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Abs t rac t .  We formulate a notion of predicative function types, and 
define predicative recurrence over functions, both in equational style and 
as an applicative formalism, pointing out the equivalence between the two 
approaches. We then show that a function is poly-space iff it is defined 
using predicative functionals obtained by ramified recurrence over words. 

1 I n t r o d u c t i o n  

Recurrence schemas have been used for long as an algebraic method for defin- 
ing, characterizing, and classifying natural collections of computable functions. 
Characterizations by recurrence of computational complexity classes that  are 
relevant to computer science originate with Cobham's [5] characterization of the 
poly-time functions over N by "bounded recursion on notations." The nature of 
the correspondence between sub-recursion and computational complexity was 
greatly clarified by the use of ramified data, by Bellantoni and Cook [3], (with 
[20] and [11] as independent precursors). Characterizations by ramified recur- 
rence have been provided, for example, for the poly-time functions [3, 12, 14], 
the extended polynomials [11], the linear space functions [1, 7, 12, 18], NC 1 
and polylog space [4], NP and the poly-time hierarchy [2], and the elementary 
functions [13]. For further background on ramified recurrence see [14]. 

Recurrence in higher type (i.e. types of higher rank) goes back at least to 
Hilbert [9], who showed that  Ackermann's function can be obtained by recurrence 
in type L--+ t (where t is the base type). More generally, Ghdel proved [6] that  the 
numeric functions defined using recurrence in all types are precisely the provably 
recursive functions of first-order arithmetic. In [13] we showed that  when data  
is ramified, recurrence in all finite type generates a much smaller class, namely 
the functions computable in (Kalmar-) elementary resources. 

This remains true even if only two tiers of data  are used, since exponentiation 
can be defined by recurrence over functions of type to --+ to, as follows. (Here to is 
the base tier, and L1 is the tier of objects that  can drive recurrence over to). Define 
explicitly the function dbl,  of type (to --+ to) -+ (to --+ to), by dbl ( f ) (z )  = f ( f (z));  
now define by recurrence over to ~ to the functional e of type tl --~ (to --+ to): 
e(0) = s, e(sn) = db___!l (e(n)). Then e(n)(z) = 2'~+z, and so base 2 exponentiation 
is defined by An. e(n)(O). 



370 

However, from a predicative viewpoint higher type recurrence of the kind 
above is suspect, on grounds similar to Nelson's predicative critique of Peano 
Arithmetic ([17], see also [14, 15]). Nelson's complaint  about  Peano Ari thmetic  
is tha t  the natural  numbers are conceptualized using induction, which itself 
depends on assuming a complete understanding of the natural  numbers when 
formulas proved by induction refer to natural  numbers via their free or bound 
variables. The same critique applies to recurrence in lieu of induction. The 
predicative critique excludes, in fact, the admission of any type a of the form 
(r  --4 o) -4 r,  where r is a type with an infinite extension and c~ is a non-singleton 
type: such a presupposes the notion of arbi trary functions of type v--4o, which 
is possible only if r is completely delineated. But  if we have an object r of type 
a,  then new objects of type r might become definable via the use of ~; these 
type r objects are, therefore, defined in terms of the entire type v, an ana thema  
to the predicative viewpoint. 3 

Based on the critique above, we formulate  here a notion of predicative types, 
and define predicative recurrence over functions, both  in an equational-algebraic 
style and as an applicative formalism, pointing out the equivalence between these 
two approaches. We then show that  a function is poly-space iff it is defined using 
predicative functionals obtained by ramified recurrence over word algebras. For 
a survey of other machine independent characterizations of the poly-space func- 
tions, see [16], which itseff provides such a characterization in te rms of ramified 
recurrence with substitution (this is quoted as Theorem 1 below). 

