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Abs t rac t .  We present a new constraint system called INES. Its con- 
straints axe conjunctions of inclusions $1Ct2 between first-order terms 
(without set operators) which axe interpreted over non-empty sets of 
trees. The existing systems of set constraints can express INES con- 
straints only if they include negation. Their satisfiability problem is 
NEXPTIME-complete. We present an incremental algorithm that solves 
the satisfiability problem of INES constraints in cubic time. We intend 
to apply INES constraints for type analysis for a concurrent constraint 
programming language. 

1 I n t r o d u c t i o n  

We propose a new constraint system called INES (Inclusions over Non-Empty  
Sets) and present an incremental algorithm to decide the satisfiability of INES 
constraints in t ime O(n3). INES constraints are conjunctions of inclusions tiC_t2 
between first-order terms (without set operators)  which are interpreted over the 
domain of non-empty sets of trees. In this paper  we focus on sets of possibly 
infinite trees. All given results can be easily adap ted  to fmite trees. 

An IsEs-constraint  tlC_t~ is satisfiable over non-empty  sets if and only if 
tl~_@ A tlCt2 is satisfiable over a rb i t ra ry  sets. Note tha t  the constraint  tq:0 
cannot be expressed by positive set constraints only [16]. The  expressiveness of 
INES constraints is subsumed by tha t  of set constraints with negation [9, 16]. In 
the case of finite trees, the satisfiability problem of set constraints  with negation 
is known to be decidable [1, 13]; it is complete for nondeterminist ic exponential 
t ime [9, 10]. This result implies tha t  the satisfiability problem of INES constraints 
over sets of finite trees is decidable. The corresponding problem for infinite trees 
has not been considered before. 

We characterize the satisfiability of INES constraints  by a set of axioms such tha t  
an INES constraint is satisfiable over non-empty  sets if and only if it is satisfiable 
in some model of these axioms. These axioms define a fixpoint algorithm tha t  
closes a given input constraint under its consequences with respect to the axioms. 
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We prove that  a constraint ~ is satisfiable if and only if the algorithm with 
input ~ does not derive _k as a consequence of ~. All axioms (for infinite trees) 
will be discussed later in this introduction. 

Sets  ve r sus  Trees .  The satisfiability problems of several classes of first-order 
formulae interpreted over trees and over non-empty sets of trees are closely 
related. The following two instances of this observation have inspired our choice 
of axioms or underly our proofs. 

Equality constraints are conjunctions of equations t l : t2  between first-order 
terms. Over sets, they can be expressed bY inclusion constraints due to anti- 
symmetry of set inclusion (tl=t2 ++ tiC_t2 A t2Ctl). Actually, even the first- 
order theories of equality constraints over trees and of equality constraints over 
non-empty sets of trees coincide. This follows from the complete axiomatization 
of the first-order theory of equality constraints over trees [18, 19, 12] since its 
axioms also hold over non-empty sets of trees (bu~ don' t  over possibly empty 

sets). 

There exists a natural  interpretation of INsS-constraint over tree like structures 
that  we call tree prefixes. In a different context [6] tree prefixes are called BShm 
trees (without A-binders). Tree prefixes come with a natural  ordering relation 
where the empty tree prefix is the greatest element. We prove that  an INBS 
constraint is satisfiable over non-empty sets of trees if and only if it is satisfiable 
over tree prefixes (where the inclusion symbol is interpreted as the inverse of the 
prefix ordering on tree prefixes). 

