
Inclusion Constra ints over
N o n - e m p t y Sets of Trees

Martin Mfiller 1 , Joachim Niehren 1 and Andreas Podelski 2

1 Programming System Lab,
Universitiit des Smurlandes, 66041 Sa~rbr/icken~ Germany

{mmueller, niehren}@ps, uni-sb, de
2 Max-Planck-Institut fiir Informatik~

Im Stadtwald; 66123 Saarbr/icken, Germany
podelski~mpi-sb.mpg.de

Abs t rac t . We present a new constraint system called INES. Its con-
straints axe conjunctions of inclusions $1Ct2 between first-order terms
(without set operators) which axe interpreted over non-empty sets of
trees. The existing systems of set constraints can express INES con-
straints only if they include negation. Their satisfiability problem is
NEXPTIME-complete. We present an incremental algorithm that solves
the satisfiability problem of INES constraints in cubic time. We intend
to apply INES constraints for type analysis for a concurrent constraint
programming language.

1 I n t r o d u c t i o n

We propose a new constraint system called INES (Inclusions over Non-Empty
Sets) and present an incremental algorithm to decide the satisfiability of INES
constraints in t ime O(n3). INES constraints are conjunctions of inclusions tiC_t2
between first-order terms (without set operators) which are interpreted over the
domain of non-empty sets of trees. In this paper we focus on sets of possibly
infinite trees. All given results can be easily adap ted to fmite trees.

An IsEs-constraint tlC_t~ is satisfiable over non-empty sets if and only if
tl~_@ A tlCt2 is satisfiable over a rb i t ra ry sets. Note tha t the constraint tq:0
cannot be expressed by positive set constraints only [16]. The expressiveness of
INES constraints is subsumed by tha t of set constraints with negation [9, 16]. In
the case of finite trees, the satisfiability problem of set constraints with negation
is known to be decidable [1, 13]; it is complete for nondeterminist ic exponential
t ime [9, 10]. This result implies tha t the satisfiability problem of INES constraints
over sets of finite trees is decidable. The corresponding problem for infinite trees
has not been considered before.

We characterize the satisfiability of INES constraints by a set of axioms such tha t
an INES constraint is satisfiable over non-empty sets if and only if it is satisfiable
in some model of these axioms. These axioms define a fixpoint algorithm tha t
closes a given input constraint under its consequences with respect to the axioms.

346

We prove that a constraint ~ is satisfiable if and only if the algorithm with
input ~ does not derive _k as a consequence of ~. All axioms (for infinite trees)
will be discussed later in this introduction.

Sets ve r sus Trees . The satisfiability problems of several classes of first-order
formulae interpreted over trees and over non-empty sets of trees are closely
related. The following two instances of this observation have inspired our choice
of axioms or underly our proofs.

Equality constraints are conjunctions of equations t l : t2 between first-order
terms. Over sets, they can be expressed bY inclusion constraints due to anti-
symmetry of set inclusion (tl=t2 ++ tiC_t2 A t2Ctl). Actually, even the first-
order theories of equality constraints over trees and of equality constraints over
non-empty sets of trees coincide. This follows from the complete axiomatization
of the first-order theory of equality constraints over trees [18, 19, 12] since its
axioms also hold over non-empty sets of trees (bu~ don' t over possibly empty

sets).

There exists a natural interpretation of INsS-constraint over tree like structures
that we call tree prefixes. In a different context [6] tree prefixes are called BShm
trees (without A-binders). Tree prefixes come with a natural ordering relation
where the empty tree prefix is the greatest element. We prove that an INBS
constraint is satisfiable over non-empty sets of trees if and only if it is satisfiable
over tree prefixes (where the inclusion symbol is interpreted as the inverse of the
prefix ordering on tree prefixes).