2 R e c u r r e n c e  

2.1 R e c u r r e n c e  o v e r  f r e e  a l g e b r a s  

Most subrecursive and applicative delineations of complexity classes are based, 
explicitly or implicitly, on da ta  structures other than the natural  numbers. We 
find it cleaner and clearer to refer directly to recurrence over free algebras. 4 
For the rest of the paper  A wilt be a free word algebra generated f rom cl . . .  ck 
(k > 0), where arity (c~) = r~ is 0 or 1. The 0-ary constructors are dubbed sources 
and the unary ones successors. If  a E A, we write lal for the length of a. The 
algebras with no successor or no source are trivial. The remaining ones fall into 
two classes with respect to computat ional  behaviors: the ones with one successor, 
s say, epitomize by the algebra l~l which has also a unique source, 0; and the 
ones with severM successors, epitomized by the algebra W with one source c 
and two successors, which we choose to denote 0 and 1. Since • is isomorphic 
to {0, 1}*, the canonical medium of computat ional  complexity theory, it is the 

~ T h e  situation is different for types ~" --+ r, where the domain and range can be 
generated simultaneously. This critique is akin to the old predicative development of 
type theory (cf. e.g. [24, 23]), which requires that the arguments of a predicate R of 
level l be defined without reference to objects of level _ l. 

4 These schemas are for the most part well known; see, for example, [22, 21]. 
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most important  algebra in relating recurrence to computational complexity. See 
e.g. /18] for further discussion and examples. 

Recurrence over ,4, is a set of k templates, one for each constructor: 

f (c i ,  ~') = g~i (x) (ci a source) 
f ( c i  (a),  ~) = h ~  ( f ( a ,  ~) ,  a, ~) (ci a successor) 

The functions he, above are the recurrence  f u n c t i o n s ,  and the argument of f 
displayed first is the recurrence  argument .  The argument of he, displayed first is 
its cri t ical  argument ,  the second is the regressive argument ,  and the arguments 

are the parame te r s .  An instance of recurrence is f i a t  if all critical arguments 
are missing, and is m o n o t o n i c  if all regressive arguments are missing. 5 Typical 
examples of flat recurrence are the definitions of the conditional and predecessor 
functions: 

cond (ci({possibly an argument}), x l, . . . ,  xk )  = x i ,  

pred (ci) = c, (ci a source) 
pred (ci(a)) = a (ci a successor) 

2.2 R e c u r r e n c e  w i t h  s u b s t i t u t i o n  

For a generic word algebra A recurrence wi th  (parameter , )  subs t i t u t i on  [19] is 
the schema of recurrence, with the clauses for successors generalized to permit  
modification of the some of the parameters in each recursive call: 

f ( c i ,  ~1, . . . ,  ~ ,  ~ = g c , ( ~ l , . . . ,  ~ ,  y~) (ci a source) 
f (c / (a ) ,  x l ,  . . . , x t ,  y~) = hc, (bil ,  . . . , bi,~,, a, ~, ~ ( c / a  successor) 

where bij = f ( a ,  ~ i j l  (E), . . . , !ai j l (E),  y-) 

The previously-defined functions ~i~'p are the subst i tu t ion f u n c t i o n s  of the definitionfi 
The arguments ~ above are the subs t i t u t ion  p a r a m e t e r s  of the definition. 

For example, we can obtain exponentiation by defining 

x~  (o, u) = .  ~ (sn, ~) = x~  (~, 2~) 2 n = x~  (n, 1) 

It is well known that  recurrence with substitution over N is reducible to simple 
recurrence (see [19J w but the proof uses auxiliary functions that cannot be 
properly ramified. Moreover, the classical t reatment in [19] does not generalize 
to arbitrary word algebras, for which a more complicated machinery seems to be 
needed. In the contexts of computational complexity, word algebras, or ramified 
data, it is therefore appropriate to consider this schema in its own right. For 
examples and further details see [16]. 

Monotonic recurrence over N is often dubbed i teration with parameters,  but the 
phrase i teration is a misnomer for algebras llke W. 

s The reason for not joining the variables ~ to ~ will become clear below where we 
define a ramified version of this schema. 
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2.3 F u n c t i o n a l s  d e f i n e d  b y  r e c u r r e n c e  

We refer to the usual notion of types, formed inductively from the symbol t (the 
base type) and the binary operation symbol  -+: Types 3 v ::= t I (r)  -+ (v). 
The convention is to drop parentheses around t, and to associate -+ to the right. 
Also, we write r l ,  r2 �9  r r  -+ ~ for r l  -+ r2 --+ �9 �9 �9 -+ r r  --~ c~; and if r l . . .  r r  are 
all identical to r,  we write r r --+ a for the type above. 