A x i o m s .  The first two axioms we need postulate the reflexivity and transitivity 
of the inclusion relation. We also assume the following decomposition axiom (here 
formulated for a binary function symbol ] ) .  

f (x ,y )C f(x ' ,y ' )  -+ xCx' A yCy' 

This axiom holds over non-empty sets of trees but  not over possibly empty sets, 
since every variable assignment a with a(x)  = O or c~(y) = 0 is a solution of 
f ( x ,y )Cf (x ' , y ' )  but  not necessarily of xC_x' A yCy'. An analogous statement 

holds for the following clash axiom. 

f (x ,y)Cg(x ' ,y ' )  -+ 2_ for f r g 

These axioms do not  suffice to characterize the satisfiability of INES constraints. 
For instance, the unsatisfiability of the constraint ~ given by xCg(x) A xCg(y) A 
yCz A zCa is not derivable with these axioms alone. We need further axioms 
that  use non-disjointness constraints tl ~t2 defined as tlNt2~_O. For the nondis- 
jointness relation we require reflexivity and symmetry and a decomposition ax- 

iom as for the inclusion relation. 
/ (y ,  z') - ,  y y' A  fz' 

Finally, we assume a clash axiom similar to the one for inclusion and require 
nondisjointness to be compatible with inclusion in the following sense. 

x~(z AxC_y ~ y~(z 
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Now reconsider the constraint ~ given above and observe that  we can derive 
x~(x by reflexivity, then x~(y by decomposition, and x~z by compatibility. This 
yields a clash with xCg(x) A zC_a. 

A l g o r i t h m  a n d  C o m p l e x i t y .  The above axioms yield an algorithm tha t  adds 
constraints of the form xCy, x[y  to a given input constraint ~ until ~ is closed 
under all axioms or implies 2 .  The INES constraint xCtl A ... A xCt~ expresses 
the n sets denoted by the terms t l , . . . ,  t~ have a non-empty intersection. Fortu- 
nately, it is not necessary to add k-ary non-disjointness constraints of the form 
x l N . . .  Axk~0 (which can be expressed by the formula 3y(yC_xl A. . .  A yCx~)) 
of which there are exponentially many. Instead, our algorithm adds at  most  
O(n 2) constraints to the input constraint ~, where n is the number of variables 
in ~. The addition of a single constraint can be implemented such tha t  it costs 
time O(n). This yields an implementation of our algorithm with t ime complexity 
O(n3). This implementation can be organized incrementally. 

T y p e  Ana lys i s .  One application for IN~.S constraints which we are investi- 
gating in [23] is type analysis for concurrent constraint programming [17, 28], in 
particular Oz [29]. As formal foundations we intend to use the calculi in [25, 26]. 
There, INES constraints are used to approximate the set of run-t ime values for 
program variables. Since values in Oz include infinite trees, it is important  that  
INES allows an interpretation over sets of possibly infinite trees. It is considered 
an error if the set of possible run-time values is empty for some variable. This 
fact was our initial motivation for the choice of non-empty sets of trees as the 
interpretation domain for INES constraints. 

P l a n  o f  t h e  P a p e r .  In Section 2, we discuss relate work. In Section 3, we 
define the syntax and semantics of INES constraints and in Section 4, we present 
the axioms and the algorithm. In Section 5, we prove the completeness of our 
algorithm. In Section 6, we compare the interpretations of INES constraints over 
tree prefixes and over non-empty sets of trees. Due to space limitations, we omit 
the details of the proofs in the conference version of the paper. 1 

2 R e l a t e d  W o r k  

S t a n d a r d  S e t  C o n s t r a i n t s .  Set constraints as in [2, 5, ]0, 15] are inclusions 
between first-order terms with set operators interpreted over sets of finite trees. 
Our algorithm can be adapted such that  it solves a subclass of set constraints 

1 The full version of this paper [24] contains several further appendixes. We give an 
example illustrating program analysis for Oz with INES constraints. We detail the 
implementation of our the algorithm with incremental O(n ~) complexity. We adapt 
the algorithm to the finite-tree case and to a subclass of standard set constraints 
(interpreted over possibly empty sets of finite trees) with explicit non-emptiness 
constraints x ~ .  We also prove that satisfiability of atomic set constraints (standard 
set constraints without set operators and negation) is invariant with respect to the 
choice of finite or infinite trees. 
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without set operators in cubic time (see [24]). The general case is nondeterminis- 
tically exponential time complete as proved in [1, 13]. The subclass that we can 
solve in cubic time syntactically extends the INES constraints with explicit non- 
emptiness constraint xq:0 (see [24]). Note that the satisfiability of these set con- 
straints depends on the choice of finite or infinite trees (consider x C f ( x ) A  x~0), 
which is in contrast to standard set constraints without negation. Our algorithm 
accounts for finiteness through the occur check. 