A x i o m s . The first two axioms we need postulate the reflexivity and transitivity
of the inclusion relation. We also assume the following decomposition axiom (here
formulated for a binary function symbol]) .

f (x ,y)C f(x ' ,y ') -+ xCx' A yCy'

This axiom holds over non-empty sets of trees but not over possibly empty sets,
since every variable assignment a with a(x) = O or c~(y) = 0 is a solution of
f (x ,y)Cf (x ' , y ') but not necessarily of xC_x' A yCy'. An analogous statement

holds for the following clash axiom.

f (x ,y)Cg(x ' ,y ') -+ 2_ for f r g

These axioms do not suffice to characterize the satisfiability of INES constraints.
For instance, the unsatisfiability of the constraint ~ given by xCg(x) A xCg(y) A
yCz A zCa is not derivable with these axioms alone. We need further axioms
that use non-disjointness constraints tl ~t2 defined as tlNt2~_O. For the nondis-
jointness relation we require reflexivity and symmetry and a decomposition ax-

iom as for the inclusion relation.
/ (y , z') - , y y' A fz'

Finally, we assume a clash axiom similar to the one for inclusion and require
nondisjointness to be compatible with inclusion in the following sense.

x~(z AxC_y ~ y~(z

347

Now reconsider the constraint ~ given above and observe that we can derive
x~(x by reflexivity, then x~(y by decomposition, and x~z by compatibility. This
yields a clash with xCg(x) A zC_a.

A l g o r i t h m a n d C o m p l e x i t y . The above axioms yield an algorithm tha t adds
constraints of the form xCy, x[y to a given input constraint ~ until ~ is closed
under all axioms or implies 2 . The INES constraint xCtl A ... A xCt~ expresses
the n sets denoted by the terms t l , . . . , t~ have a non-empty intersection. Fortu-
nately, it is not necessary to add k-ary non-disjointness constraints of the form
x l N . . . Axk~0 (which can be expressed by the formula 3y(yC_xl A. . . A yCx~))
of which there are exponentially many. Instead, our algorithm adds at most
O(n 2) constraints to the input constraint ~, where n is the number of variables
in ~. The addition of a single constraint can be implemented such tha t it costs
time O(n). This yields an implementation of our algorithm with t ime complexity
O(n3). This implementation can be organized incrementally.

T y p e Ana lys i s . One application for IN~.S constraints which we are investi-
gating in [23] is type analysis for concurrent constraint programming [17, 28], in
particular Oz [29]. As formal foundations we intend to use the calculi in [25, 26].
There, INES constraints are used to approximate the set of run-t ime values for
program variables. Since values in Oz include infinite trees, it is important that
INES allows an interpretation over sets of possibly infinite trees. It is considered
an error if the set of possible run-time values is empty for some variable. This
fact was our initial motivation for the choice of non-empty sets of trees as the
interpretation domain for INES constraints.

P l a n o f t h e P a p e r . In Section 2, we discuss relate work. In Section 3, we
define the syntax and semantics of INES constraints and in Section 4, we present
the axioms and the algorithm. In Section 5, we prove the completeness of our
algorithm. In Section 6, we compare the interpretations of INES constraints over
tree prefixes and over non-empty sets of trees. Due to space limitations, we omit
the details of the proofs in the conference version of the paper. 1

2 R e l a t e d W o r k

S t a n d a r d S e t C o n s t r a i n t s . Set constraints as in [2, 5,]0, 15] are inclusions
between first-order terms with set operators interpreted over sets of finite trees.
Our algorithm can be adapted such that it solves a subclass of set constraints

1 The full version of this paper [24] contains several further appendixes. We give an
example illustrating program analysis for Oz with INES constraints. We detail the
implementation of our the algorithm with incremental O(n ~) complexity. We adapt
the algorithm to the finite-tree case and to a subclass of standard set constraints
(interpreted over possibly empty sets of finite trees) with explicit non-emptiness
constraints x ~ . We also prove that satisfiability of atomic set constraints (standard
set constraints without set operators and negation) is invariant with respect to the
choice of finite or infinite trees.

