
Predicative Functional Recurrence and Poly-space

Daniel Leivant 1 and Jean-Yves Marion 2

1 Departments of Computer Science, Indiana University, Bloomington, IN 47405
USA.

Universit@ Nancy 2, GRIN - CNRS & INRIA Lorraine - B.P. 239, 54506
Vandoeuvre-l@s-Nancy Cedex, France.

Abs t rac t . We formulate a notion of predicative function types, and
define predicative recurrence over functions, both in equational style and
as an applicative formalism, pointing out the equivalence between the two
approaches. We then show that a function is poly-space iff it is defined
using predicative functionals obtained by ramified recurrence over words.

1 I n t r o d u c t i o n

Recurrence schemas have been used for long as an algebraic method for defin-
ing, characterizing, and classifying natural collections of computable functions.
Characterizations by recurrence of computational complexity classes that are
relevant to computer science originate with Cobham's [5] characterization of the
poly-time functions over N by "bounded recursion on notations." The nature of
the correspondence between sub-recursion and computational complexity was
greatly clarified by the use of ramified data, by Bellantoni and Cook [3], (with
[20] and [11] as independent precursors). Characterizations by ramified recur-
rence have been provided, for example, for the poly-time functions [3, 12, 14],
the extended polynomials [11], the linear space functions [1, 7, 12, 18], NC 1
and polylog space [4], NP and the poly-time hierarchy [2], and the elementary
functions [13]. For further background on ramified recurrence see [14].

Recurrence in higher type (i.e. types of higher rank) goes back at least to
Hilbert [9], who showed that Ackermann's function can be obtained by recurrence
in type L--+ t (where t is the base type). More generally, Ghdel proved [6] that the
numeric functions defined using recurrence in all types are precisely the provably
recursive functions of first-order arithmetic. In [13] we showed that when data
is ramified, recurrence in all finite type generates a much smaller class, namely
the functions computable in (Kalmar-) elementary resources.

This remains true even if only two tiers of data are used, since exponentiation
can be defined by recurrence over functions of type to --+ to, as follows. (Here to is
the base tier, and L1 is the tier of objects that can drive recurrence over to). Define
explicitly the function dbl, of type (to --+ to) -+ (to --+ to), by dbl (f) (z) = f (f (z));
now define by recurrence over to ~ to the functional e of type tl --~ (to --+ to):
e(0) = s, e(sn) = db___!l (e(n)). Then e(n)(z) = 2'~+z, and so base 2 exponentiation
is defined by An. e(n)(O).

370

However, from a predicative viewpoint higher type recurrence of the kind
above is suspect, on grounds similar to Nelson's predicative critique of Peano
Arithmetic ([17], see also [14, 15]). Nelson's complaint about Peano Ari thmetic
is tha t the natural numbers are conceptualized using induction, which itself
depends on assuming a complete understanding of the natural numbers when
formulas proved by induction refer to natural numbers via their free or bound
variables. The same critique applies to recurrence in lieu of induction. The
predicative critique excludes, in fact, the admission of any type a of the form
(r --4 o) -4 r, where r is a type with an infinite extension and c~ is a non-singleton
type: such a presupposes the notion of arbi trary functions of type v--4o, which
is possible only if r is completely delineated. But if we have an object r of type
a, then new objects of type r might become definable via the use of ~; these
type r objects are, therefore, defined in terms of the entire type v, an ana thema
to the predicative viewpoint. 3

Based on the critique above, we formulate here a notion of predicative types,
and define predicative recurrence over functions, both in an equational-algebraic
style and as an applicative formalism, pointing out the equivalence between these
two approaches. We then show that a function is poly-space iff it is defined using
predicative functionals obtained by ramified recurrence over word algebras. For
a survey of other machine independent characterizations of the poly-space func-
tions, see [16], which itseff provides such a characterization in te rms of ramified
recurrence with substitution (this is quoted as Theorem 1 below).

