
Model Checking Through Symbolic Reachability Graph "

Jean Michel Ilid *+ and Khalil Ajami*

* MASI-CNRS URA 818 + Univ. Rend Descartes-ParisV-IUT
Univ. Pierre et Marie Curie-PaisVI 143, av. de Versailles 75016 Paris
4, pl. Jussieu, 75252 Paris

e.mail: Jean-Michel.Ilie@masi.ibp.fr, Khalil.Ajami@masi.ibp.fr

Abstract. A Symbolic Reachability Graph (SRG) is a highly condensed representation of
system state space built automatically from a specification of system in terms of Well-
formed net. The building of such graph profits from the presence of object symmetries to
aggregate either states or actions within symbolic representatives. In this paper, we show
how to make operational the CTL* formal checking system presented in [1]. Our technique
consists in exploiting the SRG by taking into account the object symmetries only if they
leave the formula invariant. The difficulty to bypass is that SRG does not preserve explic-
itly the behavior of the objects specified within formulas. This leads to a new specification
of system, from which we can prove that model checking through a state space is equiva-
lent to model checking through the symbolic teachability graph.

1. Introduction

Checking system correctness can be performed by the verification of CTL* formulas
through a state-transition graph which models the system behavior. Such verification
has to cope with combinatorial explosion problem in space and time, and several works
aim at reducing the size of the graph to be built, with regards to some desired properties.
Effectively, a global state-transition graph of a system composed of many identical
(isomorphic) processes, exhibits a great deal of symmetry reflected in the group of per-
mutations of processes. In the same way, any formula exhibits a certain degree of sym-
metry, reflected in the group of permutations of processes that leave the formula
invariant. The reduction technique consists in gathering into equivalence classes, the
states which cause the same behavior by building a quotient structure defined on both
graph and formula symmetry groups. In [1], a formal approach of model checking
through such quotient structure is proved.
The aim of this paper is to present a technique which makes the former approach oper-
ational. Our method consists in exploiting the theory of Well-formed net and the asso-
ciated symbolic reachability graph, proposed in ~2][3]. Well-formed nets (WN) are
Colored Petri Nets (CPN) which enable one to specify systems in a parametric form on
the basis of object classes and related action types. WN inherits from the concision of
CPN since the same structure can be used to describe the behavior of similar objects.
Symbolic reachability graphs (SRG) abstract the state space of a system specified via a
Well-formed net, by representing classes of states and actions. The equivalence relation
between states is based on structural symmetries which are directly read off from the
types of objects defined in the system specification. By defining convenient types of
actions for these types of objects, it can be ensured that states which are equivalent let
the future behavior of the system unchanged. SRG gathers the following advantages:
to be built automatically from the Well-formed net specification, and, to enable effi-
cient symbolic approach by defining canonical symbolic representatives of states and
actions. Our contribution shows how to specify a system in order to perform the model
checking, directly, through the SRG. The difficulty to bypass is to retrieve the behavior

214

of the objects specified within temporal logic~ formulas. Effectively, SRG are built ac-
cording to definitions of symmetrical object groups for which the identity of objects is
not preserved, i.e. only the nature of objects and .the cardinality of the groups are known.
With respect to a given formula which specifies a property, the starting point of our
method consists in determining the groups of symmetrical objects that leave the formula
invariant in order to isolate objects specified within this formula from their classes in
the WN model. The isolation process is based on the intersection between the two sym-
metry groups of the graph and formula. This intersection allows the construction of a
new group of structural symmetries which is expressed by means of the refinements of
the groups o~symmetrical objects. The WN defined on such refined groups can be used
to build a suitable SRG, through which the formula can be checked. In our context, the
formal approach presented in [1] must be adjusted since the correspondence lemma be-
tween the,quotient and the ordinary structures,is not respected by the original SRG.
The next sec,tions are organized as follows: part 2 briefly recalls the technique to build
SRG and highlights their major properties as well as the difficulties to perform model
checking through it; part 3 presents the refinement approach and the new system spec-
ification that results from this refinement. This specification is used to build a new
SRG; part 4 defines the verification process of a CTL* formula through the resulting
SRG; part 5:contains the formal proof of.the validity of the presented work; part 6 is our
conclusion, We assume that the reader knows the basic theories of CPN, reachability
graphand temporal logic. However, some known notions are defined again.

