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Abs t rac t .  We present here a particular case of the higher order match- 
ing problem - -  the linear interpolation problem. The problem consists 
in solving a collection of higher order matching equations of the shape 
x M 1 . . .  Mk = N,  where x is the only unknown quantity. We prove re- 
cursive equivalence of the higher order matching problem and the linear 
interpolation problem. We also investigate decidability of a special case 
of the fifth order linear interpolation problem. The restriction we con- 
sider consists in that arguments of variables from the main abstraction in 
terms M1,. �9 �9 Mk cannot contain variables from the main abstraction. 

1 P r e f a c e  

The higher-order matching problem for s imply typed A-calculus has been consid- 
ered since 1976 ([Hue76]). There were proposed several partial solutions of the 
problem (second order m a t c h i n g -  [GH78]; correct, but without a proof of com- 
pleteness, a l g o r i t h m -  [Wo189]; third order m a t c h i n g -  [Dow93]; fourth order 
m a t c h i n g -  [Pad96]). 

In this paper, we present the linear interpolation problem. This problem is 
interesting since to construct a solution for such a problem we deal with a single 
object, not a set of objects as in the case of the matching problem in general 
formulation. Moreover, V. Padovani investigates a similar problem in his paper  
[Pad96]. The Padovani 's  problem consists in solving the pair of sets {~, gr} of 
interpolation equations. A solution of such a problem is a concretisation of un- 
known quantities which satisfies each equation in the set ~ and does not satisfy 
any equation in the set ~. Decidability of the problem implies decidability of the 
matching problem as proven in [Pad96]. 

1 This work has been partly supported by ESPRIT BRA 7232 GENTZEN, and KBN 
8 T l l C  034 10 grants. 
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In the second part  of the paper, we look into decidability of a special case of 
the fifth order linear interpolation problem. The restriction we consider is that 
arguments of variables from the main abstraction in terms M1, �9 �9 Mk cannot 
contain occurrences of variables from the main abstraction. 

This issue is interesting, since it gives constructors of proof-checkers and 
proof-assistants possibility of solving some fifth order matching equations. 

This paper is organised as follows - -  in Section 2 we present some basic def- 
initions and define some useful notation, in Section 3 we prove recursive equiv- 
alence of the higher-order matching problem and the interpolation problem, and 
in Section 4 we prove our decidability result. 

The present paper contains only a sketch of the proof. More details can be 
found in the technical report [Sch96]. 

Acknowledgements. Thanks to prof. J. Tiuryn for encouragement to deal with 
the higher-order matching problem and for discussions on the topic we had. I also 
thank prof. P. Urzyczyn, Robert Maron, Grzegorz Grudzifiski for many prolific 

debates. 

2 Basic  definitions 

2.1 T y p e s  a n d  t e r m s  

We assume the reader is familiar with the notions of )`-term, fl and ~ reduction, 
type systems. Corresponding definitions can be found in [Bar84] or [Bar92]. 

Additionally, we understand the simply typed ),-calculus in the formulation, 
where we have a type indexed set g of unknown quantities symbols, and terms 
may contain these symbols in unbound positions. The set of all s imply-typed 
),-terms is denoted by A-~. The set of free variables in a term t is denoted by 

FV(t) and the set of constants by Const(t).  
We assume, except when stated explicitly, all terms are in fl-normal, ~-long 

form. When necessary the normal form of a term t is denoted by NF(t) .  
Moreover, we mean by a closed term a term defined as usual but we impose 

one additional condition - -  the term cannot contain unknown quantities. We 
denote by CI(A) the restriction of the set A of terms to closed terms. 

Terms are denoted by capital Latin letters (for instance A, D, M . . . )  and by 
small Latin letters starting from s (s, t , . . . ) .  Types are denoted by small Greek 
letters starting from r ( r  We denote by Typ(t)  the set of all types of 
subterms of the term t. SubTyp(A) denotes the set of all the subtypes of types 
from A. Notions of order, path, BShm tree, occurrence, graft are taken from 
[Dow93]. From now on, except when stated explicitly, we use the name "term" 

to refer to the BShm tree of the term in question. 