2 R e c u r r e n c e

2.1 R e c u r r e n c e o v e r f r e e a l g e b r a s

Most subrecursive and applicative delineations of complexity classes are based,
explicitly or implicitly, on da ta structures other than the natural numbers. We
find it cleaner and clearer to refer directly to recurrence over free algebras. 4
For the rest of the paper A wilt be a free word algebra generated f rom cl . . . ck
(k > 0), where arity (c~) = r~ is 0 or 1. The 0-ary constructors are dubbed sources
and the unary ones successors. If a E A, we write lal for the length of a. The
algebras with no successor or no source are trivial. The remaining ones fall into
two classes with respect to computat ional behaviors: the ones with one successor,
s say, epitomize by the algebra l~l which has also a unique source, 0; and the
ones with severM successors, epitomized by the algebra W with one source c
and two successors, which we choose to denote 0 and 1. Since • is isomorphic
to {0, 1}*, the canonical medium of computat ional complexity theory, it is the

~ T h e situation is different for types ~" --+ r, where the domain and range can be
generated simultaneously. This critique is akin to the old predicative development of
type theory (cf. e.g. [24, 23]), which requires that the arguments of a predicate R of
level l be defined without reference to objects of level _ l.

4 These schemas are for the most part well known; see, for example, [22, 21].

371

most important algebra in relating recurrence to computational complexity. See
e.g. /18] for further discussion and examples.

Recurrence over ,4, is a set of k templates, one for each constructor:

f (c i , ~') = g~i (x) (ci a source)
f (c i (a), ~) = h ~ (f (a , ~) , a, ~) (ci a successor)

The functions he, above are the recurrence f u n c t i o n s , and the argument of f
displayed first is the recurrence argument . The argument of he, displayed first is
its cri t ical argument , the second is the regressive argument , and the arguments

are the parame te r s . An instance of recurrence is f i a t if all critical arguments
are missing, and is m o n o t o n i c if all regressive arguments are missing. 5 Typical
examples of flat recurrence are the definitions of the conditional and predecessor
functions:

cond (ci({possibly an argument}), x l, . . . , xk) = x i ,

pred (ci) = c, (ci a source)
pred (ci(a)) = a (ci a successor)

2.2 R e c u r r e n c e w i t h s u b s t i t u t i o n

For a generic word algebra A recurrence wi th (parameter ,) subs t i t u t i on [19] is
the schema of recurrence, with the clauses for successors generalized to permit
modification of the some of the parameters in each recursive call:

f (c i , ~1, . . . , ~ , ~ = g c , (~ l , . . . , ~ , y~) (ci a source)
f (c / (a) , x l , . . . , x t , y~) = hc, (bil , . . . , bi,~,, a, ~, ~ (c / a successor)

where bij = f (a , ~ i j l (E), . . . , !ai j l (E), y-)

The previously-defined functions ~i~'p are the subst i tu t ion f u n c t i o n s of the definitionfi
The arguments ~ above are the subs t i t u t ion p a r a m e t e r s of the definition.

For example, we can obtain exponentiation by defining

x~ (o, u) = . ~ (sn, ~) = x~ (~, 2~) 2 n = x~ (n, 1)

It is well known that recurrence with substitution over N is reducible to simple
recurrence (see [19J w but the proof uses auxiliary functions that cannot be
properly ramified. Moreover, the classical t reatment in [19] does not generalize
to arbitrary word algebras, for which a more complicated machinery seems to be
needed. In the contexts of computational complexity, word algebras, or ramified
data, it is therefore appropriate to consider this schema in its own right. For
examples and further details see [16].

Monotonic recurrence over N is often dubbed i teration with parameters, but the
phrase i teration is a misnomer for algebras llke W.

s The reason for not joining the variables ~ to ~ will become clear below where we
define a ramified version of this schema.

372

2.3 F u n c t i o n a l s d e f i n e d b y r e c u r r e n c e

We refer to the usual notion of types, formed inductively from the symbol t (the
base type) and the binary operation symbol -+: Types 3 v ::= t I (r) -+ (v).
The convention is to drop parentheses around t, and to associate -+ to the right.
Also, we write r l , r2 �9 r r -+ ~ for r l -+ r2 --+ �9 �9 �9 -+ r r --~ c~; and if r l . . . r r are
all identical to r, we write r r --+ a for the type above.

The types are interpreted semantically over A in the obvious way: a type r
determines a space A r, defined by recurrence on v: A ~ =dr A, and A r ~ a is the
space of all functions from A r to A ~ The rank of a type is defined by rnk(t) = 1,
rnk(c~--+ r) = max(l+rnk(a) , rnk(v)). The types of rank 1, 2 and 3 are the object,
function, and functional types, respectively.