348

without set operators in cubic time (see [24]). The general case is nondeterminis-
tically exponential time complete as proved in [1, 13]. The subclass that we can
solve in cubic time syntactically extends the INES constraints with explicit non-
emptiness constraint xq:0 (see [24]). Note that the satisfiability of these set con-
straints depends on the choice of finite or infinite trees (consider x C f (x) A x~0),
which is in contrast to standard set constraints without negation. Our algorithm
accounts for finiteness through the occur check.

Atomic Set Constra ints . Heintze and Jaffar consider so-called atomic set
constraints [15] which syntactically coincide with INES constraints but are in-
terpreted over possibly empty sets of finite trees. The satisfiability problem for
atomic set constraints is also O (n3). This result is implicit in the combined results
of [14] and [15]. An explicit proof is given in the full version of this paper [24].

Set Cons t ra in t s for Type Analysis. Aiken et al. [3, 4] use constraints
over specific sets of trees called "types" for the type analysis of FL. There is a
minimal type 0 which - in terms of constraint solving - behaves just like the
empty set in standard set constraints (although it is not an empty set from the
types point of view but contains a value denoting non-termination). In contrast
to the constraints of this paper, their set constraints provide for union and
intersection. One of the optimizations used by Aiken et al. is to strengthen the
following constraint simplification rule by dropping the disjuncts in brackets [4].

f (x , y)C f(x ' , y') --~ xCx' A yC_y' [VxC0 V yC0]

As stated in [4], this optimization does not preserve soundness (f(a, O)Cf(b, O)
holds but aCb A 0C0 does not). It might be possible to justify it by using non-
empty sets as interpretation domain. This is left to further research.

En ta i lmen t and Independence for Ines Cons t ra in t s . Charatonik and
Podelski [11] give an algorithm which decides the entailment problem between
INES constraints when interpreted over sets of finite trees. They also decide the
satisfiability of INES constraints with negation in the finite tree case. The results
in [11] do not include any of the results presented here since they use as an
explicit prerequisite the fact that satisfiability of INES constraints is decidable.

Tarskian Set Const ra in ts . MacAllester and Givan [21] give a cubic algorithm
which decides satisfiability for a class of Tarskian set constraints [22], and which
also contains a non-disjointness constraint. Apart from this syntactic similarity,
the two satisfiability problems are rather different problems since Tarskian set
constraints are not interpreted over the domain of trees (this is also observed
in [22]). A related open question is whether our axioms define a local theory [20,
8], which would also proof the cubic complexity bound of our algorithm.

3 S y n t a x a n d S e m a n t i c s o f I n e s C o n s t r a i n t s

We assume a set of variables ranged over by x,y, z and a signature ~ that defines
a set of]unction symbols f , g and their respective arity n > O. Constants (i.e.
function symbols of arity 0) are denoted with a and b.

349

Trees . We base the definition of trees on the notion of paths since we wish to
include infinite trees. Paths wilt turn out central for our proofs in Section 5. A
path p is a sequence of positive integers ranged over by i, j , n, m. The empty path
is denoted by ~. We write the free-monoid concatenation of paths p and q as pq;
we have ~p = pe = p. Given paths p and q, q is called a prefix of p if p = qpt for
some path pr.

Let T be a set of pairs (p, f) of paths p and function symbols f . We say that T
is prefix closed, if (p, f) E ~ and q is a prefix of p implies tha t there is a g such
that (q, g) E T. It is path consistent, if (p, f) E z and (p, g) E ~- implies f=g.
We call ~- arity consistent, if (p, f) E ~-, (p/, g) E ~" implies tha t i �9 { 1 , . . . , n}
provided the arity of] is n. Finally, 7 is called arity complete, if (p, f) �9 ~-,
where the arity of] is n, implies for all i �9 {1 , . . . ,n} the existence of a g with
(p / ,g) �9

A (possibly infinite) tree ~ is a set of pairs (p, f) that is non-empty, prefix closed,
arity complete, pa th consistent, and arity consistent. The set of all (possibly
infinite) trees over ,U is denoted by Tree and the set of all non-empty sets of
trees by P+(Tree).