2.2 T h e  m a t c h i n g  p r o b l e m  

Now we introduce the definition of the higher-order matching problem. 
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Let M : r and N : r be closed A-terms where N : r does not contain any 
unknown quantity. The equation M : c~ = N : a,  where c~ is a base type, is 
called higher-order matching equation. 

Any type-respecting function p : g  --+ CI(NF(A_+)) is called a concretisation 
of unknown quantities. For any )~-term M the result of the coneretisation of 
its unknown quantities is a term p(M) in which every unknown quantity x is 
substituted for by the te rm p(x). 

Please note that in the definition of the result of concretisation, no variable 
f rom concretisation gets bounded during the process of substitution. 

The higher-order matching problem is a decision problem to ascertain whether 
for a given higher-order matching equation M = N exists a concretisation of 
unknown quantities p : g -+ CI(NF(A_+)) such that NF(p(M)) = N. Such a 
concretisation is called a solution of the equation M = N. The matching problem 
of the order n is a higher-order matching problem where instances may  have 
unknown quantities symbols of the order at most  n. 

Throughout  the rest of the text, we use the te rm matching problem to denote 
the higher-order matching problem 

2.3 T h e  l i n e a r  i n t e r p o l a t i o n  p r o b l e m  

Now we introduce the problem that is equivalent to the matching problem as we 
show later. 

We say the matching equation M = N is an interpolation equation iff M = 
x M 1 . . .  M~ where x E E and for each i term Mi is closed (in particular it has 
no occurrence of an unknown quantity).  

Conceptually, it is simpler to solve interpolation equations are much simpler 
than arbi t rary  since we look for exactly one term. 

The linear interpolation problem is a problem to decide whether there exists 
for a finite set E of interpolation equations of the shape [xM1.. .M~ = N], 
where x appears in all equations and is the only unknown quanti ty in E, a 
concretisation of unknown quantities p :  ix} -+ CI(NF(A_+)) that is a solution 
for each e E E.  We call such a concretisation a solution of the interpolation set E. 
As only one value is relevant in such a concretisation, we sometimes use the name 
solution of an interpolation set in order to refer the one value. The max imum in E 
of the number of occurrences in terms N is denoted MaxRes(E).  The interpolation 
problem of the order n is an interpolation problem where instances may  have 
unknown quantities symbols of the order at most n. 

In the next section, we show the relation between the just  formulated prob- 
lems. 

3 T h e  m a t c h i n g  p r o b l e m  a n d  t h e  i n t e r p o l a t i o n  p r o b l e m  

We start  with the simpler reduction. We show that interpolation problems may  
be solved using algorithm for the higher-order matching problem. 
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F a c t  3.1 Assume that there exists an algorithm .A that solves the higher-order 
matching problem. Then, there exists an algorithm B that solves the interpolation 
problem. 

Proof. Let E = { e l , . . . ,  e,~} be an instance of the interpolation problem that for 
each i has ei = [x iM~. . .  M~, = Nq.  If we have an algorithm ,4 for the higher- 
order matching problem we can solve such an instance by introducing a new con- 
stant Z : ~-1 --+ �9 �9 �9 --~ v,~ --~ ~, where ri is a type of term N i in the interpolation 
equation el, and ~ is a type constant, and then applying the algorithm A to the fol- 
lowing instance of the matching problem Z ( x 1 M :  M tn, ) �9 ( xm M~ n n,~ ) 
Z N  1 . . .  N "~ It  is straightforward that each solution of the instance gives a solu- 
tion of the collection E and that each solution of E is a solution of the instance, 

too. 

It is worth mentioning that in this construction the order of the problem to 

be solved does not change. 
Now we show the reverse reduction. 

F a c t  3.2 Given an algorithm A that solves the interpolation problem, we can 
construct an algorithm B that solves the higher-order matching problem. 