An explicit definition of ~ of type r = (~1, . . . , ~q-+ t) takes the form

~ (X ~) - - - (X q) = E

where E is an applicative expression of type t, and X1 . . .Xq are variables of
types ~r 1 . . . C~q, respectively. Recurrence (on A) over the type r above takes the

form

�9 (c i) (X l) . . " (Xq) = ~ ~ (X~) (r a source)
~5(ci(a))(X1)-." (Xq) = Oc,(a)(ff)(a))(X1) "'" (Xq) (c i a Successor)

2.4 A p p l i c a t i v e n o t a t i o n fo r r e c u r r e n c e

It is well known that computing by recurrence equations can be expressed func-
tionally in the typed l ambda calculus augmented with recurrence operators for
the corresponding types [6]. A caveat is the presence of regressive arguments (as
defined above). Using the full power of recurrence permits sequence coding tha t
bypass this difficulty (see [19] w We comment below about alternatives.

Let ARec(A) be the simply typed A-calculus expanded as follows. Each con-
structor of A is a constant of the obvious type, as are the predecessor and con-
ditional. We refer to these as the basic constants of the calculus. For each type
r there is, in addition, a constant R r of type p[v] ~-af ~h,. . .~rk, ~ --~ v, where ~ri
stands for r if ci is a source and for r --+ r if it is a successor. The fl-reduction
rules are augmented with computat ional rules for the predecessor, conditional,

and recursor constants:
pred (c~) :=> c~ ci a source

pred (ci(E)) :2z E ci a successor

cond (c i (. ") , E 1 , . . . , E k) ~ Ei

R r E1 �9 ." Ekci ~ Ei ci a source
t t ~ E l " ' E k (c i (a)) ~ EiDi ci a successor

where D i = R ~ E l ' ' ' E k a "

See [13] for details and examples.

373

3 R a m i f i e d r e c u r r e n c e

3.1 R a m i f i e d r e c u r r e n c e f o r b a s e t y p e

Ramified recurrence was discovered independently by Simmons [20], Leivant [11],
and Bellantoni and Cook [3]. The latter paper was the first to use tiered data to
characterize computational complexity. A systematic development of data tiering
and ramified recurrence was introduced in [12, 14]. We recall here the essentials.

Let S(A) be the many-sorted structure with copies A0, A1 . . . of the algebra
A as universes, which are dubbed tiers. (We omit the superscript when in no
danger of confusion.) Ramified recurrence allows the definition of a function
f : Ai • A --+ Aj (where ,4 is the product of some Am'S), by a recurrence schema
as above, provided i > j:

f (c i , g) = gc, (x) (ci a source)
f (c , (a), ~) = hc, (f(a, E), a, ~) (c~' a successor)

Note that the recurrence argument is in &i and the output is in &j, j < i by
the explicit typing requirement for f . The ramified PR functions over & are the
functions over 8(A) that are defined from the basic constants of A by explicit
definitions and ramified recurrence. In [14] we proved that, over word algebras,
these are precisely the functions computable in polynomial time.

3 . 2 R a m i f i e d r e c u r r e n c e w i t h s u b s t i t u t i o n

Ramified A-recurrence with substitution is the schema of recurrence with sub-
stitution as stated above, but referring to 3(A), and with the provisos that the
recurrence argument and substitution arguments all be in the same tier, and
that that tier be greater than the tier of the result. 7

In [16] we introduced a generic notion of alternating register machine over
free algebras. Computabili ty in polynomial time over such a machine over W is
equivalent to poly-time computabili ty over an alternating Turing machine, and
thus to poly-space. We proved there the following.

T h e o r e m 1. The functions over a word algebra A defined by ramified A-recurrence
with substitution are precisely the functions computable on an alternating register
machine for A. Therefore, the functions over W defined by ramified recurrence
with substitution are precisely the poly-space functions.

3.3 P r e d i c a t i v e r e c u r r e n c e o v e r f u n c t i o n s

To keep matters uncluttered, we restrict attention here to the first three tiers
only. s Following the predicative critique of recurrence over functions, outlined

7 Note that the remaining parameters of the definition, for which we used $7 in the
schema above, may be in any tier. Allowing the substitution parameters to have
different tiers permits a definition for exponentiation.

s Two tiers won't suffice for a predicative recurrence over functions, as will become
clear below.

374

in the introduction, we restrict higher order recurrence operators R r to function
types r for which the type r -+ r , appearing as an argument, is predicatively
admissible. We require that no subtype of r appears in v -+ r as both a domain
of a function argument and a co-domain. In addition, we require, in analogy
to ramified recurrence for object type, that the recurrence argument be of tier
greater than any tier in r . These conditions imply that recurrence argument be
of tier t2, and r be of the form t~ n -+ to or t~ -+ tl. Since there are no definable
functions of the latter type (see discussion in [14]), we are left with the former.