Atomic  Set Constra ints .  Heintze and Jaffar consider so-called atomic set 
constraints [15] which syntactically coincide with INES constraints but are in- 
terpreted over possibly empty sets of finite trees. The satisfiability problem for 
atomic set constraints is also O (n3). This result is implicit in the combined results 
of [14] and [15]. An explicit proof is given in the full version of this paper [24]. 

Set Cons t ra in t s  for Type  Analysis.  Aiken et al. [3, 4] use constraints 
over specific sets of trees called "types" for the type analysis of FL. There is a 
minimal type 0 which - in terms of constraint solving - behaves just like the 
empty set in standard set constraints (although it is not an empty set from the 
types point of view but contains a value denoting non-termination). In contrast 
to the constraints of this paper, their set constraints provide for union and 
intersection. One of the optimizations used by Aiken et al. is to strengthen the 
following constraint simplification rule by dropping the disjuncts in brackets [4]. 

f ( x , y )C  f(x ' ,  y') --~ xCx' A yC_y' [ VxC0 V yC0 ] 

As stated in [4], this optimization does not preserve soundness (f(a, O)Cf(b, O) 
holds but aCb A 0C0 does not). It might be possible to justify it by using non- 
empty sets as interpretation domain. This is left to further research. 

En ta i lmen t  and  Independence  for Ines Cons t ra in t s .  Charatonik and 
Podelski [11] give an algorithm which decides the entailment problem between 
INES constraints when interpreted over sets of finite trees. They also decide the 
satisfiability of INES constraints with negation in the finite tree case. The results 
in [11] do not include any of the results presented here since they use as an 
explicit prerequisite the fact that satisfiability of INES constraints is decidable. 

Tarskian Set Const ra in ts .  MacAllester and Givan [21] give a cubic algorithm 
which decides satisfiability for a class of Tarskian set constraints [22], and which 
also contains a non-disjointness constraint. Apart from this syntactic similarity, 
the two satisfiability problems are rather different problems since Tarskian set 
constraints are not interpreted over the domain of trees (this is also observed 
in [22]). A related open question is whether our axioms define a local theory [20, 
8], which would also proof the cubic complexity bound of our algorithm. 

3 S y n t a x  a n d  S e m a n t i c s  o f  I n e s  C o n s t r a i n t s  

We assume a set of variables ranged over by x,y,  z and a signature ~ that defines 
a set of ]unction symbols f ,  g and their respective arity n > O. Constants (i.e. 
function symbols of arity 0) are denoted with a and b. 
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Trees .  We base the definition of trees on the notion of paths since we wish to 
include infinite trees. Paths  wilt turn out central for our proofs in Section 5. A 
path p is a sequence of positive integers ranged over by i, j ,  n, m. The empty path 
is denoted by ~. We write the free-monoid concatenation of paths p and q as pq; 
we have ~p = pe = p. Given paths p and q, q is called a prefix of p if p = qpt for 
some path pr. 

Let T be a set of pairs (p, f )  of paths p and function symbols f .  We say that  T 
is prefix closed, if (p, f )  E ~ and q is a prefix of p implies tha t  there is a g such 
that  (q, g) E T. It  is path consistent, if (p, f )  E z and (p, g) E ~- implies f=g. 
We call ~- arity consistent, if (p, f )  E ~-, (p/, g) E ~" implies tha t  i �9 { 1 , . . . ,  n} 
provided the arity of ] is n. Finally, 7 is called arity complete, if (p, f )  �9 ~-, 
where the arity of ] is n, implies for all i �9 {1 , . . .  ,n} the existence of a g with 
(p / ,g)  �9 

A (possibly infinite) tree ~ is a set of pairs (p, f )  that  is non-empty, prefix closed, 
arity complete, pa th  consistent, and arity consistent. The  set of all (possibly 
infinite) trees over ,U is denoted by Tree and the set of all non-empty sets of 
trees by P+(Tree). 