2. Symbolic Reachability Graph
The building of a SRG starts from the specification of a system in terms of Well-formed
nets (WN) [2]. Such nets are colored Petri net~ but their color domains and the associ-
ated functions are defined from classes and static subclasses of primitive objects. Class-
es gather objects having the same nature, while static subclasses gather objects having
the same nature and behavior. Moreover, in the case of ordered objects, static subclasses
are ordered to preserve the successor relation of objects. For example, one may define
class Process= { P l, P2, P3} in order to model three ordered.processes, and may split Pro-
cesses in two static subclasses the first is.Interactive={ppp2} and the second is
Batch= { P3 }. Like in colored Petri net, a color domain is attached to each node of the net
(place or transition). In Well-formed nets, color domains are defined as cartesian prod-
ucts of either object classes or static subclasses. ~ The colors belonging to a place (with
respect to the place domain) form the place marking. A state of a system is a vector of

marked places called marking.
The dining philosophers is a good example of resource sharing process, with possible
deadlocks, that we can use to present a model of WN. It is used also as a case study for
the verification of CTL* formulas using our metho& In the standard presentation, the
considered classes are ordered, however, we introduce an alternative version in which
we use unordered classes to bring out the reducing effects of using symmetries.

Example 1: Let us consider a finite set of philosophers who spend their time thinking
and eating around a circular table. Initially,, any philosopher has a direct access to a
set of free forks that contains as many forks as the number of philosophers. A philoso-
pher can pick up one fork or two forks if they are free. However, he needs two forks to
eat. After eating, he returns the two forks together. In any case, he does not relax the
forks before eating, therefore, deadlocks appear when all the philosophers have taken

215

one fork in the same time. From a modelling point of view, our philosophers can be in
one of the following three states: "thinking while ignoring the forks", "waiting for a fork
but having another", or "eating". ht terms of Well-formed net, three places are used to
represent these states and a fourth place must be added to model the unused forks. The
color domains attached to these places are defined from the two following basic class-
es: philosophers PH and forks F. By noting C(r) the color domain of node r, we have:
C(Thinking)=PH, C(Waiting)= PHx F, C(Eating)= PHx F, C(Forks)=F. For in-
stance, the marking which models three philosophers and three forks such that the first
thinks, the second waits for a fork but detains the fork number one, and the third eats
with forks number two and three, is the following: m(Thinking) = Phi; m(Wait-

ing)= <Ph2,f t> ; m(Eating)= <Ph ~,f2+f3> = <Ph3,f 2> + <Ph3,f3> ; m(Forks) = O.

Basically, the construction of the SRG is defined from the notion of symbolic marking.

2.1. Symbolic Marking

Roughly speaking, a symbolic marking is a representative of an equivalence class of
markings, for which the equivalence relation is deduced from a set of admissible sym-
metries of colors. Such symmetries operate on the classes of the studied WN. They pre-
serve the static subclasses and the successor relation on ordered classes. Let Nbe a WN.

Definition 2.1.1: Group of Admissible Symmetries
Let CD={C(r)lre P u T } be the set of color domains attached to either places or
transitions in % A symmetry S on a color domain C(r) of CD is a permutation on
C(r). A set of symmetries, ~, on Nis defined as the family of symmetries S on the
elements of CD. (~, o) forms a group called the group of symmetries of N The set
of admissible symmetries of N AS(9~), is a subset of ~ that satisfies the two condi-

tions: (1) (AS(A~,o) is a subgroup of (~ ,o), (2) Let C i be an object class and Di, q

one of its static subclasses, then we have: Vs~ AS(A0,Vce Di, q , s(c)E Di, q .

It must be noted that, admissible symmetries on ordered classes are restricted to rota-
tions in order to preserve the order of colors. In consequence, admissible symmetries of
ordered classes, composed of many static subclasses, are restricted to identity.
In WN, due to the restricted (but well chosen) operators defined on object classes, it has
been proved that symmetrical colors in a given marking cause the same behavior:

Property 2,1.2: Behavioral Equivalence of Symmetrical Colors
Colors of a static subclass in a given marking cause the same behaviors, tn conse-
quence, they cause equivalent markings and firing sequences.

So, for a given state, symmetrical colors can be aggregated and represented by their
quantity and their static subclass while forgetting their identities. Such representation
corresponds to the notion of dynamic subclass that express symbolic marking.

Definition 2.i,3: Dynamic Subclasses and the Associated Symbolic Markings
Let C i be a class of % A dynamic subclass ofC i represents a set of colors belonging
to a static subclass ofC i. It is featured by its nature and its behavior (static subclass)

as well as its cardinality. We note Z~ the 9 dynamic subclass of C i. A symbolic

216

marking is a representative of an equivalence class of markings according to
AS(5~. It is expressed in terms of vector of marked places where colors are sym-
bolically represented by dynamic subclasses. Its useful notation is ~ .