Proof. Let M = N be a matching problem instance. We present an interpolation 
problem instance which has a solution iff the instance M = N has one. 

The constructed set E of interpolation equations contains elements 

x%yl . . .  Y,~.M' = N (1) 
x%yl . . . Y m . Z  = Z 

where Z is a fresh constant of a suitable type and M' = M [ y l / x l , . . . ,  ym/x,~]. 
Additionally, { x l , . . .  ,x,~} = FV(M) Ns  and {y~ , . . . ,  y,~} is a set of fresh local 

variables of suitable types. 
( 0 )  Given a solution p : E -+ A_+ of the equation M = N such that p(x~) = t~ 
the solution p' : {x} --+ CI(NF(A-+)) of the constructed interpolation problem in- 
stance is p ' (x)  = )~y. yQ . . .  t~n The proof that p' is a solution of the collection (1) 

is straightforward but tedious. 
(r Let p' be a solution of our instance of the interpolation problem and let 
p'(x) = t. Assume further, t is in normal form. The shape of the second equation 

implies that NF(t%yl . . . y m . Z )  = Z. Therefore t = %y. Z or t = ky. yul . . .u ,~ .  
The first case is impossible, because the result of the first interpolation equation 

cannot be Z (Z is fresh). 
Now it is easy to see that p : g --~ A~ such that  

p(xi) = NF((Xy. ui)%Yl...Ym" M') 
is a solution of the instance M = N of the matching problem. 

Remark. The order raises by two in the previous construction. 

At the end we get as a consequence of Fact 3.1 and Fact 3.2 

T h e o r e m  1. The problem of linear interpolation is recursively equivalent to the 

higher-order matching problem. 
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4 Decidability of a fragment of the fifth order 
interpolation problem 

At the beginning, we introduce a definition that shall help us to present the 
fragment of the interpolation problem we are dealing with. 

Definit ion 1 We say a ;\-term ) ~ X l  . . .  x m . M  is unsophisticated iff for  each oc- 
currence in M of a term of the form xi N1 . . .  Nk and for each j E { 1 , . . . ,  k} none 
of xt, where l E { 1 , . . . , m } ,  appears in Nj .  

Each variable, constant, or application is an unsophisticated term. The linear 
interpolation problem with unsophisticated arguments is a linear interpolation 
problem, where we impose additional restriction on the form of an instance - - f o r  
cache e E of the form e = [ X M l . . . M n  = N] where Mi f o r i  e { 1 , . . . , n }  is 
an unsophisticated term. 

A solution of a set E of such equations is called a solution of the interpolation 
with unsophisticated arguments set E. 

We restrict additionally our attention to the instances of the fifth order. 
We show further that if for a given set E, there exists any solution then there 

exists one in some recursively dependent on E set of A-terms. 
Our construction consists of two steps. In the first one, we restrict the set of 

solutions in such a way that we know the set of types of their subterms and the 
set of constants they are built up of. In the second one, we narrow the already 
got class so that we know the depth of solutions. 

Before we present next results, we introduce some notation. For an interpo- 
lation equations set E = { e l , . . . ,  en} where ei = [xMiz . . .M~ = N i] we put 
MaxRes(E) = maxie{1 ..... n} INil and SumRes(E) = ~ i = l  INi l  �9 

4.1 A c c e s s i b l e  t e r m s  

We define here a class of solutions the elements of what intuitively do not have 
unnecessary subtrees in their Bhhm trees. The idea of the notions is taken form 
[Dow93]. 

Let e = [xM1 . . .  Mn = N] is an interpolation equation, t its solution, and 7 
an occurrence in the term t. We say the occurrence 7 in the term t is accessible 
wrt. equation e iffthe term NF((t[Z -+ 7])M1. . .  Mn), where Z is a fresh constant 
of a suitable type, has an occurrence of the constant Z. 