Ines  C o n s t r a i n t s .  An INES constraint tlC_t~l A.. .  A t~Ct~ is a conjunction of 
inclusions between first-order terms t defined by the following abstract  syntax. 

t ::= x l f ( ~  ) 

Here and throughout  the paper, t stands for a sequence of terms and we assume 
implicitly that  the length of t coincides with the arity of f .  We interpret  INES 
constraints over the structure P+ (Tree) of non-empty sets of trees. In this struc- 
ture, a function symbol f of ~ is interpreted as elementwise tree constructor 
and the relation symbol C_ as subset relation. We call a first-order formula over 
INES constraint satisfiable if it  is satisfiable in the structure P+ (Tree). Two first- 
order formulae over INES constraints are called equivalent if they are equivalently 
interpreted in P+(Tree).  

F l a t  I n e s  C o n s t r a i n t s .  For algorithmic reasons, we use an alternative con- 
straint syntax in the sequel. First, we restrict ourselves to flat terms f ( 5 )  and x 
instead of possibly deep terms t. Second, we use equalities x = f ( ~ )  rather  than 
inclusions xCf(~) and f(~)Cx (this is a mat te r  of taste). And third, we need 
binary non-disjointness constraints x~(y. Their  semantics is given by the equiva- 
lence to the formula xNy~O over sets of trees. Over non-empty sets of trees, x~y 
is equivalent to 3z(zCx A zCy). Crucially, however, nondisjointness constraints 
x~y avoid explicit existential quantification in our algorithm. 

These three steps lead us to fiat INES constraints ~ defined as follows. 

: := l x c y  [ I x 'y 
We identify flat INES constraints ~ up to associativity and commutat iv i ty  of con- 
junction, i.e_, we consider ~a as a multiset of inclusions xCy, equalities x=f(~]), 
and non-disjointness constraints x~(y. 
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From now on, we will consider only flat INES constraints and call them con- 
straints for short. This is justified by the following Proposition. Let the size 
of a constraint ~ be the number of function symbol occurrences plus variable 
occurrences in ~. 

P r o p o s i t i o n  1. The satisfiability problems of INES constraints and of fiat INES 
constraints have the same time complexity up to a linear transformation. 

4 A x i o m s  a n d  A l g o r i t h m  

We present a set of axioms valid for INBs-constraints interpreted over non-empty 
sets of trees. In a second step, we interpret these axioms as an algorithm that  
solves the satisfiability problem of INBS constraints. The correctness and the 
complexity of this algorithm will be proved in Section 5. 

A1. 

A2. 

A3. 

A4. 

xCx and xGy A yCz -~ xC_z 

zcC_y--+m~y and xCyAx][ z - . 4y~z  and x~(y-a.y~x 

~=f(~) ^~[~' ^ ~'=g(~) --+ _L for f -:g 

AS. ~=I(~) ^ *[(~' A ~'=l(~) -~ ~1;~ 

Table 1. Axioms of INES constraints over non-empty sets of infinite trees 

Table 1 contains five rules A1-A5 representing sets of axioms- 2 The union of 
these sets is denoted by A. For instance, a rule xC_x represents the infinite set 
of axioms that  is obtained by instantiation of the meta variable x with concrete 
variables. Note tha t  an axiom is either a constraint ~, an implication between 

constraints s -+ r  or an implication ~o -+ _L. 

P r o p o s i t i o n 2 .  The structure P+(Tree) is a model of the axioms in A. 