Ines C o n s t r a i n t s . An INES constraint tlC_t~l A.. . A t~Ct~ is a conjunction of
inclusions between first-order terms t defined by the following abstract syntax.

t ::= x l f (~)

Here and throughout the paper, t stands for a sequence of terms and we assume
implicitly that the length of t coincides with the arity of f . We interpret INES
constraints over the structure P+ (Tree) of non-empty sets of trees. In this struc-
ture, a function symbol f of ~ is interpreted as elementwise tree constructor
and the relation symbol C_ as subset relation. We call a first-order formula over
INES constraint satisfiable if it is satisfiable in the structure P+ (Tree). Two first-
order formulae over INES constraints are called equivalent if they are equivalently
interpreted in P+(Tree).

F l a t I n e s C o n s t r a i n t s . For algorithmic reasons, we use an alternative con-
straint syntax in the sequel. First, we restrict ourselves to flat terms f (5) and x
instead of possibly deep terms t. Second, we use equalities x = f (~) rather than
inclusions xCf(~) and f(~)Cx (this is a mat te r of taste). And third, we need
binary non-disjointness constraints x~(y. Their semantics is given by the equiva-
lence to the formula xNy~O over sets of trees. Over non-empty sets of trees, x~y
is equivalent to 3z(zCx A zCy). Crucially, however, nondisjointness constraints
x~y avoid explicit existential quantification in our algorithm.

These three steps lead us to fiat INES constraints ~ defined as follows.

: := l x c y [I x 'y
We identify flat INES constraints ~ up to associativity and commutat iv i ty of con-
junction, i.e_, we consider ~a as a multiset of inclusions xCy, equalities x=f(~]),
and non-disjointness constraints x~(y.

350

From now on, we will consider only flat INES constraints and call them con-
straints for short. This is justified by the following Proposition. Let the size
of a constraint ~ be the number of function symbol occurrences plus variable
occurrences in ~.

P r o p o s i t i o n 1. The satisfiability problems of INES constraints and of fiat INES
constraints have the same time complexity up to a linear transformation.

4 A x i o m s a n d A l g o r i t h m

We present a set of axioms valid for INBs-constraints interpreted over non-empty
sets of trees. In a second step, we interpret these axioms as an algorithm that
solves the satisfiability problem of INBS constraints. The correctness and the
complexity of this algorithm will be proved in Section 5.

A1.

A2.

A3.

A4.

xCx and xGy A yCz -~ xC_z

zcC_y--+m~y and xCyAx][z - . 4y~z and x~(y-a.y~x

~=f(~) ^~[~' ^ ~'=g(~) --+ _L for f -:g

AS. ~=I(~) ^ *[(~' A ~'=l(~) -~ ~1;~

Table 1. Axioms of INES constraints over non-empty sets of infinite trees

Table 1 contains five rules A1-A5 representing sets of axioms- 2 The union of
these sets is denoted by A. For instance, a rule xC_x represents the infinite set
of axioms that is obtained by instantiation of the meta variable x with concrete
variables. Note tha t an axiom is either a constraint ~, an implication between

constraints s -+ r or an implication ~o -+ _L.

P r o p o s i t i o n 2 . The structure P+(Tree) is a model of the axioms in A.

Proof. By a routine check. We note that the non-emptiness assumption of

P+(Tree) is essential for axioms A2 and A3.1. []

2 Note that these axioms differ from the ones given in the introduction. The constraints
used there are not flat and the variable-variable case xC_y and x ~y are omitted.
Indeed~ the axioms in the introduction are semantically complet% although this is
non-trivial to see and depends on the correctness of the algorithm presented here.

351

The Algor i thm. The set of axioms A can be considered as a (naive) fixed
point algorithm A that, given an input constraint ~, iteratively adds logical
consequences of AU{~} to ~. More precisely, in every step A inputs a constraint
and either terminates with 2 or outputs a constraint ~ A r Termination with
2_ takes place if there exists r E ~ such that r _+ _L E A. Output of ~ A r is
possible if r E A or there exists r in ~ with r ~ r E A.