The set of all accessible wrt. equation e occurrences is denoted by Acc(t, e). 
Intuitively, an accessible subterm cannot be lost during the reduction of the 

term t M1 . . .  M~ . 

We say that an occurrence 7 is accessible wrt. the set E of equations iff it is 
accessible wrt. at least one of e E E. If 7 is not accessible we say it is inaccessible. 
We denote the set of all occurrences accessible wrt. the set E of equations by 
Acc(t, E). 

A path 7 is accessible iff the occurrence that corresponds to its end is acces- 
sible. If such a path is not accessible we call it inaccessible. 
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The solution t of a set E is accessible iff each occurrence 7 in the solution 
either is accessible or is an occurrence of a constant  Z of  a suitable type.  

We fix a simple types  indexed set 73 of fresh constants.  Addit ionally,  we 
assume each P~ has exactly one element. On next pages, we are considering the 
l ambda  calculus extended by the set. The set we call the set of fillings and each 
its element a filling. 

We say the solution t of the set E of  equations has a good filling iff each 
inaccessible occurrence in t is an occurrence of  a filling. 

flemark. Obviously, solutions with a good  filling are accessible. 

T h e o r e m  2. If  there exists a solution of a set E of interpolation equations then 
there exists a solution of the set which has a good filling. 

Proof. Let E be a set of interpolation equations and t its solution. We construct  

the term t that  has a good filling. 
Let ~' be an inaccessible wrt.  the set E occurrence in t. We graft  the filling Z of 

a suitable type  at 7- The resulting term t ~ is a solution. Using this argumenta t ion,  
we eliminate one by one inaccessible occurrences of  non-tr ivial  terms. At last, 

we get a solution that  has a good filling. 

F a c t  4 .1 The set of constants occurring in the solution with a good filling is 
contained in the set C = [.Ji~=t Const (N i) U 7 3. 

Proof. We have two possibilities - -  an occurrence 7 of a constant  D is accessible 
wrt .  some equat ion ei, an occurrence 7 of  D is inaccessible. In the first case, we 
show by the induction on the sum of the length of  all the reductions f rom the 
te rm t[Z -+ 7]M~ . . .  M~ to its normal  form that  occurrences of  the constant  Z 
correspond to suitable occurrences of the symbol  D. As 7 is an accessible path,  
NF( t [Z --+ 7 ] M ~ . . .  Mik) contains an occurrence of Z, so N F ( t M i l . . .  M~) contains 

D and then D is a constant  in N i. 
In the second case, we get by the definition of an accessible solution that  

D E 7 3 .  

F a c t  4 .2  For each interpolation set E, there exists a closed on subtypes, finite 
and recursively dependent on E set of types T such that for each accessible 
solution t of E the set of types of symbols occurring in t is included in 7". 

Proof. The set of  types  is T = U ~ I  SubTyp(Typ(Ni ) )  t2 SubTyp({~r}) This  set 
is finite, recursively dependent on E and closed on subtypes.  We show our fact  
by  the induction wrt. depth of occurrence of v that  the type  of each symbol  v 
occurr ing in t is in T .  When  the depth is zero the symbol  v cannot  occur. W h e n  
the depth is greater than zero - -  the symbol  v is either a variable or a constant .  
If  it is a variable then it must  be declared in an argument  of active variable. If  

it is a constant  it must  occur in one of N i. 

Remark. The above reasoning concerns arb i t rary  interpolat ion problem. 

In the following sections, we achieve the third needed proper ty  - -  boundedness  
of the length of a path in a solution. We make the assumpt ion that  if we have a 

solution in hand then the solution is accessible. 
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4.2 Act ive  and passive symbols 

Here we introduce the notion of active and passive symbols and show a bound 
on the number of occurrences Of the latter ones. The next section is concerned 
with active symbols. 