The types are interpreted semantically over A in the obvious way: a type r 
determines a space A r,  defined by recurrence on v: A ~ =dr A, and A r ~ a  is the 
space of all functions from A r to A ~ The rank of a type is defined by rnk(t) = 1, 
rnk(c~--+ r) = max( l+rnk(a) ,  rnk(v)). The types of rank 1, 2 and 3 are the object, 
function, and functional types, respectively. 

An explicit definition of ~ of type r = (~1, . . . ,  ~q-+ t) takes the form 

~ ( X ~ ) - - - ( X q )  = E 

where E is an applicative expression of type t, and X1 . . .Xq  are variables of 
types ~r 1 . . .  C~q, respectively. Recurrence (on A) over the type r above takes the 

form 

�9 ( c i ) ( X l ) . . "  (Xq) = ~ ~  (X~) (r a source) 
~5(ci(a))(X1)-." (Xq) = Oc,(a)(ff)(a))(X1) "'" (Xq) (c i a Successor) 

2.4 A p p l i c a t i v e  n o t a t i o n  fo r  r e c u r r e n c e  

It  is well known that  computing by recurrence equations can be expressed func- 
tionally in the typed l ambda  calculus augmented with recurrence operators  for 
the corresponding types [6]. A caveat is the presence of regressive arguments  (as 
defined above). Using the full power of recurrence permits  sequence coding tha t  
bypass this difficulty (see [19] w We comment  below about  alternatives. 

Let ARec(A) be the simply typed A-calculus expanded as follows. Each con- 
structor of A is a constant of the obvious type, as are the predecessor and con- 
ditional. We refer to these as the basic constants of the calculus. For each type 
r there is, in addition, a constant R r of type p[v] ~-af ~h,. . .~rk, ~ --~ v, where ~ri 
stands for r if ci is a source and for r --+ r if it is a successor. The fl-reduction 
rules are augmented with computat ional  rules for the predecessor, conditional, 

and recursor constants: 
pred (c~) :=> c~ ci a source 

pred (ci(E))  :2z E ci a successor 

cond ( c i ( . " ) , E 1 , . . . , E k )  ~ Ei 

R r E1 �9 ." Ekci  ~ Ei ci a source 
t t  ~ E l " ' E k ( c i ( a ) )  ~ EiDi  ci a successor 

where D i =  R ~ E l ' ' ' E k a "  

See [13] for details and examples. 
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3 R a m i f i e d  r e c u r r e n c e  

3.1 R a m i f i e d  r e c u r r e n c e  f o r  b a s e  t y p e  

Ramified recurrence was discovered independently by Simmons [20], Leivant [11], 
and Bellantoni and Cook [3]. The latter paper was the first to use tiered data  to 
characterize computational complexity. A systematic development of data  tiering 
and ramified recurrence was introduced in [12, 14]. We recall here the essentials. 

Let S(A) be the many-sorted structure with copies A0, A1 . . .  of the algebra 
A as universes, which are dubbed tiers. (We omit the superscript when in no 
danger of confusion.) Ramified recurrence allows the definition of a function 
f : Ai • A --+ Aj (where ,4 is the product of some Am'S), by a recurrence schema 
as above, provided i > j:  

f (c i ,  g) = gc, (x) (ci a source) 
f (c ,  (a), ~) = hc, (f(a, E), a, ~) (c~' a successor) 

Note that  the recurrence argument is in &i and the output  is in &j, j < i by 
the explicit typing requirement for f .  The ramified PR functions over & are the 
functions over 8(A) that  are defined from the basic constants of A by explicit 
definitions and ramified recurrence. In [14] we proved that,  over word algebras, 
these are precisely the functions computable in polynomial time. 