Proof. By a routine check. We note that  the non-emptiness assumption of 

P+(Tree) is essential for axioms A2 and A3.1. [] 

2 Note that these axioms differ from the ones given in the introduction. The constraints 
used there are not flat and the variable-variable case xC_y and x ~y are omitted. 
Indeed~ the axioms in the introduction are semantically complet% although this is 
non-trivial to see and depends on the correctness of the algorithm presented here. 
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The Algor i thm.  The set of axioms A can be considered as a (naive) fixed 
point algorithm A that, given an input constraint ~, iteratively adds logical 
consequences of AU{~} to ~. More precisely, in every step A inputs a constraint 
and either terminates with 2 or outputs a constraint ~ A r Termination with 
2_ takes place if there exists r E ~ such that r _+ _L E A. Output of ~ A r is 
possible if r E A or there exists r in ~ with r ~ r E A. 

Example 1. A first type of inconsistency depends on the transitivity of set inclu- 
sion. Here is a typical example: 

x=a A xCy A yCz A z=b ~ 2_ for a ~ b 

Algorithm A may add xCz  by A1.2, then x~[z with A3.1, and then terminate 
with 2_ by A4. 

Example 2. A second type of inconsistency comes with implicit or explicit non- 
disjointness requirements. For illustration, we consider: 

x=a A zCx A zC_y A y=b --+ 2_ for for a r b 

Algorithm A may add z~(x by A3.1, then x]~z via A3.3, then x~(y with A3.2, and 
finally terminate with 2_ via A4. 

Example 3. Inconsistencies of the above two types may be detected by structural 
reasoning with A2. Consider: 

x = f ( x )  A x = f ( z )  A z=a ~ _L 

Algorithm A may add xC_x by A1.1, then xC_z with A2, then x][z by A3.1, and 
finally terminate with 2_ with A4. 

Example 4. We need another structural argument based on A5 for deriving the 
unsatisfiability of the following constraint. 

x = f ( x )  A zCx  A zCy A y=f (x ' )  A x'=a --+ 2. 

Algorithm A may add xXy after several steps as shown in Example 2. Then it 
may proceed with x ~ x  I via A5 and terminate with 2. via A4. 

Terminat ion.  Algorithm A can be organized in a terminating manner by 
adding a simple control. Given an input constraint ~2, we add only such con- 
straints xXy and xCy to ~ which are not contained in T. We also restrict re- 
flexivity of inclusion xC_x to such variables x occurring in ~. Given a subset S 
of A, a constraint ~ is called A%closed, if algorithm A under the given control 
and restricted to the axioms in A ~ cannot proceed. (Note that constraints do 
not contain 2. by definition.) This defines the notion of A-closedness but also of 
Al-closedness, A2-closedness, etc., which will be needed later on. 
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Example 5. Our control takes care of termination in presence of cycles like 
x=f (x ) .  For instance, the following constraint is A-closed. 

x = f  (x) A xC_y A y = f  (x) A xCx  A yCy A x ~ x  A y ~y A x~ y A y ~x 

In particular, A2 and A5 do not loop through the cycle x = f ( x )  infinitely often. 

P r o p o s i t i o n 3 .  If  ~ is a constraint with m variables then algorithm A with 
input ~ terminates under the above control in at most 2. m 2 steps. [] 

Proof. Since A does not  introduce new variables, it may add at most m 2 non- 
disjointness constraints x~y  and m 2 inclusions xC_y. [] 

P r o p o s i t i o n  4. Every A-closed constraint ~ is satisfiable over P+(Tree). 

The proof of this s tatement is the subject of Section 5 and detailed in [24]. There, 
we construct the greatest solution for a satisfiable constraint (Lemma 9). Note 
that  constraints in general do not  have a smallest solution (consider xC_f(x y)). 

T h e o r e m  5. The satisfiability of INES constraints can be decided in time O(n 3) 
(offline and online) where n is the constraint size. 