We call types of the form t~ -+ to (m >_ 1) safe function types, and say tha t
a type is safe if it is either an object type (to, tl, or t2), or a safe function
type. A type of the form r l , . . . v m -+to, where all vi 's are safe, is a predicative
functional type. Note that if r is a predicative functional type then cr -+ 7" is
again a predicative functional type for any safe ~r. Observe that to -+ to is a
(degenerated) predicative functional type, but is not a safe function type: it is
admissible on its own, but is not "safe" as an argument .

An applicative formalism PARec 2 (A) for predicative second order recurrence
is now defined as the following extension of the simply typed A-calculus.

- For each basic constant of A and each tier we have an identifier for the
function operating in that tier. We shall indicate the appropriate tier by a
superscript, but often omit it when it is clear from the context or irrelevant.

- For each safe function type r , and each tier tj larger than all tiers in r , there
is a recurrence constant R t j ' r , whose type is p[v] =dr c q , . . . , c%, tj -+ v.
Here, again, ~i is r if ci is a source, and r -+r if it is a successor.

- The fl-reduction rule is augmented by the reduction rules for the prede-
cessor, conditional, and recurrence constants, as for the un-ramified version

described above.

3 . 4 R e d u c t i o n t o a p p l i c a t i v e r e c u r r e n c e

L e m m a 2. If a function f over A is defined from ramified functions by pred-
icative recurrence, then f has a definition from those functions by monotonic
predicative recurrence.

Proof. Suppose �9 is defined by

�9 (c i) (X 1) ' - ' (X q) = ~c , (X1)"" (Xq) (ci a source)
~ (c i (a)) (X l) ' ' ' (Xq) = Oc,(a)(~(a))(Xl)"" (Xq) (el a successor)

Define instead (P' by
�9 ' (ci) (y) (x l) . . . (Xq) = (x ,) . . . (xq) (c, source)

�9 ' (ci (a)) (y) (X1)"" (Xq) = Oc, (pred (y)) (q~'(a) (pred (y))) (X 1) ' " (Xq)
a successor)

Then ~(w) = ~'(w)(w). []

C o r o l l a r y 3. A function f is definable using predicative recurrence over func-
tions iff it is computed by a term of P)~Rec 2 (A).

375

3.5 P r e d i c a t i v e r e c u r r e n c e c a p t u r e s r e c u r r e n c e w i t h s u b s t i t u t i o n

P r o p o s i t i o n 4 . If a function f over A is defined by ramified recurrence with
substitution, then f is defined by predicative functional recurrence.

Proof. By induction on the definition of f . The only case of interest is where f
is generated by the scheme of ramified recurrence with substitution, as above:

f (c , , z, y-) = ac, (e,
f(c~ (a), e, ~ = hc , (b~ , . . . , b~m,, a, e,

where bij = f(a, ~ j l (~) , ' " , ~j , (~) , Y-)

ci a source)
(c i a successor)

Let cr denote the type t~--+tl of the substi tution functions ~ijp, and Pl. . .Pq E
{to, q} be the types of yl �9 �9 �9 yq, respectively. Let Z be a variable of type ~r. Define
by recurrence the functional ~, with the clauses for successor constructors:

where

�9 (c ,) (~ (e) = go,(~,
O(ci (a)) (~(~) = G(a)(r
G(a)(Z)(u')(~) = hc,(Z,1. . .Z,m, , a, ~,

with Zij = Z(~ i j l (~) , . . . , ~ijl(g))

Note that the first argument of G is in tier t2. []

Combining 4 with 3 we obtain:

P r o p o s i t i o n 5. If a function f over A is defined by ramified recurrence with
substitution, then f is defined by a term of P)tRec2(A).

4 P r e d i c a t i v e f u n c t i o n a l r e c u r r e n c e i s p o l y - s p a c e

We conclude here with a proof of the main technical l emma of this work, showing
that every function defined using predicative functional recurrence is computable
in poly-space. To keep notations uncluttered, we restrict at tention here to the
algebra A = W.