3 . 2  R a m i f i e d  r e c u r r e n c e  w i t h  s u b s t i t u t i o n  

Ramified A-recurrence with substitution is the schema of recurrence with sub- 
stitution as stated above, but referring to 3(A),  and with the provisos that  the 
recurrence argument and substitution arguments all be in the same tier, and 
that  that  tier be greater than the tier of the result. 7 

In [16] we introduced a generic notion of alternating register machine over 
free algebras. Computabili ty in polynomial time over such a machine over W is 
equivalent to poly-time computabili ty over an alternating Turing machine, and 
thus to poly-space. We proved there the following. 

T h e o r e m  1. The functions over a word algebra A defined by ramified A-recurrence 
with substitution are precisely the functions computable on an alternating register 
machine for A. Therefore, the functions over W defined by ramified recurrence 
with substitution are precisely the poly-space functions. 

3.3 P r e d i c a t i v e  r e c u r r e n c e  o v e r  f u n c t i o n s  

To keep matters uncluttered, we restrict attention here to the first three tiers 
only. s Following the predicative critique of recurrence over functions, outlined 

7 Note that the remaining parameters of the definition, for which we used $7 in the 
schema above, may be in any tier. Allowing the substitution parameters to have 
different tiers permits a definition for exponentiation. 

s Two tiers won't suffice for a predicative recurrence over functions, as will become 
clear below. 
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in the introduction, we restrict higher order recurrence operators R r to function 
types r for which the type r -+ r ,  appearing as an argument,  is predicatively 
admissible. We require that  no subtype of r appears in v -+  r as both  a domain 
of a function argument  and a co-domain. In addition, we require, in analogy 
to ramified recurrence for object type, that  the recurrence argument  be of tier 
greater than any tier in r .  These conditions imply that  recurrence argument  be 
of tier t2, and r be of the form t~ n -+  to or t~  -+ tl. Since there are no definable 
functions of the latter type (see discussion in [14]), we are left with the former. 

We call types of the form t~ -+ to (m >_ 1) safe function types, and say tha t  
a type is safe if it is either an object type (to, tl, or t2), or a safe function 
type. A type of the form r l , . . . v m  -+to, where all vi 's  are safe, is a predicative 
functional type. Note that  if r is a predicative functional type then cr -+ 7" is 
again a predicative functional type for any safe ~r. Observe that  to -+ to is a 
(degenerated) predicative functional type, but is not a safe function type: it is 
admissible on its own, but  is not "safe" as an argument .  

An applicative formalism PARec 2 (A) for predicative second order recurrence 
is now defined as the following extension of the simply typed A-calculus. 

- For each basic constant of A and each tier we have an identifier for the 
function operating in that  tier. We shall indicate the appropriate  tier by a 
superscript, but  often omit  it when it is clear from the context or irrelevant. 

- For each safe function type r ,  and each tier tj larger than all tiers in r ,  there 
is a recurrence constant R t j ' r ,  whose type is p[v] =dr c q , . . . ,  c%, tj -+ v. 
Here, again, ~i is r if ci is a source, and r -+r  if it is a successor. 

- The fl-reduction rule is augmented by the reduction rules for the prede- 
cessor, conditional, and recurrence constants, as for the un-ramified version 

described above. 

3 . 4  R e d u c t i o n  t o  a p p l i c a t i v e  r e c u r r e n c e  

L e m m a  2. If  a function f over A is defined from ramified functions by pred- 
icative recurrence, then f has a definition from those functions by monotonic 
predicative recurrence. 

