ylnt~,~[~]) A q(s)),

that is ~b respects F-states.
We define the set of transitions Trans of the formula transition system as

s): Vp,q Q VF r 4}.
For the Railroad crossing Controller we take as the set of identifiers the identifiers

of the algorithm:
V = {(TrackStatus (x), DeadLine (x))ze T~&~, Dir}

with Vz~t~n = { (TrackS tatus (x)) ~e rc~r }.
The set of basic states is then:

Sv = ({coming, empty} • q-)lT~k4 • {open, close},
Construct a set Q of F-states. For each track x let:
q~(s)=as (DeadLine(x)[s] = oo) and 0~(s)=~z• (DeadLine(x)[s] < ~) .
Then define d(s)=,,j (Dir[s] = open) and d=4r (Dir[s] = close).

211

The set Q of F-states of the system is the set of all formulas:
(AxeT ack & A 5), where ~x E {qx,qx} and 5 e {d,d}.

The initial F-state is the state (AxeT~ack~ qx(s) A d(s)).
It is easy to write formula transitions in the succinct form we discussed above.
Syntactically they almost repeat the description of the algorithm:

(R1) ((TrackStatus(x)[a] = coming A DeadLine(x)[a] = oo)--+ DeadLine(x)[s] =
CT[a] + WaitTime),
(R2) ((TrackStatus(x) [~] : empty A DeadLine(x)[0] < oo) -~ DeadLine(x)[s] =
oo),
(R3) ((Dir[s] = open A ~Sa f eToOpen*[a]) -+ Dir[s] = close),
(R4) ((Dir[o] = close A SafeToOpen*[o]) --~ Dir[s] = open),
where SafeToOpen* [0] is SafeToOpen* with each identifier v replaced by v[cr].
This representation can be easily timed explicitely, that gives the following logical
description of runs used in model checking proof:

((DeadLine(t, x) = oo A Coming(t, x))--*DeadLine(t +, x) = t + WaitTime) (1)

((DeadLine(t, x) < c~ A Empty(t , x)) --~ DeadLine(t +, x) = oc) (2)

((Dir(t) = open A ~SafeToOpen*(t)) ~ Dir(t +) = close) (3)

((Dir(t) = close A SafeToOpen*(t)) --~ Dir(t +) = open) (4)

Sure we must add to these formulas obvious default conventions.

P r o p o s i t i o n 1 The formula transition system for the Railroad Crossing Con-
troller defines the same run as the semantics of block algorithms, and the same
run as the formulas given above.

O n M o d e l C h e c k i n g P r o o f .

T h e o r e m 1 The Railroad Crossing Algorithm satisfies (Safety) and (Depend-
ability) properties.

The proof of theorem 1 [BS96] shows that the only non trivial inference search
rule is to take inf when eliminating positive quantifiers. I. e. if we use a premise
3t~(t , X) we take to = inf{t : ~(t, X)}, and get information on the behavior at
to and t o .
One general observation concerns the fact that the system under consideration
is finite memory in the following sense: there is a constant C such that if there
exists a counter-model for the verification problem then its complexity can be
bounded by C. Such a property permits to reduce the problem to theory of real
addition.

R e f e r e n c e s

[ACHH93] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. He. Hybrid automata:
an algorithmic approach to the specification and verification of hybrid
systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors,
Workshop on Theory of Hybrid Systems, 1992, pages 209-229. Springer
Verlag, 1993. Lect. Notes in Comput. Sci, vol. 736.

212

[AD94]

[BS96]

[Eme90]

[Eme96]

[GH96]

[Cur95]

[Han94]

[Mil90]

IMP92]

R. Alur and D. Dill. A theory of t imed automata. Theoretical Computer
Science, 126:183-235, 1994.
D. Beauquier and A. Slissenko. The railroad crossing problem: Towards
semantics of t imed algorithms and their model checking in high level lan-
guages. TR-96-10, Dept. of Informatics, Univ. Paris-12, 24p., 1996.
A. Emerson. Temporal and model logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science. Vol. B: Formal Models and Semat-
ics, pages 995-1072. Elsevier Science Publishers B.V., 1990.
A. Emerson. Automated temporal reasoning about reactive systems. In
F. Moller and G. Birtwistle, editors, Logic for Concurrency. Structure ver-
sus Automata, pages 41-101. Springer-Verlag, 1996. Series: "Lecture notes
in Computer Science (TutoriM)' , Vol. 1043.
Yu. Gurevich and J. Huggins. The railroad crossing problem: an exper-
iment with instantaneous actions and immediate reactions. In Buning,
H. K., editor, Computer Science Logics, Selected papers from CSL'95,
pages 266-290. Springer-Verlag, 1996. Lect. Notes in Comput. Sci,

vol. 1092.
Yu. Gurevich. Evolving algebra 1993: Lipari guide. In E. BSrger, editor,
Specification and Validation Methods, pages 9-93. Oxford University Press,

1995.
H. A. Hansson. Time and Probability in Formal Design of Distributed
Systems. Elsevier, 1994. Series: "Real Time Safety Critical System", vol.
1. H. Zedan, Series Ed.
R. Milner. Operat ional and algebraic semantics of concurrent processes. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science. Vol. B:
Formal Models and Sematics, pages 1201 1242. Elsevier Science Publishers

B.V., 1990.
Z. Manna and A. Pnueli. Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer Verlag, 1992.