Proof. Proposition 2 shows that  ~ is unsatisfiable if A started with ~ terminates 
with _l_. Proposition 4 proves that  ~ is satisfiable if A started with ~ terminates 
with a constraint. Since A terminates for all input constraints under the above 
control (Proposition 3), this yields a effective decision procedure. The complexity 
statement is proved with Proposit ion 14 in [24]. The main idea is that  every step 
of algorithm A can be implemented in time O(n) and that  there are O(n 2) steps 
(Proposition 3). 3 In the proof of Proposition 14 [24], we present an incremental 
implementation of algorithm A. It  exploits tha t  algorithm A leaves the order 
unspecified in which axioms in A are applied. [] 

There is a class of constraints on which algorithm A indeed takes cubic time, 
namely the inclusions cycles xl  C_x2 A . . .  A x~- i  C_x~ A x~C_Xl where n > 1. The 
closure under A is the full transitive closure A{xiC_xj I i , j  C { 1 . . . n } }  plus the 
corresponding nomdisjointness constraints. 

5 C o m p l e t e n e s s  

The goal of this Section is to prove the completeness of our algorithm as stated 
in Proposition 4. We have to construct a solution for every A-closed constraint. 
The idea is to construct solution in a substructure of P+ (Tree) the structure of 

tree prefixes. 

3 Every step of algorithm A costs time O(n) only with respect to an amortized time 
~nMysis, which we do not make explicit in our complexity proof in [24]. 
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Tree Prefixes.  A tree prefix T is a set of pairs (p, f )  that is prefix closed, path 
consistent, and arity consistent. Note that every tree is a tree prefix. The set of 
all tree prefixes is denoted by Prefix. We can naturally interpret INES constraints 
over tree prefixes such that Prefix becomes a structure. Function symbols f C ,U 
are interpreted as tree prefix constructors (generalizing tree constructors). The 
inclusion symbol c is interpreted as the inverted subset relation on tree prefixes 
that we denote with <_ (i.e., T1 < "r2 iff 71 D ~-2). The relation ~-1 ~-2 holds over 
Prefix iff ~-1 O T2 is path consistent (and hence a tree prefix). 

Propos i t ion  6. Prefix is a substructure of P+ (Tree) with respect to the embed- 
ding Trees : Prefix-+ P+(Tree) given by: 

Trees(r) = {r'  [ r'  is a tree such that r '  <_ 7} 

Proof. The mapping Trees is a homomorphism witL respect to function sym- 
bols f E ~ and the relation symbols _c and ]'. [] 

Corol lary  7. I f  a constraint is satisfiable over Prefix then it is satisfiable over 
P+ (Tree). 

Pro@ For constraints xCy,  x=f(~),  and x f y ,  this follows from Proposition 6. 
A conjunction of such constraints is satisfiable if all conjuncts are satisfiable. [] 

P a t h  Reachabili ty.  We introduce the path reachability relations -~p and 
the notion of path consistency with respect to constraints. For all paths p and 
constraint ~, we define a binary relation "~v, where x -~z~p y reads as "y is 
reachable from x over path p in ~": 

x ~ y  if xC_yin 

x-,~v yi if x = f ( y l . . . y ~ . . . y ~ )  in ~, 
x-~pq y if x-~Vp u and u -~q y. 

We define relations x ~ p  f meaning " f  can be reached from x via path p in ~": 

x -,~p f if x -~p y and y=f(~)  in ~, 

For example, if ~a is the constraint xC_y A y = f ( u ,  z) A z=g(x )  then the following 
reachability from x relationships hold: x - ~  y, x "~2 z, x "~21 x, x "~ 21 y, etc., 
as well as x - ,~  f ,  x ~ 2  g, x "~21 f ,  etc. 

Defini t ion 8 P a t h  Consistency. We call a constraint ~ path consistent if the 
following two conditions hold for all x, y, p, f ,  and g. 

1. I f x ~ p  g, xCx ,  and x ~ p  f then f = g. 

2. If x ~ p  g, x J[y, and y ~ p  f then f = g. 
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L e m m a 9 .  Every A1-A2-closed and path consistent constraint is satisfiable over 
Prefix. 

L e m m a  10. Every A3-Ab-closed constraint is path consistent. 