As a computat ion model for functionals we use mul t i - tape Turing machines
with function oracles. Each such machine refers to a fixed finite list of function
oracles, of arities > 1. Oracles are used via query rules, where each such rule
specifies the oracle it invokes (i.e. a position in the list of oracles), and, if the
arity of that oracle is m, the rules prescribe the m tapes from which the oracle
inputs are to be read, and the tape on which the oracle output is overwritten. In
measuring the computat ion t ime of such a machine we count each oracle call as
a single step. 9 Note that a rather tame oracle, such as one for concatenation, can

9 A sirailar notion underlies [10]

376

yield by n i terat ions an ou tpu t exponential ly larger than the input . However, we
will work with machines where unbounded oracle i teration does not occur.

Going back to the formal ism P)tRec2(A), we say tha t a te rm E is normal
if no sub te rm can be reduced (by /~-, recursor-, predecessor-, or condit ional-
reduction). It is well known tha t in)tRec2(A) every te rm can be converted to
normal form, and so the same applies to P)tRec2(A), which is a more restrictive
calculus.

For a te rm E we write ~: for the A-closure of E , i.e. A x l . . . x r . E, where
xa . . . , xr is a list of all free variables in E, under some canonical order.

In analyzing the s t ructure of normal terms for funct ionals of predicative
types, we have to consider addit ional types. Call a type admissible if it is of the
form 7-t . . . rm--+ tj, j = 1 or 2, where the ri's are safe types. Call an expression
E of P)~Rec2(A) tame if it is normal , and its A-closure has a predicative or
admissible type. T h a t is, E has a predicative or admissible type, and all free

variables have safe type.

P r o p o s i t i o n 6 . Let E -- E[ff0, gl , g2, V] be a tame expression, where gi are the
free type-ti variables, and V all variables with safe function types. Let 4) be the
functional over A defined by E.

1. If the type of E is ~, then 4) evaluates in constant time, and its value is
dependent only on arguments of type t2.

2. If the type o re is admissible (with L1 as co-domain), then 4) evaluates in time
polynomial in its type L2 arguments, and independent from all its remaining
arguments, and its value is dependent only on arguments of type L2 and q .

3. If the type of E is predicative, then 4) evaluates in space polynomial in its
type-t2 and type-L1 arguments and independent from its other arguments,
and all queries to function arguments during the computation are for words
whose length is within a polynomial in the type-~2 arguments from the type-q
arguments.

Proof. By induct ion on E. We give here key cases for E. Other cases will be

spelled out in the full version of this paper.

I f E is a variable x of type v, then E -- Ax. x is of type v--+ v. Since v - -+r is
predicative or admissible, r is either an object or a safe funct ion type. In either

case the l emma ' s s ta tement holds trivially.

E cannot be a recurrence constant R T : the type p[r] of R ~ has r--+ r, which
is never safe, as an a rgument type. Thus R r is not t ame for any ~-.

I f E is one of the basic constants , then the l e m m a is trivial, l~

If E is a A-abstract ion Ay. E0, the s t a t ement is immedia te by induct ion as-

sumpt ion for E0.

i0 Note that our using constructors, predecessor, and conditional with input(s) and
output of identical base type is essential here.

377

Suppose that E is an application, say E =__ Eo(E1) . . "(Era) (m > 1), where
E0 is no longer an application. Since E is normal, Eo cannot be an abstraction.
Therefore E is either a variable or a constant.

The type of E0 must be of the form (r l . . . r r ,) --4 ~, where rl is the type
of Ei, and ~r the type of E0. If E0 is a variable, then its type must be a safe
function type, since E is tame, and so 7"1 v,~ =- tl, and cr = L0. By
induction assumption, it follows that case (2) of the l emma applies to El , �9 �9 Era.

Therefore, given values for the free variables ff and ~7, we can compute the values
of E1 �9 �9 �9 in t ime polynomial in its type ~2 inputs, without invoking the safe
function inputs as oracles. These m values are the inputs to the oracle given as
global input for the variable E0, confirming that case (3) of the l emma holds for
E.

Suppose, on the other hand, that E0 is a basic function. If it is a constructor
or predecessor, the l emma holds trivially for E by induction assumption for El .
If E0 is cond j (j = 0, 1 or 2), then E is of one of the forms cond El , cond E1E2,
or cond E1E2E3, and the l emma holds trivially for E by induction assumption
invoked for the argument expressions Ei.