Example 2: The marking of the example 1 can be expressed symbolically by consider-
ing that one philosopher thinks, one waits for a second fork and one eats. The corre-
sponding symbolic marking is deduced by introducing convenient dynamic subclasses
defined on the static subclasses (the class of philosophers presents a static subclass as
well as the class of forks). The class of philosophers is divided in three dynamic sub-
classes, the cardinality of each is one. The class of forks must be split in two dynamic
subclasses, the first is associated with the philosopher who eats and represents two
forks, the second is associated with the philosopher who waits and represents one fork:

> w, ere - , , 2 >

where IZ2I = 2 ; Fn (Forks)= O. In(act, dt represents nine markings obtained by oper-
ating theZ~ine possible permutations on the philosophers and the associated forks pre-
sented in Fn.

2.2. Symbolic Reachability Graph Construction

In [2], a symbolic firing rule is introduced in order to compute directly a new symbolic
marking from a current one. The classical notion of instance of transition is replaced by
the notion of symbolic instance which corresponds to a splitting of the dynamic sub-
classes of the current marking in order to isolate quantities of colors that can be used for
the firing. The definitions of symbolic marking and firing rule allow us to build SRG.
In this graph, the nodes are the symbolic markings expressed in a canonical form.

Example 3: Figure 1 represents the SRG for three philosophers. It contains 6 nodes and
9 arcs while the corresponding reachability graph contains 46 nodes and 81 arcs.

Fig.

The meaning of the markings is: (0) Three philosophers think
(1) Two philosophers think and one philosopher eats (2) Two
Philosophers think and one philosopher waits (3) One phi-
losopher thinks, one waits and one eats (4) One philosopher
thinks, each one of the others waits (5) The three philoso-
phers wait.

1. SRG for three Philosophers

2.3. Checking properties through SRG
Due to color representations in the symbolic approach, two major difficulties appear
when performing model checking through SRG. The first consists in checking proper-
ties based on color identities since identities of colors are not preserved. The second is
due to the fact that path properties expressed symbolically (i.e. expressed for an arbi-
trary quantities of symmetrical colors) cannot be checked. Effectively, it can be proved
that a symbolic path between two symbolic markings may represent not only real paths
but also wrong paths. Here again, path properties which require the verification of color
dependencies between some markings cannot be checked even if they are expressed
symbolically. Fortunately, since SRG is built using admissible symmetries, a new prop-
erty can be deduced from 2.1.2 concerning the representation of color behaviors:

217

Property 2.3.1: Symbolic Representation of Symmetrical Color Behaviors
Colors of a static subclass in a given symbolic marking cause the same behaviors.
In consequence, they cause the same symbolic markings and firing sequences.

Consequently, it is sufficient to prove that a property is verified for a given color to
prove that it is verified for its static subclass. In this case, we can solve the problem of
path properties expressed symbolically by checking the property for any arbitrary color
of the concerned class. Anyhow, SRG allows direct model checking of state properties
expressed symbolically. Effectively, the quantity of colors represented by a dynamic
subclass in a marking represents all the colors that have the same behavior. In conse-
quence, several interesting properties which are not color dependency can be checked
like the absence of deadlock, the existence of home space (resp. unavoidable home
space) or infinite path. The next section copes with the SRG advantages and drawbacks
by presenting our operational model which enables the model checking through SRG.

3. SRG Built with Respect to a Formula

In this section, we show how to check formulas directly through the symbolic reachabil-
ity graph. Formulas are expressed with Computational Tree Logic star (CTL*) pro-
posed in [1], [4] and [5]. In such logic, there are two types of formulas: state formulas
(which are true in a specific state) and path formulas (which are true in the states along
a specific path) [7]. Linear temporal operators are introduced as follows: F (sometimes),
G (always), X (next time) and U (strong until). Moreover, path quantifiers are represent-
ed either by symbol A for all full paths or symbol E for some full paths.
In order to specify properties of WN, formulas must be expressed in terms of classes
and colors of classes. Moreover, they must refer to places since colors in places repre-
sent the system variables assigned to specific values. In fact, state formulas express that
tokens (i.e. markings) exist in places (i.e. mark the places). Depending on the fact that
a color domain of a place p can be built on an object class or a cartesian product of ob-
ject classes, we introduce two kinds of atomic formulas:

(i) o~c ~ Di, q, a= c * p tests if colors c of Di, q mark p according to quantifier cz (univer-
sal or existential) where Di, q is a static subclass of a class Ci;

(ii) (Xi CiIE D l , q l ~inCin E Dn, qo, a= (ci~ cin)* p tests if the tuples of colors

(ci~ cin) of a color domain Dl,ql • • % mark p according to quantifiers c~ii,

where D 1, ql , Dn,% are static subclasses.