Definit ion 2 Let t = ikx.t' be a )~-term. We define the set Act(t) of the active 
occurrences - -  each occurrence of xr from x is in Act(t);  for  each subterm 
zQ . . . t k  such that z is in Act(t),  i f t i  -= Xy. t~ then each occurrence of yj from 
y in t~ belongs to Act(t) .  We say an occurrence 7 in a term t is passive, when it 
does not belong to Act(t).  The set of all passive occurrences is denoted by Pas(t).  
I f  an occurrence of a symbol z is in Act(t) then we say the symbol is active else 
we say the symbol is passive. 

Fact 4.3 For each interpolation equations set E and its accessible solution t, i f  
an occurrence 7 E Pas(t) is an occurrence of a symbol v then for any equation 
e = [xM1 . . .  Mk = N] E E during normal;sat;on o f tM1 . . .  Mk the variable v 
is not substituted for. 

Proof. Simple induction on the depth of an occurrence of passive variable on the 
path 7. 

Fact 4.4 For each interpolation equations set E, its accessible solution t, and 
equation e E E of the form e = [ x M 1 . . . M k  = N], there exists one-to-one 
map fr : Pas(t) M Ace(t, e) -+ Occur(N). 

Proof. Let 7 E Pas(t)NAcc(t,  e) be a path. As 7 E Pas(t) during normal;sat;on of 
tM1 . . .  Mk, the occurring at 7 symbol v is not substituted for. As v E Ace(t, e), 
there exists nonempty set A~ of occurrences in NF(tM1 . . .Mk)  that appeared 
due to 7. Let us put f~ (7) so that f~ (7) E A~. Each such function is one-to-one. 

C o r o l l a r y  4.5 For any interpolation equation set E with an accessible solution 
t, we have ]Pas(t) N Ace(t, E)I ~ SutuRes(E). 

Proof. Let E = { e l , . . . , e ~ }  where e, -- [ x M ~ . . . M ~  = N~]. We have 
]Pas(t) M Ace(t, E) I < cinl ]Pas(t) N Ace(t, ei)I 

By Fact 4.4, we get that the last number is less or equal 
~ i ~ l  Ife,(Pas(t);q Acc(t, ei))I ~ ~inl ]NiI < SumRes(E) 

This completes the proof. 

Now we show a bound on the number of occurrences of active variables. First, 
for the so called variables from the main abstraction then for the variables from 
side abstractions. 

4.3 Variables from the main abstraction 

Now we show that if there exists a solution of a set E then there exists a solution 
such that paths in t ~ have the number of occurrences of variables from the main 

abstraction bounded. 

We begin with the definition of variables from the main abstraction. 
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D e f i n i t i o n  3 Let t = Ay.t  ~ be a solution of a set E.  Variables from y are called 
variables from the main abstraction. The rest of active variables are called vari- 
ables from side abstractions. 

We prove a fact that will help us to understand what happens for deep paths. 

Fac t  4.6 Let E = { e l , . . . ,  e~} be a set of equations with unsophisticated argu- 
ments and t its solution. Additionally, let ei = [ x M ~ . . . M ~  = Ni] for  each 
i. Then for each i there exists p such that i f  for  a certain path 7 in t, which 
is accessible wrt. one of ej, the variable Yi from the main abstraction has on 7 
more than Max. Res(E) occurrences then 
- the term M[ has the form ~ z . z p C 1 . . . C r  where none o f z i  in z occurs in Cl 

for l E { 1 , . . . , r } ,  
- for  each occurrence 5 of the variable y~, where the term at 5 has the form 
y i D 1 . . . D i n ,  the next occurrence on 7 is an occurrence o l D  v. 

Proof. The term M[ has the form )~z.vC1 . . .  Cr where v is a constant or a local 

variable. The only local variables that can occur here (as M[ is closed) are vari- 
ables from z so the only bad case is the case when v is a constant. However, v 
cannot be a constant. Indeed, if v is a constant then observation of the normal- 
isation of t i J l . . . M J k  leads to the conclusion that NF(tM j . ..MJk) (= NJ) has 
more than MaxRes(E) occurrences (which is impossible). The last claim is true 
since the term M ] is substituted on Yi and none of accessible occurrences of Yl 
(there are more than MaxRes(E) such occurrences) can disappear. 