Proof. Suppose �9 is defined by 

�9 ( c i ) ( X 1 ) ' - ' ( X q )  = ~c , (X1)""  (Xq) (ci a source) 
~ ( c i ( a ) ) ( X l ) ' ' '  (Xq) = Oc,(a)(~(a))(Xl)"" (Xq) (el a successor) 

Define instead (P' by 
�9 ' (ci) (y) ( x l ) . . .  (Xq) = ( x , ) . . .  (xq) (c, source) 

�9 ' (ci  (a)) (y) (X1)""  (Xq) = Oc, (pred (y)) (q~'(a) (pred (y))) ( X 1 ) ' "  (Xq) 
a successor) 

Then ~(w) = ~'(w)(w). [] 

C o r o l l a r y  3. A function f is definable using predicative recurrence over func- 
tions iff it is computed by a term of P)~Rec 2 (A). 
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3.5 P r e d i c a t i v e  r e c u r r e n c e  c a p t u r e s  r e c u r r e n c e  w i t h  s u b s t i t u t i o n  

P r o p o s i t i o n 4 .  If a function f over A is defined by ramified recurrence with 
substitution, then f is defined by predicative functional recurrence. 

Proof. By induction on the definition of f .  The only case of interest is where f 
is generated by the scheme of ramified recurrence with substitution, as above: 

f (c , ,  z, y-) = ac, (e, 
f(c~ (a), e, ~ = hc , (b~ , . . . ,  b~m,, a, e, 

where bij = f(a, ~ j l ( ~ ) , ' " ,  ~j , (~) ,  Y-) 

ci a source) 
(c i a successor) 

Let cr denote the type t~--+tl of the substi tution functions ~ijp, and Pl. . .Pq E 
{to, q}  be the types of yl �9 �9 �9 yq, respectively. Let Z be a variable of type ~r. Define 
by recurrence the functional ~, with the clauses for successor constructors: 

where 

�9 ( c , ) (~ (e )  = go,(~, 
O(ci (a)) (~(~)  = G(a)(r 
G(a)(Z)(u')(~) = hc,(Z,1. . .Z,m, ,  a, ~, 

with Zij = Z(~ i j l (~ ) , . . . ,  ~ijl(g))  

Note that  the first argument  of G is in tier t2. [] 

Combining 4 with 3 we obtain: 

P r o p o s i t i o n  5. If  a function f over A is defined by ramified recurrence with 
substitution, then f is defined by a term of P)tRec2(A). 

4 P r e d i c a t i v e  f u n c t i o n a l  r e c u r r e n c e  i s  p o l y - s p a c e  

We conclude here with a proof of the main technical l emma of this work, showing 
that  every function defined using predicative functional recurrence is computable  
in poly-space. To keep notations uncluttered, we restrict at tention here to the 
algebra A = W. 

As a computat ion model for functionals we use mul t i - tape Turing machines 
with function oracles. Each such machine refers to a fixed finite list of function 
oracles, of arities > 1. Oracles are used via query rules, where each such rule 
specifies the oracle it invokes (i.e. a position in the list of oracles), and, if the 
arity of that  oracle is m, the rules prescribe the m tapes from which the oracle 
inputs are to be read, and the tape on which the oracle output  is overwritten. In 
measuring the computat ion t ime of such a machine we count each oracle call as 
a single step. 9 Note that  a rather tame oracle, such as one for concatenation, can 

9 A sirailar notion underlies [10] 
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yield by n i terat ions an ou tpu t  exponential ly larger than  the input .  However, we 
will work with machines  where unbounded  oracle i teration does not  occur.  

Going back to the formal ism P)tRec2(A), we say tha t  a te rm E is normal 
if no sub te rm can be reduced (by /~-, recursor-, predecessor-, or condit ional-  
reduction).  It is well known tha t  in )tRec2(A) every te rm can be converted to 
normal  form, and so the same applies to P)tRec2(A), which is a more  restrictive 
calculus. 

For a te rm E we write ~: for the A-closure of  E ,  i.e. A x l . . . x r .  E, where 
xa . . . ,  xr is a list of  all free variables in E,  under  some canonical  order. 

In analyzing the s t ructure  of  normal  terms for funct ionals  of  predicative 
types, we have to consider addit ional  types. Call a type  admissible if it is of  the 
form 7-t . . .  rm--+ tj, j = 1 or 2, where the ri's are safe types.  Call an expression 
E of  P)~Rec2(A) tame if it is normal ,  and its A-closure has a predicative or 
admissible type.  T h a t  is, E has a predicative or admissible type,  and all free 

variables have safe type.  