Example 1. A first type of inconsistency depends on the transitivity of set inclu-
sion. Here is a typical example:

x=a A xCy A yCz A z=b ~ 2_ for a ~ b

Algorithm A may add xCz by A1.2, then x~[z with A3.1, and then terminate
with 2_ by A4.

Example 2. A second type of inconsistency comes with implicit or explicit non-
disjointness requirements. For illustration, we consider:

x=a A zCx A zC_y A y=b --+ 2_ for for a r b

Algorithm A may add z~(x by A3.1, then x]~z via A3.3, then x~(y with A3.2, and
finally terminate with 2_ via A4.

Example 3. Inconsistencies of the above two types may be detected by structural
reasoning with A2. Consider:

x = f (x) A x = f (z) A z=a ~ _L

Algorithm A may add xC_x by A1.1, then xC_z with A2, then x][z by A3.1, and
finally terminate with 2_ with A4.

Example 4. We need another structural argument based on A5 for deriving the
unsatisfiability of the following constraint.

x = f (x) A zCx A zCy A y=f (x ') A x'=a --+ 2.

Algorithm A may add xXy after several steps as shown in Example 2. Then it
may proceed with x ~ x I via A5 and terminate with 2. via A4.

Terminat ion. Algorithm A can be organized in a terminating manner by
adding a simple control. Given an input constraint ~2, we add only such con-
straints xXy and xCy to ~ which are not contained in T. We also restrict re-
flexivity of inclusion xC_x to such variables x occurring in ~. Given a subset S
of A, a constraint ~ is called A%closed, if algorithm A under the given control
and restricted to the axioms in A ~ cannot proceed. (Note that constraints do
not contain 2. by definition.) This defines the notion of A-closedness but also of
Al-closedness, A2-closedness, etc., which will be needed later on.

352

Example 5. Our control takes care of termination in presence of cycles like
x=f (x) . For instance, the following constraint is A-closed.

x = f (x) A xC_y A y = f (x) A xCx A yCy A x ~ x A y ~y A x~ y A y ~x

In particular, A2 and A5 do not loop through the cycle x = f (x) infinitely often.

P r o p o s i t i o n 3 . If ~ is a constraint with m variables then algorithm A with
input ~ terminates under the above control in at most 2. m 2 steps. []

Proof. Since A does not introduce new variables, it may add at most m 2 non-
disjointness constraints x~y and m 2 inclusions xC_y. []

P r o p o s i t i o n 4. Every A-closed constraint ~ is satisfiable over P+(Tree).

The proof of this s tatement is the subject of Section 5 and detailed in [24]. There,
we construct the greatest solution for a satisfiable constraint (Lemma 9). Note
that constraints in general do not have a smallest solution (consider xC_f(x y)).

T h e o r e m 5. The satisfiability of INES constraints can be decided in time O(n 3)
(offline and online) where n is the constraint size.

Proof. Proposition 2 shows that ~ is unsatisfiable if A started with ~ terminates
with _l_. Proposition 4 proves that ~ is satisfiable if A started with ~ terminates
with a constraint. Since A terminates for all input constraints under the above
control (Proposition 3), this yields a effective decision procedure. The complexity
statement is proved with Proposit ion 14 in [24]. The main idea is that every step
of algorithm A can be implemented in time O(n) and that there are O(n 2) steps
(Proposition 3). 3 In the proof of Proposition 14 [24], we present an incremental
implementation of algorithm A. It exploits tha t algorithm A leaves the order
unspecified in which axioms in A are applied. []

There is a class of constraints on which algorithm A indeed takes cubic time,
namely the inclusions cycles xl C_x2 A . . . A x~- i C_x~ A x~C_Xl where n > 1. The
closure under A is the full transitive closure A{xiC_xj I i , j C { 1 . . . n } } plus the
corresponding nomdisjointness constraints.

5 C o m p l e t e n e s s

The goal of this Section is to prove the completeness of our algorithm as stated
in Proposition 4. We have to construct a solution for every A-closed constraint.
The idea is to construct solution in a substructure of P+ (Tree) the structure of

tree prefixes.