We are left with the only interesting case of the proof, where Eo is a recursor.
We treat the case where E0 : R ' , which typffies recurrence over functions.
Other cases are analogous. The full ~enerality of the situation is captured when
E is of type t0 and of the form R'~,'~'oEeEoE1WU1U2.1I

Let n, m be the maximal lengths of type-t2 inputs and of type-L1 inputs,
respectively. The induction's assumption applies to all subterms F of E. For each
such F, let M (F) be a Turing machine that computes the function represented
by _P as prescribed by induction assumption. We then have:

- A constant c2 such that all subterms of type ~2 define functionals computed
in t ime < c2.

- Constants cl and r l such that all subterms of admissible type define func-
tionals computed in t ime _< cl n r~ .

- Constants co, r0, d and q such that all subterms of safe type define functionals
computed in space < c o - m a x (m , n) to, and such that function inputs are
applied in the computat ion of the machines M(Eo) and M(E1) only to values
whose length is within d. n q away from the type ~1 inputs.

Let M be a function-oracle machine for /~, defined as follows. M ' s input
consists of values assigned to the free variables of E; let us call these the global
inputs. M starts by computing HI, U1 and U2, given the global inputs. Let w E W
be the value obtained for W. By induction assumption, w differs from the type-
t2 inputs by at most c2. M proceeds by laying out a sequence of Iw] gadgets: if

l l For instance, if E ----- R 1 EeEoE1 W, of type L~--4 ~0, then we can consider the
expression E ~ =_ R'2,'~'-*,OE~EoE1Wulu2 instead, with ul, u2 variables of type el,
which is again of the form above; and using induction assumption for the subterms
of E is all that one needs to deal with E ~ instead.

378

w =- d k d k - l ' . . d i e , where di E {0, 1}, then the sequence is Mk, M k - 1 , . . . , M 0 ,
with Mi = M (E d ,) for i = 1 . . .k , and M0 = M (E ~) .

Note that each of the two machines repeated in this sequence, M (E o) and
M (E 1) , computes a function of type (t~ --+ ~0) --~ (tl 2 --+ to). Therefore, each
of these gadgets uses the global inputs as well as a function argument of type
tl2-+t0, and 2 arguments of type tl.

M simulates the operation of Mk for the global inputs and the values of
U1, U2. Since the U~'s are of type tl, these values have length < c l n r~ . Whenever
the machine Mk would query its oracle, M instructs the gadget Mh to query
instead the successor gadget Mk-1. The same process is repeated down the
sequence of gadgets Mk. . . M1. Clearly, M computes the value of E (a detailed
proof is by induction on Iwl).

Each Mi queries its successor gadget M~-I for values whose lengths differ by
at most d. nq from the type tl-arguments of Mi itself, which include the global
type el inputs, the values of U1 and U2, and the queries passed from Mi+l, if
any. It follows that all gadgets Mi have type-t1 inputs that differ from the type-
tl global inputs and the values of of U1 and U2 by at most]w[�9 dnq, which is
<_ (n + c2)" dn q. The computation of M is, therefore, performed in some constant
space needed for bookkeeping, plus a value

< space used to compute W, U1,//2

+ space used by Mk, �9 �9 �9 Mo

<~ C 2 -~ 2 ' C1 nr l

+ (n+c2) �9 co �9 N r~

where N = m + c l n rl + (n + c 2) �9 dn q

This is bounded by a polynomial in max(m, n) of degree r0 �9 max(rl, q+l) + 1.
Moreover, as noted above, all terms of type tl evaluated during this computation
define words whose lengths differ by at most c ln ~1 + (n+e2) - d - nq from the
global object inputs, and the computation is independent from the globM safe
function inputs. This case (3) of the proposition holds for E. []

T h e o r e m 7. A func t ion over ~ is computable in polynomial space i f f it is de-

f ined by a t e rm o f PXRec 2 (A).

Proof. By Theorem 1 every poly-space function is definable by recurrence with
substitution over W, and therefore defined by a term of P A R e c 2 (A), by Propo-

sition 5.

Conversely, suppose a function is defined by a (closed) expression of P ~ R e c 2 (A).
We can assume that the defining expression E is closed and normal. It is there-
fore tame, and hence is computable in polynomial space, by lemma 6. []

379

REMARK. The ramification condition used here cannot be relaxed to allow the
recurrence arguments to be of type q . Otherwise we could define, for example,
by recurrence over the algebra 1~ of numerals,

E =_ R ~' :1-+~o (A fAx. f(sx))
F = R" '~ l~~ (AgAn. Egnn)

Then

E = @,~n,~z. g(z + n)

and F =)~h)~m. h(2 rn)

So F~, where tc is the coercion function from tier tl to tier e0 (see [14]), computes
exponentiation.