P r o o f  of  Propos i t ion  4. We have to show that every A-closed constraint ~ is 
satisfiable. ~ is path consistent by Lemma 10, satisfiable in Prefix by Lemma 9, 
and hence satisfiable in P+(Tree) by Corollary 7. [] 

6 N o n - E m p t y  S e t s  v e r s u s  T r e e s  

We discuss interpretations of INES constraints over tree prefixes and over non- 
empty sets of trees. For the fragment of equality constraints we also consider an 
interpretation over trees. 

Theo rem 11. Given an INES constrains ~, the following three statements are 
equivalent: 

1. ~ is satisfiable (over P+(Tree)). 

2. W is satisfiable over Prefix. 

3. ~ is satisfiable in some model of the axioms in A. 

Proof. 1) to 3). If ~ is satisfiable over P+(Tree), then it is satisfiable in some 
model of A, since P+(Tree) is a model of A by Proposition 2. 

3) to 2). Let ~ be satisfiable in some model of A. Algorithm A terminates when 
started with ~ by Proposition 3. It outputs a constraint r (and not _L) that 
is equivalent to ~ in all models of A. r is A-closed and hence satisfiable over 
Prefix by Lemmata 9 and 10. 

2) to 1). If ~p is satisfiable over Prefix then it is satisfiable by Corollary 7. [] 

An equality constraint is a conjunction of equalities x=y and x=f(~]). Over 
P+(Tree), equalities can be expressed by inclusions since the inclusion order- 

ing is antisymmetric (x=y ++ xCy A yCx). 

Th eo rem 12. The three first-order theories of equality constraints over non- 
empty sets of trees, over tree prefixes, and over trees coincide (i.e., of the struc- 
tures P+ (Tree), Prefix and Tree). 4 

Proof. This follows from the fact that all axioms of the complete axiomatization 
of trees [18, 19, 12] are valid for non-empty sets of trees. This holds for the axioms 
of the form V~2!~(xl=fl(~ Y) A. . .  A x,~=f~(~ ~)). Validity of the other axioms 
is immediate since they are already contained in A with inclusion replaced for 

[] 
equality. 
4 Independently, A. Colmerauer observed this for P+(Tree) and Tree (pers. comm.). 
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In contrast,  first-order formulae over inclusion constraints can distinguish the 
structures P+(Tree) and Prefix. A formula that  holds over Prefix but  not over 
P+ (Tree) is given by 

Vx(aC_x A bC_x -~ Vy(yCx) ) 

where a r b. Anotlmr formula distinguishing both  structures comes with a 
constraint-based reformulation of the coherence property (defined for complete 
partial orders in [6]). 

We say tha t  an ordering relation satisfies the coherence property if it satisfies the 
following formulae for all finite sets I (where inclusion symbol is interpreted as 
the given ordering). 

h ,  gz(zC_x  A zc_xj) --+ 3z(A e zcx ) 
This formula states that  for all variable assignment (~ the elements from the 
finite set {c~(xi) ] i C I} have a common lower bound if every two of its elements 
a(xl) ,a(xj)  have (i , j ,E { 1 , . . . , n } ) .  For inclusion over non-empty sets this 
property does not hold. There it states the nomemptiness of an n-intersection 
tlM...Mt,~ ff all palrwise intersections tiNtj are non-empty ( i , j  E { 1 . . . n } ) ,  
which is refuted by the example I = (1,2,3} and a(Xl) = (a,b}, a(x2) = (a,c}, 
(~(x3) = {b, c} for distinct constants a, b, c. 

P r o p o s i t i o n  13. The tree prefix ordering < satisfies the coherence property. 

Proof. For some finite index set Y C I and variable assignment a into Prefix, 
note tha t  a is a solution of 3z(Ai~ J zCx~) iff U ~ j  a(xi) is pa th  consistent. If c~ 
is a solution of all 3z(zC_xi A zCxj)  then all palrwise unions c~(x~) U c~(xj) are 
path consistent such that  the union Uiex a(x~) is path consistent. Hence ~ is a 
solution of 3z ( A ~ !  zC_xi). [] 
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