3 Every step of algorithm A costs time O(n) only with respect to an amortized time
~nMysis, which we do not make explicit in our complexity proof in [24].

353

Tree Prefixes. A tree prefix T is a set of pairs (p, f) that is prefix closed, path
consistent, and arity consistent. Note that every tree is a tree prefix. The set of
all tree prefixes is denoted by Prefix. We can naturally interpret INES constraints
over tree prefixes such that Prefix becomes a structure. Function symbols f C ,U
are interpreted as tree prefix constructors (generalizing tree constructors). The
inclusion symbol c is interpreted as the inverted subset relation on tree prefixes
that we denote with <_ (i.e., T1 < "r2 iff 71 D ~-2). The relation ~-1 ~-2 holds over
Prefix iff ~-1 O T2 is path consistent (and hence a tree prefix).

Propos i t ion 6. Prefix is a substructure of P+ (Tree) with respect to the embed-
ding Trees : Prefix-+ P+(Tree) given by:

Trees(r) = {r' [r' is a tree such that r ' <_ 7}

Proof. The mapping Trees is a homomorphism witL respect to function sym-
bols f E ~ and the relation symbols _c and]'. []

Corol lary 7. I f a constraint is satisfiable over Prefix then it is satisfiable over
P+ (Tree).

Pro@ For constraints xCy, x=f(~), and x f y , this follows from Proposition 6.
A conjunction of such constraints is satisfiable if all conjuncts are satisfiable. []

P a t h Reachabili ty. We introduce the path reachability relations -~p and
the notion of path consistency with respect to constraints. For all paths p and
constraint ~, we define a binary relation "~v, where x -~z~p y reads as "y is
reachable from x over path p in ~":

x ~ y if xC_yin

x-,~v yi if x = f (y l . . . y ~ . . . y ~) in ~,
x-~pq y if x-~Vp u and u -~q y.

We define relations x ~ p f meaning " f can be reached from x via path p in ~":

x -,~p f if x -~p y and y=f(~) in ~,

For example, if ~a is the constraint xC_y A y = f (u , z) A z=g(x) then the following
reachability from x relationships hold: x - ~ y, x "~2 z, x "~21 x, x "~ 21 y, etc.,
as well as x - ,~ f , x ~ 2 g, x "~21 f , etc.

Defini t ion 8 P a t h Consistency. We call a constraint ~ path consistent if the
following two conditions hold for all x, y, p, f , and g.

1. I f x ~ p g, xCx , and x ~ p f then f = g.

2. If x ~ p g, x J[y, and y ~ p f then f = g.

354

L e m m a 9 . Every A1-A2-closed and path consistent constraint is satisfiable over
Prefix.

L e m m a 10. Every A3-Ab-closed constraint is path consistent.

P r o o f of Propos i t ion 4. We have to show that every A-closed constraint ~ is
satisfiable. ~ is path consistent by Lemma 10, satisfiable in Prefix by Lemma 9,
and hence satisfiable in P+(Tree) by Corollary 7. []

6 N o n - E m p t y S e t s v e r s u s T r e e s

We discuss interpretations of INES constraints over tree prefixes and over non-
empty sets of trees. For the fragment of equality constraints we also consider an
interpretation over trees.

Theo rem 11. Given an INES constrains ~, the following three statements are
equivalent:

1. ~ is satisfiable (over P+(Tree)).

2. W is satisfiable over Prefix.

3. ~ is satisfiable in some model of the axioms in A.

Proof. 1) to 3). If ~ is satisfiable over P+(Tree), then it is satisfiable in some
model of A, since P+(Tree) is a model of A by Proposition 2.

3) to 2). Let ~ be satisfiable in some model of A. Algorithm A terminates when
started with ~ by Proposition 3. It outputs a constraint r (and not _L) that
is equivalent to ~ in all models of A. r is A-closed and hence satisfiable over
Prefix by Lemmata 9 and 10.