D e f i n i t i o n  4 For a given E and t in the situation from the previous fact, the 
number p from the previous fact is denoted by Dir(yi). 

We introduce the notion of a compact wrt. variables from the main abstraction 
solution. For such solutions we can give a bound on the number of occurrences 

of variables from the main abstraction. 

D e f i n i t i o n  5 Let E be a set of interpolation equations. We say that an acces- 
sible solution t is compact wrt. variables from the main abstraction i f f f o r  each 
variable y the variable can occur at most MaxRes(E) times on any path in t. 

T h e o r e m  3. I f  the set E of interpolation equations with unsophisticated argu- 
ments has an accessible solution t then there exists a compact wrt. variables from 

the main abstraction solution t. 
Moreover, we can assume the set of symbols occurring in t is contained in 

the set of symbols occurring in t. 

Proof. Given t, we construct {. Induction on the sum of lengths of paths 3' 
such that there exists a variable y from the main abstraction with more than 
MaxRes(E) occurrences on 7. If the sum is equal to zero then we put t = t. 
Obviously, such t meets our requirements. If the sum is greater than zero then 
we construct an accessible solution t ~ which is a copy of t except one path that 
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has cut off one occurrence of some variable from the main abstraction. This  ira- 
plies the sum of lengths of described above 7's  is lower for t ~ so the induction 
hypothesis applied to the new solution gives desired t. 

Now we construct t t. First we introduce some notation. Let E = { e l , . . . ,  e~} 
and for each i eqation ei = [xM~. . .M~ = Ni]. Let y be a variable f rom the 
main abstraction, 7 be a path that is MaxRes(E) + 1st occurrence of y and let 5 
be a MaxRes(E) th  occurrence of y on 5. The term at 7 has the form yD1 . . .  Dm 
and the te rm at 5 has the form yD~ .. . D~.  Moreover, D ~Dir(y) = ),Zl �9 .. zr. D H. 
At last, we can put  

t '  = t[NF(DDir(y)Zl . . .Zr) --+ 7] 
The te rm t ~ is a copy of t except for one path that has cut off one occurrence 
of the variable y from the main abstraction. In order to prove t ~ is an accessible 
solution it is enough to prove that NF(tM~ . . .  M~) = N i for each i C { 1 , . . . ,  n} 
and that t ~ is accessible. 

I f 7  is inaccessible wrt. ei C E in t / then conclusion is obvious.If 7 is accessible 
wrt. ei C E then by Fact 4.6 reductions in the term at 3' may  look as follows 

' * * m gD, ... Dk -+~ M;DI ... Dk --+~ DDi,(y)C1 . . .  Cr "+~ DDi:(y)[C~/v~ ...  Cr/v~] (2) 

i where M~ = ),Z-ZDir(y)Cl...Cr and DDir(y ) ---- ) ~ V l . . . v r . D ~ i r ( y  ). As M~ is 
unsophisticated, terms C1 , . . .C~  are substituted for corresponding variables in 
D / (see the term at the occurrence 5) So the given by the rules Dir(y) 
1. substitute arguments M ~ , . . . ,  M~ 
2. do reduction (2) 
3. do for 5 a reduction analogous to (2) 
reduction strategy for t M ~ . . . M ~  leads to the same result as the given by the 
rules 
1. substitute arguments M ~ , . . . ,  M~ 
2.do analogous to (2) reduction for 5 
strategy for t ' M { . . . M ~ .  This is enough to get NF(t~M~...Mik) __-- N i. 

We get accessibility since paths in t ~ have they counterparts in t. 

Remark. The proof  for variables f rom the main abstraction involves only the 
assumption about unsophisticated arguments. 

Now we modify our solution so that we can estimate the number of variables 
from side abstractions. 

