
A Semantic Framework for Functional Logic
Programming with Algebraic Polymorphic Types*

(Extended Abstract)

P. Arenas-Sdnchez and M. Rodriguez-Artalejo

Universidad Complutense de Madrid, Departamento de Informs y Automs
Facultad de CC. Matems Av. Complutense s/n, 28040 Madrid, Spain

em ail: { puri,m ario} ~)dia. ucm .es

Abstrac t . We propose a formal framework for functional logic program-
ming, supporting lazy functions, non-determinism and polymorphic data-
types whose data constructors obey a given set g of equational axioms.
On top of a given g, we specify a program as a set R of g-based con-
ditional rewriting rules for defined functions. We argue that equational
logic does not supply the proper semantics for such programs. Therefore,
we present an alternative logic which includes g-based rewriting calculi
and a notion of model. We get soundness and completeness for g-based
rewriting w.r.t, models, existence of free models for all programs, and
type preservation results.

1 Introduction
The interest in multiparadigm declarative programming has grown up during the
last decade, giving rise to different approaches to the integration of functions into
logic programming; see [I0] for a survey. In particular, some lazy functional logic
languages such as K-LEAF [6] and BABEL [17] have been designed to combine
lazy evaluation and unification. This is achieved by presenting programs as re-
writing systems and using lazy narrowing (a notion introduced in [19]) as a goal
solving mechanism.

Classical equational logic does not supply an adequate semantics for func-
tional logic languages, since equations between terms that are intended to denote
the same infinite data structure are often not deducible. Recently, a constructor
based rewriting logic has been proposed as an alternative semantic framework
for lazy functional logic languages [7]. This approach includes rewriting cal-
culi, a model-theoretic semantics and a strongly complete lazy narrowing cal-
culus for goal solving. The aim of the present paper is to extend the approach
in [7] by introducing algebraic polymorphic datatypes, similar to those used in
modern functional languages (see e.g. [21]), but allowing to specify a set g
of equational axioms for the data constructors ~. For instance, we can define
a datatype Set(a) for polymorphic sets with constructors { } :-4 Set(a) and
{'I'} : (a, Set(a)) --+ Set(u), governed by the equational axioms {x]{ytzs})
{y[{x[zs}} and {x[{x[zs}} ~ {x[zs}. Simply by omitting the second equation, we
obtain a datatype MSet(a) for polymorphic multisets.

Data structures based on non-free constructors, specially sets and multisets,
play an important role in several recent proposals for extended logic program-
ming and multiparadigm declarative programming; see e.g. [13, 4, 8, 15]. As a

* This research has been partially supported by the the Spanish National Project
TIC95-0433-C03-01 "CPD" and the Esprit BRA Working Group EP-22457 "CCLII'.

2 Note that user-defined datatypes are also called "algebraic" in Haskell. In spite of
this terminology, Haskell's data constructors are free.

454

novel point, we combine non-free constructors with lazy functions and parametr ic
polymorphism. We view a program as a set of C-based conditional rewrite rules
to define the behaviour of lazy functions on top of a given finite set C of equational
axioms for data constructors. As in [7], defined functions can be partial and/or
non-deterministic, in the spirit of [12]. For instance, a non-deterministic partial
function select : Set(a) -+ a that selects an arbitrary element from a non-empty
set, can be defined by the single rewrite rule select({xJxs}) --+ x.

We present a semantic framework for this kind of programs, following the lines
of [7], but with two major modifications. Firstly, our model-theoretic semantics
uses algebras with two carriers (for data and types, respectively), inspired by
the polymorphically order-sorted algebras from [18]. Secondly, the constructor-
based rewriting calculi from [7] have been modified to incorporate a set C of
equational axioms for constructors, while respecting the intended behaviour of
lazy evaluation. To achieve this aim, we give an inequational calculus which
interprets each equational axiom in g as a scheme for generating inequalities
between partial data terms (built from constructors and a bot tom symbol /) .
Inequalities are thought of as defining an approximation ordering.