2) to 1). If ~p is satisfiable over Prefix then it is satisfiable by Corollary 7. []

An equality constraint is a conjunction of equalities x=y and x=f(~]). Over
P+(Tree), equalities can be expressed by inclusions since the inclusion order-

ing is antisymmetric (x=y ++ xCy A yCx).

Th eo rem 12. The three first-order theories of equality constraints over non-
empty sets of trees, over tree prefixes, and over trees coincide (i.e., of the struc-
tures P+ (Tree), Prefix and Tree). 4

Proof. This follows from the fact that all axioms of the complete axiomatization
of trees [18, 19, 12] are valid for non-empty sets of trees. This holds for the axioms
of the form V~2!~(xl=fl(~ Y) A. . . A x,~=f~(~ ~)). Validity of the other axioms
is immediate since they are already contained in A with inclusion replaced for

[]
equality.
4 Independently, A. Colmerauer observed this for P+(Tree) and Tree (pers. comm.).

355

In contrast, first-order formulae over inclusion constraints can distinguish the
structures P+(Tree) and Prefix. A formula that holds over Prefix but not over
P+ (Tree) is given by

Vx(aC_x A bC_x -~ Vy(yCx))

where a r b. Anotlmr formula distinguishing both structures comes with a
constraint-based reformulation of the coherence property (defined for complete
partial orders in [6]).

We say tha t an ordering relation satisfies the coherence property if it satisfies the
following formulae for all finite sets I (where inclusion symbol is interpreted as
the given ordering).

h , gz(zC_x A zc_xj) --+ 3z(A e zcx)
This formula states that for all variable assignment (~ the elements from the
finite set {c~(xi)] i C I} have a common lower bound if every two of its elements
a(xl) ,a(xj) have (i , j ,E { 1 , . . . , n }) . For inclusion over non-empty sets this
property does not hold. There it states the nomemptiness of an n-intersection
tlM...Mt,~ ff all palrwise intersections tiNtj are non-empty (i , j E { 1 . . . n }) ,
which is refuted by the example I = (1,2,3} and a(Xl) = (a,b}, a(x2) = (a,c},
(~(x3) = {b, c} for distinct constants a, b, c.

P r o p o s i t i o n 13. The tree prefix ordering < satisfies the coherence property.

Proof. For some finite index set Y C I and variable assignment a into Prefix,
note tha t a is a solution of 3z(Ai~ J zCx~) iff U ~ j a(xi) is pa th consistent. If c~
is a solution of all 3z(zC_xi A zCxj) then all palrwise unions c~(x~) U c~(xj) are
path consistent such that the union Uiex a(x~) is path consistent. Hence ~ is a
solution of 3z (A ~ ! zC_xi). []

Acknowledgements . We would like to thank David Basin, Denys Duchier, Witold
Charatonik, Harald Ganzinger, Gert Smolka~ Ralf Treinen and Uwe Waldmann~ as well
as the anonymous referees for valuable comments on drafts of this paper. The research
reported in this paper has been supported by the the Esprit Working Group CCL II
(EP 22457) and the Deutsche Forschungsgemeinschaft through the Graduiertenkolleg
Kognitionswissenschaft and the SFB 378 at the Universits des Saarlandes.

R e f e r e n c e s

1. A. Aiken, D. Kozen, and E. Wimmers. Decidability of Systems of Set Constraints
with Negative Constraints. Information and Computation~ 1995.

2. A. Aiken and E. Wimmers. Solving Systems of Set Constraints. In Proc. 7 th LICS,
pp. 329-340. IEEE, 1992.

3. A. Aiken and E. Wimmers. Type Inclusion Constraints and Type Inference. In
Proc. 6 ~h FPCA, pp. 31-41. 1993.

4. A. Aiken, E. Wimmers, and T. Lakshman. Soft Typing with Conditional Types.
In Proc. 21 "~ POPL. ACM, 1994.

356

5. L. Bachmair, H. Ganzinger, and U. Waldmann. Set Constraints are the Monadic
Class. In Proc. 8 *h LICS, pp. 75-83. IEEE, 1993.