Since our model checking is based on propositional formulas, universal and existential
quantifiers are re-expressed in terms of conjunction and disjunction operators. The pre-
vious types of atomic formulas become respectively: (i)a= 0 c e D (c . p) ,

(ii) a=0ci I E Dl,ql... 0cirL~ Dn,qnQ (Cil Cin) *p) where 0 is either the disjunction or con-

junction operator. At last, it must be noted that within some formulas, the colors that
mark a place can be restrained in order to refer to a subdomain of the place color do-
main. Therefore, with respect to a place p appearing in a formula f, we introduce a pro-
jection function which restrains the marking of p to the subdomain of p expressed in f

and noted C(p)lf: Prj (fp) :Bag(C(p)) -__~Bag(C(p) t r) " Bag(C) denotes the set of mark-
ings that can be built on class C. The projection function on place p, with respect to f,
can be generalized for all marked places appearing in f: P @ = < P r j (f p l) ' Prj(fp2) , . . . >.

218

Example 4: Let f = Aph e PH (Ph �9 Eating) be an atomic state formula and consider the

symbolic marking Fn of example 2. We have Prjj(~z)= ~t (Eating)lr so, the verification

must be processed on ~ (Eating). Moreover, only the class of philosophers represented

in fn by the dynamic subclass Z 3 , is taken into account.

The next subparagraph presents the transformation process of the SRG, with respect to
a formula, in order to check the former atomic propositional formulas directly.

3.1. Transformation of SRG with respect to a Formula

Roughly speaking, the conditions that allow the building of a SRG through which a for-
mula can be checked are the three followings: detect the colors that appear in the for-
mula; find symmetries between those colors in order to form the group of symmetries
that leave the formula invariant; and save the admissible symmetries of colors that do
not appear in the formula as well as those of colors which appear in the formula (admis-
sible symmetries that leave .the formula invariant). More practically, the former three
points leads us to succeed the two following stages: (1) the first stage consists in deter-
mining the group that reflects the symmetries expressed by the isolated colors; (2) the
second stage consists in considering only a subgroup of the group of admissible sym-
metries that leave the formula invariant. SRG will be built on the basis of such sub-
group. In WN, this subgroup is determined statically since admissible symmetries can
be deduced, directly, from the specification of static subclasses. It corresponds to a re-
finement of static subclasses in order to isolate the formula colors. Let us assume the
existence of N a given WN. The determination of a subgroup of (AS(5),o) leaving a
formula invariant requires to express the structural symmetries reflected in the formula.
Such symmetries can be defined by the notion of automorphism group of a formula.

Definition 3.1.1: Automorphism Group of a Formula f
Aut(f), is the group of permutations of colors that leave f invariant.

The former definition of automorphism group means that: Vs e Aut(f), s(f)= f , but it
does not always ensure that are respected neither the splitting of colors in static sub-
classes nor the restrictions imposed on symmetries for ordered classes. Therefore we
must consider a subgroup of AS(9~ ~Aut(f) which expresses the admissible symme-
tries that leave f invariant. Of course, the largest subgroup, AS(Ogf)= AS(5'~ ~ Aut(f),
is desirable for maximal compression. AS(3(f) is a restriction of the admissible structur-
al symmetries enabled in N therefore, it is always possible to form a new WN, 9~ac-
cording to this subgroup. The static subclasses of y/fare obtained by refinement of static

subclasses of N This leads to a new definition of admissible symmetries.

Definition 3.1.2: Group of Admissible Symmetries with Respect to a Formula f
The group of admissible symmetries with respect to f, (AS(9~),o), is a subgroup of

(4 ,o) that satisfies one of the two following equivalent conditions:

(1) (AS(~),o) is a subgroup of (~ ,o) such that: A S (N f) = A S (~ ~Aut(f) .
(2) Let C i be an object class and Di, q one of its static subclass, we

have:Vs e AS(~) ,Vc e Di, q, (s(c)~ Di, qAS(f)= f) �9

219

One may note that no refinement is needed for a given class C i when Aut(f)=Sym(Ci)

the set of all the permutatkms on C i. In consequence; if Aut(f)= vSym(C i) then,
1

AS(9~)=AS(9~). The SRG built from ~ e n a b l e s model checking for the formula f. Such
SRG denoted SRGNfrepresents the quotientstructure which saves the largest symme-
tries for Nthat leave f invariant.