4.4 V a r i a b l e s  f r o m  s ide  a b s t r a c t i o n s  

We show that we can assume the number of variables from side abstractions is 
dependent on the number of occurrences of variables f rom the main abstraction. 

D e f i n i t i o n  6 We say that a compact wrt. variables from the main abstraction 
solution t is compact  wrt. variables f rom side abstractions iff on each accessible 
path 7 of the solution and for each variable y from side abstraction declared in 
the term )~x.)~y.)~z.D variable y occurs on 7 in D at most MaxRes(E) times. 



450 

We can prove the constructibility of such solutions now. 

T h e o r e m  4. I f  the set E of fifth order interpolation equations has a compact 
wrt. variables from the main abstraction solution t then there exists a compact 
wrt. variables from side abstractions solution t. 

Moreover, we can assume the set of symbols occurring in t is contained in 
the set of symbols contained in t. 

Proof. Induction on the number of occurrences of variables y from the side ab- 
stractions that are declared on a certain path 7 in a subterm of the form 

)~x.)~y.)~z.D (3) 

such that y on 7 and in D occurs more than MaxRes(E) times. 
- If there are no such occurrences then the term t is compact wrt. variables from 

the side abstraction. 
- If there exists such y then let us take MaxRes(E) + 1st occurrence 5 of y in 
D and on 7. The term at 5 has the form yD1 . . .  Dm and at most one of D~ for 
i ~ {1 , . . . ,  m} is accessible. The last claim follows from the fact that, as there are 
more than MaxRes(E) occurrences of y, the only term that may be substituted 
for the variable in the reduction of the left hand side of the equation wrt. which 
7 is accessible is a second order term that reduces to Azl �9 �9 �9 z,~.z~, otherwise the 
normal form would have more than MaxRes(E) occurrences. 

Of course, one of Di is accessible (otherwise 5 is inaccessible). Now we can put 
t ~ =- t[Dk --+ 5] where Dk is the only accessible term. One can see t ~ is a term 
such that if it is a solution then we can apply the induction hypothesis to it. 

Now we show that t ~ is a solution. If 5 is not accessible wrt. e~ E E then 5 
does not affect the normal form and t ~ is a solution of such an equation, too. 
If 5 is accessible wrt. e~ E E then we reduce left-hand side according to the 
strategy consisting in following exactly one residuum of a term D and holding 
all the reductions inside the term D. By accessibility of Dk, there exists among 
terminal terms of such strategies at least one term t ~ for which, after replacing one 
of copies of Dk by a suitable constant and further normalising, we get occurrences 

of the constant in the resulting normal form. 
In t ' ,  we have a term substituted for y. The normal form of the term may have 

one of the two shapes 
/~Zl . . .  Zrn .VP1... Pr  (4) 

where v is a symbol that is not substituted for (if something was substituted then 
t" would not be a terminal term of one of our strategies), or 

~ z l  . . .  z ~ . z l .  (5) 

The case (4) cannot happen, because then on the path 5, it would occur more 
then MaxRes(E) occurrences of v and the occurrences could not disappear during 
the reduction due to accessibility of 5. So the only possibility is (5). Moreover, 
accessibility of Dk implies that )~zl . . .  z,~.zk. Because this reasoning applies al- 
ways to the situation when we use Dk, we get the same result by replacing the 

term at 5 by Dk. This completes the proof. 
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Remark. The assumption that the equations are of the fifth order was used only 
in the proof of Theorem 4. 

To formulate and prove next facts, we have to introduce some notation. We let 
Actmain (t, 7) denote the set of occurrences of variables f rom the main abstraction 
on the path 7 and let Actside (t, 7) denote the set of occurrences of variables f rom 
side abstractions on the path 7- 

Let 7 be a path and 5 an occurrence on it. Moreover, let 5 be an occurrence 
of a variable x f rom the main abstraction. Let the term grafted on 5 has the 
form xtl  . . . t k  and let the next occurrence on 3' be an occurrence of a term ti 
of the form ti = Ay.t}. In such a situation we let Decl(t, 7, 5) denote the set of 
occurrences of variables that are declared in y and let Decl(t, 7, 5, Yl), where Yz 
is one of variables f rom y, denote the set of occurrences of the variable Yz in t}. 