The rest of the paper is organized as follows: Sect. 2 sets the basic formal-
ism, defining polymorphic signatures and expressions. In Sect. 3, we introduce
equational axioms for data constructors along with the calculus needed to deduce
approximation inequalities from them. In Sect. 4 we present g-based rewrite rules
and rewriting calculi for defining lazy functions on top of a given set g of equa-
tional axioms. This section also includes some type preservation results. Sect. 5
deals with model theory, showing the existence of free models for programs and
soundness and completeness results for the rewriting e~lculi w.r.t, models. The
concluding Sect. 6 summarizes our results and points to some lines for future

research.
Proofs have been omitted due to lack of space. They can be found in a Tech-

nical Report, available at ht tp: / /mozart .mat .uem.papers/1996/TR96-39.ps-gz.

2 Signatures, Expressions and Types
We assume a countable set TVar of type variables ~, t3 etc., and a countable
ranked alphabet TC = [.J~>0 TC'~ of type constructors C. Polymorphic types
r, r' E TTc(TVar) are built-as r ::= a l C (v l , . . . , vn), C E TC n. The set of type
variables occurring in r is written tvar(r). We define a polymorphic signature
over TC as a triple (TC, D C, FS), where DC is a set of type declarations for data
constructors, of the form c : (r l , . . . , r ,) -+ r0 with U~=I tvar(ri) C tvar(ro) (so-
cMled transparency property), and FS is a set of type declarations for defined
function symbols, of the form f : (r l , . . . , r ,~) --+ r0. We require that ~7 does
not include multiple type declarations for the same symbol. The types given by
declarations in DCU FS are called principal types. We will write h E DC ~ U FS~
to indicate the arity of a symbol according to its type declaration. In the following,
DCL will denote DC extended by a new declaration .1_:-+ c~. The bot tom constant
constructor • is intended to represent an undefined value. Analogously, Z• will
denote the result of replacing DC by DC• in G.

Assuming another countable set DVar of data variables x, y, etc., we build
expressions e,r, 1... E Expr~(DVar) a.s e ::= x th(e l , . . . , en) ,h e DC "~ U FS'~"
The set Expr~_(DVar) of partial expressions is defined in the same way, but

455

using DC• in place of DC. Total data terms Terms C_ Exprz(DVar)
and partial data terms Terms C_ Exprs177 are built by using
variables and data constructors only. In the sequel, we reserve t, s to denote
possibly partial data terms, and we write dvar(e) for the set of all data variables
occurring in a expression e.

We define type substitutions t~ E TSub as mappings from T Var to TTC (TVar),
and possibly partial data substitutions 5 E DSub• as mappings f rom Dvar to
Term~x (DVar). Total data substitutions 5 E DSub are mappings f rom DVar to
Term~(DVar). Pairs (0,5), with 0 E TSub and 6 6 DSub• are called substi-
tutions. We will use postfix notation for the result of applying substitutions to
types and expressions. We will say that 5 E DSub• is allowed for a data te rm t
if 5(x) is a total term for every variable x having more than one occurrence in
t. The notions of instance, renaming and variant have the usual definitions; see
e.g. [3].

An environment is defined as any set V of type-annotated data variables x : r ,
such that V does not include two different annotations for the same variable. The
set of well-typed expressions w.r.t, an environment V is defined as Exprs177 (V) =
Ur6TTc(TVar) Expr}• where e 6 Expr}• holds iff the type judgment
V t-.~• e : r is derivable by means of the following type inference rules:

�9 V F ~ •
�9 V ~-~• h (e i , . . . , e,) : r if V ~-E• ei : vi, where h : (r i , . . . , v~) -4, v is an

instance of the unique declared principal type associated to h in DCx U FS.

E x p r ~ (V) has subsets Expr~(V), Termr~j.(V), TermS(V) that are defined in
the natural way. It is easy to prove that every well-typed expression has a a most
general principal type, which is unique up to renaming.

3 Equations for Algebraic Const ruc tors

We will specify the behaviour of data constructors by means of a set C of equa-
tional axioms s ~ t, where s,t are total data terms. Such an axiom is called
regular iff dvar(s) = dvar(t); non-collapsing iff neither s nor t is a variable; and
strongly regular iff regular and non-collapsing. C will be called (strongly) regular
iff it consists of (strongly) regular equations. In the rest of the paper, we focus
on strongly regular axioms because strong regularity is needed for our current
type preservation results; see Theorem 2 in section 4 below.