P r o p e r t y 3.1.3: C o r r e s p o n d e n c e p r o p e r t y

Let N and f~ be respectively a marking and a path of SRGNj; we have two prop-

erties: (1)Vse AS(Og.f), f holds in Nc::>f holds in s(rh).

(2)Vse AS(~-), f holds through ~r holds through s(?t).

Those property enable one to perform the model checkingpf f, directly through SRGNf
The proof of the former property is included in the proof of ,model checking equivalence
presented in Section 5. The computation of AS(Nf) consists, mainly, in determining
Aut(f) since AS(5~ is given initially by N.

3.2. Determination of Aut(f)

In [1], the rules which determine the automorphism group are presented in the context
of CTL* formulas model checking!through a state tramition graph. Unfortunately,
These rules can not be applied directly in our context andgnany difficulties appear when
we perform model checking through SRG due to the particularity of color representa-
tions in the symbolic approach (see section 2.3). In consequence, the rules are adapted
to cope with those difficulties and to allow the building of a SRG through which a for-
mula can be checked directly. Let 0 be either A or V. In the following, we consider a
formula f built on a class C or a static subclass D of C or a subset B of D.

R u l e s 3 .2 .1: G e n e r i c ru les to d e t e r m i n e Aut(f)

(1) If f is trivial (f or-~f is a validity) then Aut(f) = .uSym(Ci) for all C i.
1

(2) If f= gb~ C built for a specific color b then Aut(f)=Sym(C\{b}).

(3) If f = 0(ci~cj) ~ cg%ci then '7'Ca, CbE C Aut(f)=Aut(gca,%).

(4) If f = 0 q ~ D g q ~ f=0ci~Bgci then (a) Aut(f)=Sym(D) if f is a state for-

mula (b) Vc ~ D Aut(f)=Sym(D\{c }), if f is a state formula.

(5) If f=0ch �9 ~ Dt '0c~n~ Dngcil c or f= . . ,. then �9 , t n 0c,I~B t'''''0c,n~Bngcil ..,c i
(a) Aut(f)= ~Sym (Di) if f is a state formula (b)'V'Cal e D 1 gCa n & Dn

Aut(f)= S y m (D 1 \ { Ca~ }) u . . . u Sym(Dn\ { Can }).

(6) If f is a temporal formula that has one of the forms EXg, EFg, EGg, where
g has one of the forms presented by the current rules, then Aut(f)=Aut(g).

(7) If f is a temporal formula of the form f = g U h where g,h has one of the
forms presented by the current rules then Aut(f)= Aut(g)nAut(h) .

(8) If f is a formula built on many static subclasses from many classes of col-
ors the former rules are applied separately for each static subclass.

220

The major modifications of Aut(f) determination appear in rules (3), (4), (5). Despite
the presence of symmetries in the corresponding formulas, we must isolate arbitrary
colors from the concerning classes or static subclasses to perform model checking. The
isolation process aim to bypass difficulties previously mentioned in section 2.3: In (3),
the verification of the associated predicate c i ~ cj requires the knowledge of the identity

of the concerned colors, in consequence, it is sufficient to isolate two arbitrary colors
from the class in order to detect their behavior. Due to property 2.3.1 the behaviors of
such colors is equivalent to the behavior of each couple of colors of their static subclass-
es. In (4) and (5), the whole symmetries of the colors of D can be saved in case of state
formulas since the verification of a state property by any arbitrary quantity of colors
from the same static subclass (a dynamic subclass) is sufficient to prove that the prop-
erty is verified by all the static subclass (property 2.3.1). Contrary, in case of path prop-
erties, we must isolate an arbitrary chosen color in order to detect its presence along a
symbolic path. In fact, nothing can ensure that a color, from a static subclass, follows a
symbolic path between two symbolic markings even if the color marks those two mark-
ings. Consequently, it is sufficient to isolate an arbitrary color from the concerned static
subclass. Due to property 2.3.1, the behavior of such color through the required sym-
bolic path describes the behavior of the static subclass through that path.
The following formula f expresses that, there is a path through which it is always pos-
sible for any philosopher who waits, to turn back in the future, to a state in which he

thinks: f = Aph ~ pHEG [Ph * Waiting Fork---) F (Ph �9 Thinking)]. Initially, PH has

only one static subclass, PH itself. Formula f is a path formula which corresponds to
rule 4-b of rules 3.2.1, then the automorphism group o f f is: Aut(f)=Sym(Pl-lk{Phl})
where Ph I is chosen arbitrary from PH. We have AS(92)=Sym(PH), in consequence, the
new group of admissible symmetries is AS(gff)=Sym(Pttk{Phl}). In order to check the

formula, PH must be partitioned in two static subclasses: FirstPhilosopher= {Phl} and