A last, we let VarDec(t,  5) denote the set of variables contained in the list l, 
where l is the first component  of the last label (l, v) on d. Intuitively, it is the 
set of variables declared at the beginning of the subterm of t that occurs at the 
end of 5. 

The maximal  number of arguments in types of subterms of the te rm t is 
denoted by MaxSub(t) .  

C o r o l l a r y  4.7 Let E be an arbitrary set of interpolation equations and t its 
solution that is compact wrt. variables from side abstractions. I f  the number of 
occurrences on an accessible path 7 of variables from the main abstraction is 
bounded by K then the number of occurrences of variables from side abstractions 
on the path is bounded by K MaxSnb(t)Maxaes(E). 

Proof. We estimate the number of occurrences of variables f rom side abstractions 
IActsiao (t, 'y) l = I U +Actmo,:(t, ) Decl(t, 7, 5) l _< 

ESeActm~i,(t,"/) EyEVarDec(t,6) IDecl( t, 7, 5, y)] 
According to the definition of a compact  wrt. variables from side abstractions 
solution, for each variable from side abstractions the number of its occurrences 
on an accessible path is not greater than ]NJ], where j is the number of the 
equation wrt. which 7 is accessible. This implies estimation 

ESeActm~a(t,3') EyeVarDec(%5)]Decl(t, 7, 5, y)] _< 

E~eAct~.(t,3') EyEVarDec(t,~)]2~Jl 
Further, we get easily 

. ~eA~t~,~,~(t,~) ~yeWrD~c(t,~)]NJ] <_ I (MaxSub( t )MaxRes (E)  
and this is our result. 

Now we are ready to draw final conclusions of the section. 

C o r o l l a r y  4.8 Let E be a set of interpolation equations with unsophisticated 
arguments. There exist recursively dependent on E - -  a simple types indexed set 
of constants C such that for each type the set of constants of the type is finite, 
a finite set of types T ,  a number g - -  such that if  there exists a solution of E 
then there exists a solution of E such that all the types of subterms belong to 7-, 
all the constants are from C, and the length of paths is less or equal g. 
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Proof. Let E = { e l , . . . ,  en} be a set of interpolation equations with unsophisti- 
cated arguments of the form ei = [xM~. . .  M~ = N i] and let t be a solution of 
E.  We construct - -  C = Ui~l C~ u 7 ~, T as in Fact 4.2, 

g = k Maxaes(E)  + k (MaxRes(E))2MaxSub(t) + SumRes(E) + 1 
(IVlaxSub(t) is by Fact 4.2 recursively dependent on E.) 

Combining Fact 2, Theorem 3 and Theorem 4 we get a solution t that meets 
our requirements. This last is assured by Fact 4.1, Fact 4.2 and Corollary 4.7, 
Corollary 4.5. 

4.5 D e c i d a b i l i t y  

Now we are ready to draw the conclusion of the decidability. 

T h e o r e m  5. The fifth order interpolation problem with unsophisticated argu- 
ments is decidable. 

Proof. We get the algorithm usinb the algorithm in Fact 4.8 generating on the 
results of the latter the set of )~-terms built of the data in the results and then 
extensively searching the space of terms. The algorithm stops, because the pro- 
cedures used stop. The correctness of the algorithm is obvious as when we end 
successfully we have a solution in hand. When the algorithm stops saying that 
the solution does not exist it means that there is no solution since existence of a 
solution would contradict the Corollary 4.8. This completes the proof. 

Remark. The algorithm constructs a solution that may contain fillings which 
were absent from the original problem. Since the fillings are used to replace other 
terms, each used filling has at least one corresponding term. When necessary we 

can replace a filling by such a term. 
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