P r o p o s i t i o n 6 .  Let E -- E[ff0, gl ,  g2, V] be a tame expression, where gi are the 
free type-ti variables, and V all variables with safe function types. Let 4) be the 
functional over A defined by E. 

1. If the type of E is ~, then 4) evaluates in constant time, and its value is 
dependent only on arguments of type t2. 

2. If the type o re  is admissible (with L1 as co-domain), then 4) evaluates in time 
polynomial in its type L2 arguments, and independent from all its remaining 
arguments, and its value is dependent only on arguments of type L2 and q .  

3. If  the type of E is predicative, then 4) evaluates in space polynomial in its 
type-t2 and type-L1 arguments and independent from its other arguments, 
and all queries to function arguments during the computation are for words 
whose length is within a polynomial in the type-~2 arguments from the type-q 
arguments. 

Proof. By induct ion on E.  We give here key cases for E.  Other  cases will be 

spelled out  in the full version of  this paper.  

I f  E is a variable x of  type  v, then E -- Ax. x is of  type  v--+ v. Since v - -+r  is 
predicative or admissible, r is either an object  or a safe funct ion type.  In either 

case the l emma ' s  s ta tement  holds trivially. 

E cannot  be a recurrence constant  R T : the type  p[r] of R ~ has r--+ r,  which 
is never safe, as an a rgument  type.  Thus  R r is not  t ame  for any ~-. 

I f  E is one of  the basic constants ,  then the l e m m a  is trivial, l~ 

If  E is a A-abstract ion Ay. E0, the s t a t ement  is immedia te  by induct ion as- 

sumpt ion  for E0. 

i0 Note that our using constructors, predecessor, and conditional with input(s) and 
output of identical base type is essential here. 
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Suppose that  E is an application, say E =__ Eo(E1) . .  "(Era) (m > 1), where 
E0 is no longer an application. Since E is normal,  Eo cannot be an abstraction. 
Therefore E is either a variable or a constant. 

The type of E0 must  be of the form (r l  . . . r r , )  --4 ~, where rl  is the type 
of Ei, and ~r the type of E0. If  E0 is a variable, then its type must  be a safe 
function type, since E is tame,  and so 7"1 . . . . .  v,~ =- tl, and cr = L0. By 
induction assumption, it follows that  case (2) of the l emma applies to El ,  �9 �9 Era. 

Therefore, given values for the free variables ff and ~7, we can compute  the values 
of E1 �9 �9 �9 in t ime polynomial  in its type ~2 inputs, without invoking the safe 
function inputs as oracles. These m values are the inputs to the oracle given as 
global input for the variable E0, confirming that  case (3) of the l emma  holds for 
E. 

Suppose, on the other hand, that  E0 is a basic function. If  it is a constructor 
or predecessor, the l emma holds trivially for E by induction assumption for El .  
If  E0 is cond j (j = 0, 1 or 2), then E is of one of the forms cond El ,  cond E1E2, 
or cond E1E2E3, and the l emma holds trivially for E by induction assumption 
invoked for the argument  expressions Ei. 

We are left with the only interesting case of the proof, where Eo is a recursor. 
We treat  the case where E0 : R ' , which typffies recurrence over functions. 
Other cases are analogous. The full ~enerality of the situation is captured when 
E is of type t0 and of the form R'~,'~'oEeEoE1WU1U2.1I 

Let n, m be the maximal  lengths of type-t2 inputs and of type-L1 inputs, 
respectively. The induction's assumption applies to all subterms F of E. For each 
such F,  let M ( F )  be a Turing machine that  computes the function represented 
by _P as prescribed by induction assumption. We then have: 

- A constant c2 such that  all subterms of type ~2 define functionals computed 
in t ime < c2. 

- Constants cl and r l  such that  all subterms of admissible type define func- 
tionals computed in t ime _< cl n r~ . 

- Constants co, r0, d and q such that  all subterms of safe type define functionals 
computed in space < c o - m a x ( m ,  n) to, and such that  function inputs are 
applied in the computat ion of the machines M(Eo) and M(E1) only to values 
whose length is within d. n q away from the type ~1 inputs. 