OtherPhilosophers={Ph2, Ph3}. The new SRG built on such admissible symmetries is

presented in figure 2. It worth noting that, the advantage of such isolation process is
that static subclasses which do not appear in the formula are saved, like the class Forks
in our example. The presented graph remains highly condensed (11 nodes and 20 arcs

instead of 46 nodes and 81 arcs).

The meaning of the markings is: (0) Three philosophers
think (1) The one of FirstPhilosopher thinks. One of Other-
Philosophers thinks and one eats (2) The one of FirstPhi-
losopher thinks One of OtherPhilosophers thinks and one
waits (3) The one of FirstPhilosopher thinks. One of Other-
Philosophers waits and one eats. (4) The one of FirstPhilos-
opher thinks. Each philosopher of OtherPhilosophers waits
(5) The three philosophers wait (6) The one of FirstPhilos-
opher eats The two of OtherPhilosophers Think (7) The one
of FirstPhilosopher waits. The two of Otherphilosophers
Think (8) The one of FirstPhilosopher waits. One of Other-
Philosophers thinks and one eats (9) The one of FirstPhi-
losopher waits. One of OtherPhilosophers waits and one
thinks (10) The one of the FirstPhilosopher eats. One of the
OtherPhilosophers Thinks, One waits.

Fig. 2. SRG built with respect to formula f for three philosopher

221

The graph depicted in figure 2 contains the SRG presented in figure 1 (nodes 0 to 5).
However, the isolated color Ph I of the static subclass FirstPhilosopher adds, by its be-
havior, new paths to the graph (nodes 6 to 10). The property specified by formula f will
be verified for Ph i , however, the result will be generalized to all the colors of the static
subclass due to property 2.3.1. In fact, since the static subclass FirstPhilosopher con-
tains Ph 1 only, any of its dynamic subclass is a representative of Ph 1.

In the next section we present the model checking process of a formula f through
SRGNjbuilt with respect to f.

4. Model Checking through SRG with respect to a formula

The verification of formula f through SRGGfis explained first for an atomic proposition
formed by simple colors, then we extend it to the case of atomic formulas expressed
with tuples. Finally, we consider general CTL* formulas. We use the standard notation
SRGN r 1~1 k I=f to indicate that a state formula f holds at a symbolic marking rn k (state

of SRG) in the structure SRGNj; similarly, SRGNj;~ I=f means that path formula f

holds along ~. Let us consider atomic formulas built on a class of colors C or a static
subclass D of C. The verification of either conjunctive or disjunctive forms is processed
according to the refinement method imposed by AS(K). The atomic formula

f = Vce D(c ,p) holds in a symbolic marking of p if at least one color of D marks p.

Similarly, formula f = A c s D (c �9 p) holds, with respect to a symbolic marking, if all the

colors of D mark p. In both cases, the verification process must take into account that
the color domains of a place, in a WN, can be complex (i.e. cartesian product of classes),
therefore, a pattern matching must be introduced against the tuples which are expressed
in the formula and those expressed in the marking of places. This matching is processed
according to the application of Prjf(see introduction of section 3) on the corresponding
marking.

Proposition 1: Verification of Disjunctive Atomic Formula on a Simple Domain
SRGN/;N I=f where f= Vcs D(c .p) iff 3Z_cD such that Zc Prjj(r~(p)).

Proof: the ~ direction is proved by definition of symbolic markings. Effectively,

since formula f holds in r~, we can be sure that there is a dynamic subclass repre-

senting some colors of D in rh (p). Moreover, since projection is achieved accord-
ing to formula f, that dynamic subclass is present in the symbolic marking
Prjj(N(p)). the ~ direction is proved since the presence of a dynamic subclass of

D in Prjj(rh(p)), means that a quantity of colors of D exists in ~a with respect to p.