References

1. S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis,
University of Toronto, 1992.

2. S. Bellantoni. Predicative recursion and the polytime hierarchy. In Peter Clote
and Jeffery Remmel, editors, Feasible Mathematics H, Perspectives in Computer
Science, pages 15-29. Birkh~iuser, 1994.

3. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity, 2:97-110, 1992.

4. S. Bloch. Functional characterizations of uniform log-depth and polylog-depth
circuit families. In Proceedings of the Seventh Annual Structure in Complexity
Theory Conference, pages 193-206. IEEE Computer Society Press, 1992.

5. A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel,
editor, Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, pages 24-30. North-Holland, Amsterdam, 1965.

6. K. Ghdel. ~lber eine bisher noch nicht ben/ite Erweiterung des firfiten Stand-
punktes. Dialectica, 12:280-287, 1958. Republished with English translation and
explanatory notes by A. S. Trodstra in Kurt Ghdeh Collected Works, Vol. II. S.
Feferman, ed. Oxford University Press, 1990.

7. W.G. Handley. Bellantoni and Cook's characterization of polynomial time func-
tions. Typescript, August 1992.

8. J.van Heijenoort. From Frege to Ghdel, A Source Book in Mathematical Logic,
1879-1931. Harvard University Press, Cambridge, MA, 1967.

9. D. Hilbert. Ober das unendliche. Mathematische Annalen, 95:161-190, 1925. En-
glish translation in [8], pages 367-392.

10. B.M. Kapron and S.A. Cook. A new characterization of mehlhorn's polynomial
time functionals. SIAM Journal of Computing, 25(1):117-132, Feb. 1996.

11. D. Leivant. Subrecursion and lambda representation over free algebras. In Samuel
Buss and Philip Scott, editors, Feasible Mathematics, Perspectives in Computer
Science, pages 281-291. Birkhauser-Boston, New York, 1990.

12. D. Leivant. Stratified functional programs and computational complexity. In Con-
ference Record of the Twentieth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 325-333, New York, 1993. ACM.

380

13. D. Leivant. Predicative recurrence in finite type. In A. Nerode and Yu.V. Matiya-
sevich, editors, Logical Foundations of Computer Science, LNCS 813, pages 227-
239, Berlin, 1994. Springer-Verlag. Proceedings of the Third LFCS Symposium,
St. Petersburg.

14. D. Leivant. Ramified recurrence and computational complexity I: Word recurrence
and poly-time. In Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics
II, pages 320-343. Birkhauser-Boston, New York, 1994.

15. D. Leivant. Intrinsic theories and computational complexity,. In D. Leivant, ed-
itor, Logic and Computational Complexity, number 960 in LNCS, pages 177-194.
Springer-Verlag, 1995.

16. D. Leivant and J.-Y. Marion. Ramified recurrence and computational complexity
II: substitution and poly-space. In L. Pacholski and J. Tiuryn, editors, Proceedings
o.f CSL 94, pages 486-500. LNCS 933, Springer Verlag, 1995.

17. E. Nelson. Predicative Arithmetic. Princeton University Press, Princeton, 1986.
18. A. P. Nguyen. A]ormal system for linear space reasoning. PhD thesis, University

of Toronto, 1993. Master of Science Thesis.
19. H.E. Rose. Subrecursion. Clarendon Press (Oxford University Press), Oxford,

1984.
20. H. Simmons. The realm of primitive recursion. Archive .for Mathematical Logic,

27:177-188, 1988.
21. J.V. Tucker and J.I. Zucker. Program Correctness over Abstract Data Types, with

Error-State Semantics. CWI Monographs No. 6. North-Holland and the Centre
for Mathematics and Computer Science, Amsterdam, 1988.

22. K.N. Venkataraman, A. Yasuhara, and F. M. Hawrusik. A view of computability
on term algebras. Journal of Computer and System Sciences, 26(2):410-471, June

1983.
23. H. Wang. Some]ormal details on predicative set theories, chapter XXIV. Sci-

ence Press, Peking, 1962. Republished in 1964 by North Holland, Amsterdam.
Republished in 1970 under the title Logic, Computers, and Sets by Chelsea, New

York.
24. A. N. Whitehead and B. Russell. Principia Mathematicae. Cambridge University

Press, second edition, 1929.