6. H. P. Barendregt. The Type Free Lambda Calculus. In Barwise [7], 1977.
7. J. Barwise, ed. Handbook of Mathematical Logic. Number 90 in Studies in Logic.

North-Holland, 1977.
8. D. Basin and H. Ganzinger. Automated Complexity Analysis Based on Ordered

Resolution. In 11 *h LICS. IEEE, 1996.
9. W. Charatonik and L. Pacholski. Negative set constraints with equality. In

Proc. 9 *h LICS, pp. 128-136. 1994.
10. W. Charatonik and L. Pacholski. Set constraints with projections are in NEXP-

TIME. In Proc. 35 th FOCS, pp. 642-653. 1994.
11. W. Charatonik and A. Podelski. The Independence Property of a Class of Set

Constraints. In Proc. 2ncl CP. LNCS 1118, Springer, 1996.
12. H. Comon and P. Lescanne. Equational problems and disunification. Journal of

Symbolic Computation, 7:371-425. 1989.
13. R. Gilleron, S. Tison, and M. Tommasi. Solving Systems of Set Constraints with

Negated Subset Relationships. In Proc. 3~ "~ FOCS, pp. 372-380. 1993.
14. N. Heintze. Set Based Analysis of ML Programs. Technical Report CMU-CS-93-

193, School Of Computer Science, Carnegie Mellon University. July 1993.
15. N. Heintze and J. Jaffar. A Decision Procedure for a Class of Set Constraints

(Extended Abstract) . In Proc. 5 ~h LICS~ pp. 42-51. IEEE, 1990.
16. D. Kozen. Logical aspects of set constraints. In Proc. CSL, pp. 175-188. 1993.
17. M. J. Maker. Logic semantics for a class of committed-choice programs. In J.-L.

Lassez, ed., Proc. ~h ICLP~ pp. 858-876. The MIT Press, 1987.
18. M. I . Maker. Complete Axiomatizations of the Algebras of Finite, Rational and

Infinite Trees. In Proc. 5 ~ LICS, pp. 348-457. IEEE, 1988.
19. A. I. Malc'ev. Axiomatizable Classes of Locally Free Algebras of Various Type.

In The Metamathematics of Algebraic Systens: Collected Papers 1936-1967, ch. 23,
pp. 262-281. North-Holland, 1971.

20. D. McAllester. Automat ic Recognition of Tractabil i ty in Inference Relations.

Journal of the ACM, 40(2), Apr. 1993.
21. D. McAllester and R. Givan. Taxonomic Syntax for Firs t -Order Inference. Journal

of the ACM, 40(2), Apr. 1993.
22. D. McAllester, R. Givan, D. Kozen, and C. Wit ty. Tarskian Set Constraints. In

Proc. 11 ~u LICS. IEEE, 1996.
23. M. Miiller. Type Analysis for a Higher-Order Concurrent Constraint Language.

Doctoral Dissertation. Universit~it des Saarlandes, Technische Fakultiit , 66041

Smurbr/icken, Germany. In preparation.
24. M. M/iller, J. Niehren~ and A. Podelski. Inclusion Constraints over Non-Empty

Sets of Trees. Full version: h t t p ://www. ps . u n i - s b , d e / P a p e r s / i n e s 9 7 .html.
25. J. Niehren. Functional Computat ion as Concurrent Computat ion. In 23 ~a POPL,

pp. 333-343. ACM, 1996.
26. J. Niehren and M. Miiller. Constraints for Free in Concurrent Computation. In

Proc. 1 ~ ASIAN, LNCS 1023, pp. 171-186. Springer, 1995.
27. The Oz Programming System. Programming Systems Lab~ Universit&t des Saar-

landes. Available at h t t p : / / w ~ . ps . u n i - s b , de/www/oz/.
28. V. A. Saxaswat. Concurrent Constraint Programming. The MIT Press, 1993.
29. G. Smolka. The Oz Programming Model. In J. van Leeuwen, ed., Computer Sci-

ence Today, LNCS 1000~ pp. 324-343. Springer, 1995.