Proposition 2: Verification of Conjunctive Atomic Formula on a Simple Domain
SRGN./; ~ I=f where f = A c ~ D (c �9 p) iff the two conditions hold:

(1)3Z such that (Z= {Z j c D Z j ~ Prjj(r~(p))}), (2) VZ j e Z we have: ~. Z j =]D l .
J

Proof: The proof is very similar to the one of proposition 1 with the exception that

222

condition (2) must be taken into account. For the ~ direction, in order to prove the
second condition, we must consider that all the colors of D are in 6a. In this case,

the cardinality of the union of dynamic subclasses of D, in r~, is equal to the car-
dinality of D. Moreover, since projection is made according to formula f, that dy-
namic subclass is present in Prj./(r~(p)). the ~ direction uses the same reasoning

for the second condition.

Example 5: Let f = Aph ~ OtherPhilosophers (Ph �9 Thinking) and consider ?n o the initial
symbolic marking corresponding to node 0 in Figure 2. In ?no' the marking of place

"Thinking" is ?no(Thinking)= Z~ + Z~ such that Z~ =1 and Z~ =2 where Z~ be-

long to FirstPhilosopher and Z 1 belong to OtherPhilosophers. Hence, the atomic for-

mula f holds in ?n o since a dynamic subclass of OtherPhilosophers exists in this
marking and its cardinality is equal to the one of OtherPhilosophers (proposition 1).

Propositions 1 and 2 can be simply generalized to complex domains as follows:

Proposition 3: Extension to Atomic Formulas on a Complex Color Domain

SRGNfr~l=[f=0ci e D ...0Cine Dn((Ci~ Cin) Op) 1 iffthe two conditions hold:

(1) for each component Ciq e Dq, 3Zq,(Zq = {Z~ CDq Z~ e Prja(rn(p))})-

for each q where 0q= Aq ,we have: j~ Z ~ = [Dqt. (2)

Proof: The proof is a simple generalization of those of 1 and 2.

In order to deal with CTL* formulas, the former verification process can be generalized
by using the rules introduced in [4] and [5]. They have been applied in the general con-
text of state transition graph. They can be applied again due to property 3.1.3 which ex-
presses correspondences of states and paths between the reachability graph and SRGNf
The case of quantified path formulas can be also considered despite the problem pre-
sented in section 2.3 for such formulas. Effectively, due to property 2.3.1 the verifica-
tion of a quantified path formula can be reduced to the verification of the same formula
for one arbitrary object of its quantification domain. Let gl and g2 be two path formulas

such that gl=0cisDigci and g2=0cqsDl...0Cin~Dn/(Ci,'""Cin) " p) where DI..,

Di,..D n are static subclasses.

Proposition 4: Conjunctive and Disjunctive Path Formulas
(1) SRGNfi ~ I=gl iff SRGNf $ L=gca where c a is the color chosen to be isolated by

the rule 4 of rules 3.2.1.
where (Cat Can) is the tuple of col- (2) S R G ~ f ~ I=g e iff SRGNfi r L= g%~ ca n

ors chosen to be isolated by the rule 5 of 3.2.1.
Proof: This proof can be deduced from 2.3.1 for each static subclass separately.

223

It must be noted that any CTL* formula can be transformed to be expressed by the
forms presented in the model checking rules of [4][5]. The transformation is performed
using the following general transformations [5]: (1) f/x g----,(--,fv--,g), f---~ g-=--,fv g ;

(2)A(f)---,E(-,f) ; (3) Ff--TrueUf ; (4) Gf-----,F~f--,(TrueU-,f).

Example 6: Let us perform the model checking through SRG depicted in Figure 2 and
built with respect to f = Aph E pHEG [Ph �9 Waiting Fork---) F (Ph * Thinking)]. This for-

mula is transformed using the four transformation rules presented in [5] and reported
in this section previously. The transformed formula:
f= AphE~{ TrueU--,[(--,Ph�9 WaitingFork) v (TrueU (Pho Thinking))] } is verified
using the propositions of section 4: from proposition 4, we can reduce the model check-
ing o f f to the model checking o f f l expressed by Ph I selected by using rule 5 of rules

3.2.1: f l = E--,{TrueU[(Ph! �9 WaitingFork) A--,(TrueU(Phl �9 }, then
formula f l is checked recursively using the rules presented in [4] and correspond to the
temporal and boolean operators expressed in the formula. Finally, Proposition 1 is ap-
plied in order to check the atomic subformulas, fl, l = Phi �9 WaitingFork and

fl,2 = Phi �9 Thinking, at the end of the recursion loop. hz consequence, by scanning

SRGNf of figure 2 we can find a path ~ = r~z8,/~/7,/~/6,1rt (through which f holds (t~t i

is the symbolic marking corresponding to node i).