Let M be a function-oracle machine for /~, defined as follows. M ' s  input 
consists of values assigned to the free variables of E; let us call these the global 
inputs. M starts by computing HI, U1 and U2, given the global inputs. Let w E W 
be the value obtained for W. By induction assumption, w differs from the type- 
t2 inputs by at most  c2. M proceeds by laying out a sequence of Iw] gadgets: if 

l l For instance, if E ----- R 1 EeEoE1 W, of type L~--4 ~0, then we can consider the 
expression E ~ =_ R'2,'~'-*,OE~EoE1Wulu2 instead, with ul, u2 variables of type el, 
which is again of the form above; and using induction assumption for the subterms 
of E is all that one needs to deal with E ~ instead. 



378 

w =- d k d k - l ' . . d i e ,  where di E {0, 1}, then the sequence is Mk, M k - 1 , . . . , M 0 ,  
with Mi = M ( E d , )  for i = 1 . . .k ,  and M0 = M ( E ~ ) .  

Note that each of the two machines repeated in this sequence, M ( E o )  and 
M ( E 1 ) ,  computes a function of type (t~ --+ ~0) --~ (tl 2 --+ to). Therefore, each 
of these gadgets uses the global inputs as well as a function argument of type 
tl2-+t0, and 2 arguments of type tl. 

M simulates the operation of Mk for the global inputs and the values of 
U1, U2. Since the U~'s are of type tl, these values have length < c l n  r~ . Whenever 
the machine Mk would query its oracle, M instructs the gadget Mh to query 
instead the successor gadget Mk-1. The same process is repeated down the 
sequence of gadgets Mk. . .  M1. Clearly, M computes the value of E (a detailed 
proof is by induction on Iwl). 

Each Mi queries its successor gadget M~-I for values whose lengths differ by 
at most d. nq from the type tl-arguments of Mi itself, which include the global 
type el inputs, the values of U1 and U2, and the queries passed from Mi+l, if 
any. It follows that all gadgets Mi have type-t1 inputs that differ from the type- 
tl global inputs and the values of of U1 and U2 by at most ]w[ �9 dnq, which is 
<_ (n + c2)" dn q. The computation of M is, therefore, performed in some constant 
space needed for bookkeeping, plus a value 

< space used to compute W, U1,//2 

+ space used by Mk,  �9 �9 �9 Mo 

<~ C 2 -~ 2 ' C1 nr l  

+ (n+c2)  �9 co �9 N r~ 

where N = m + c l n  rl + ( n + c 2 )  �9 dn q 

This is bounded by a polynomial in max(m, n) of degree r0 �9 max(rl, q+l )  + 1. 
Moreover, as noted above, all terms of type tl evaluated during this computation 
define words whose lengths differ by at most c ln  ~1 + (n+e2) - d -  nq from the 
global object inputs, and the computation is independent from the globM safe 
function inputs. This case (3) of the proposition holds for E. [] 

T h e o r e m  7. A func t ion  over ~ is computable in polynomial  space i f f  it  is de- 

f ined by a t e rm o f  PXRec  2 (A). 

Proof. By Theorem 1 every poly-space function is definable by recurrence with 
substitution over W, and therefore defined by a term of P A R e c  2 (A), by Propo- 

sition 5. 

Conversely, suppose a function is defined by a (closed) expression of P ~ R e c  2 (A).  
We can assume that the defining expression E is closed and normal. It is there- 
fore tame, and hence is computable in polynomial space, by lemma 6. [] 
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REMARK. The ramification condition used here cannot be relaxed to allow the 
recurrence arguments  to be of type q .  Otherwise we could define, for example,  
by recurrence over the algebra 1~ of numerals, 

E =_ R ~' :1-+~o (A fAx. f(sx)) 
F = R" '~ l~~  (AgAn. Egnn) 

Then 

E = @,~n,~z. g(z + n) 

and F = )~h)~m. h(2 rn) 

So F~,  where tc is the coercion function from tier tl to tier e0 (see [14]), computes 
exponentiation. 
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