5. The Model Checking Equivalence

We prove that our verification method through SRGNf is equivalent to the one per-
formed through the reachability graph of Nnoted RG N
Theorem:

(i) Model checking equivalence for state formulas:
RGNm' I=fc=~SRGNfNI=f ' Vm'= s(t5) where s~ AS(5~f).

(ii) Model checking equivalence for path formulas:

(a) From M, if rc=m 0 m n is a path where M,rcl=f then there is ~ = ffa 0 r~n,

a corresponding representatives, such that SRGN r r~ I=f.

(b) From SRGNj; if fc = r5 0 mn is a path of symbolic markings for which

SRGN/~2 I=f then Vm0"= s(r~0) where s~ AS(~-), and Vrt = m" 0 m" n

where m i' = S(l~i) we have RGNrcl=f.

Proof: For (i), the equivalence is proved by the following reasoning: assume that s
is a symmetry of AS(@) such that s(m')=r~. In consequence RGNs(m')l=s(f)

Since s(f)=f by definition of AS(gTf), we have SRGNf rh I=f For (ii), direction (a)

is immediate since for any firing sequence there is a symbolic firing sequence in the
associated SRG[3]. Direction (b) is proved by induction on the number of path
markings. Assume that ~ = 6a0, rh I and consider an arbitrary marking mo' = s(6ao)

where s ~ AS(~c). Assume that there is a marking ml ' = s(r~ l) for which the for-

224

mula does not hold on path ~ = m'0,m' 1 . In consequence, two possible cases can

appear: (1) both source and destination markings of the formula do not hold in the
associated source and destination markings in SRGNj; (2) one of them does not
hold in the associated source or destination markings in SRGNf In fact, this is not
possible because of (i). If we consider now that (b) holds for a path which contains
n markings we can simply deduce that it holds for a path of (n+l) markings by rea-
soning similarly for each firing of the path.

6. Conclusion

The proposed model checking technique, of CTL* formulas through symbolic reach-
ability graph, is derived from the symbolic theory, based on Well-formed nets and the
formal approach of model checking in [1]. Due to the ability of refining static subclass-
es in order to take the symmetries expressed in a formula into account, we have shown
that CTL* formula are able to be checked through a symbolic reachability graph built
on the refined static subclasses. The main advantage of our method is that it can lead to
a complete automatic verification, due to the automatic building of SRG that takes the
structural symmetries of system objects into account. Like in [1][4][5], a graph is built
for a class of properties specified by a class of formulas which correspond to the same
automorphism group. Currently, we aim at extending this method in order to deal with
specifications, in terms of Well-formed nets, based on partial symmetries and the asso-
ciated Extended Symbolic Reachabitity Graph [6]. This correspond to the case of a sys-
tem, the behaviors of which sometimes depend on the process identities (i.e. static
priorities based on identities), and sometimes not. However, our perspective is to en-
force the efficiency of model checking process by relaxing the dependency of the for-
mula on the graph computations.

7. References
[1] E. Allen Emerson, A. Prasad Sistla, "Symmetry and Model Checking", 5th con-

ference on Computer Aided Verification (CAV), June 1993.
[2] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, "On Well-formed Col-

ored Nets and their Symbolic Reachability Graph", proc. of 1 lth International
Conference on Application and Theory of Petri Nets, Paris-France, June 1990.

[3] G. Chiota, R. Gaeta, "Efficient Simulation of Parallel Architectures Exploiting
Symmetric Well-formed Petri Net Models", 6th International Workshop on Pet-
ri,nets and Performance Models, Durham, NC, USA, October 1995.

[4] E.M. Clarke, T. Filkorne, S. Jha, "Exploiting Symmetry In Temporal Logic
Model Checking", 5th Computer Aided Verification (CAV), June 1993.

[5] E. Clarke,O. Grumberg,D. Long, "Verification Tools for Finite-State Concur-
rear Systems", "A Decade of Concurrency - Reflections and Perspectives",

LNCS vol 803, 1994.
[6] S. Haddad, JM. Ili6, B. Zouari, M. Taghelit, "Symbolic Reachability Graph and

Partial Symmetries", In Proc. of the 16th International Conference on Applica-
tion and Theory of Petri Nets, pp 238-257, Torino, Italy, June 1995.

[7] Z. Manna, A. Pnueli. "The temporal Logic of Reactive and Concurrent Systems:

Specification", Springer-Verlag,1992.