We say that a strongly regular axiom c(ti , . . . , t ,~) ~ d (s i , . . . , sin) is well-
typed iff the principal type declarations for c, d have variants c : (vi, . . . , vn) -+ v
and d : (T ~ , . . . , r ~) --~ r such that c (t i , . . . , t ,) , d (s i , . . . , s ,) E TermS(V), for
some environment V. A set C of strongly regular axioms is called well-typed iff
each axiom in C is well-typed.

Example 1. Assume that Z includes the constructor declarations True, False :--~
Boot; Zero :-+ Nat; Suc : Nat --~ Nat; { } :-+ Set(a); and {'I '} : (a, Set(a)) -+
Set(a). Then, the two equational axioms {xI{ylzs}} ~ {yI{xIzs}} and {xI{xIzs}}

{xIzs } are strongly regular and well-typed, by means of V = {x : a , y :
a, zs : Set(a)}. On the contrary, the strongly regular equation {Zerol{ylzs}}
{yl{ZeroIzs}} is not welt-typed, since it does not conform to the most general
type of the set constructors. []

456

In subsequent examples, we will use abbreviations such as {x, ytzs}, {x, y},
and {x} for the terms {xl{Yizs}} , {xl{yI{ }}} and {x]{ }}, respectively.

Given a set C of equational axioms, the following inequational calculus allows
to derive inequalities s _~ t, with s, t possibly partial data terms:

I n e q u a t i o n a l ca lcu lus

Bottom: t :~ " Reflexivity: ~ Transitivity: t ~ t ' ,t ' ~ t " t ~ t"
tl _~ s t , . . . , t~ -7 s ,

Monotonicity: c(tt , tn) -7 c(sl , sn) C-]nequation: ~ if s _~ t E [C]_~

where t, t', t", c (t t , . . . , tn), c (s l , . . . , sn) E Terms . (DVar), and:

[C]~ = {s~ _ th, t~' -7 sh' I s ..~ t E C,5,5' E DSub • ,
- 5 and 5 ~ are allowed for s and t respectively}

In the rest of the paper, the notation s ~_c t denotes the formal derivability
of s _ t using the above inequational calculus for C. Moreover, we write s ~c t
iff s _~c t and t _3c s. Thinking of partial data terms as approximations of
data, s ~_c t can be read as "t approximates s". Note that the formulation of C-
inequation forbids to use the axiom {x, xlzs } ..~ {xlzs} from Example 1 to derive
the inequality {2, 2.} ~_c {2.}, which would have undesirable consequences (see
Example 3 in Sect. 4 below).

Remark that ~_c and ~c are, respectively, the least precongruence and the
least congruence over T e r m ~ (D V a r) that contain [C]_~. Furthermore, if C is
regular then for any s , t E T e r m ~ (D V a r) , if s ~_c t and t is total then s is also
total and s ~c t.

4 Defining Rules, Programs and R e w r i t i n g C a l c u l i

On top of a given set C of equational axioms for data constructors, we introduce
constructor-based rewrite rules for defined functions. More precisely, assuming a
principal type declaration f : (~-1, . . ., vn) -+ r E FS, a defining rule for f must
have the form: f (t l , . . . , t n) -+ r ~ al M b l , . . . , a m N bin, where the left-hand
side is linear (i.e. without multiple occurrences of variables), ti E Term~ (D Vat),
1 < i < n, and aj ,b j , r E Expr~(DVar), 1 < j < m. Joinability conditions
aj I~ bj are intended to hold iff aj,bj can be reduced to some common total
t E Terms(DVar), as in [7]. A formal definition will be given below.

A defining rule is called regular iff all variables occurring in r occur also in
the left-hand side. Extra variables in the conditions are allowed, as well as the
inconditional case m = 0. We define programs as triples P = (S,C,T~), where L'
is a polymorphic signature, C is a finite set of equational axioms for constructors
in S , and T~ is a finite set of defining rules for defined functions symbols in S .
We will say that a program :P is strongly regular iff g is strongly regular and all

rules in T~ are regular.
Programs are intended to solve goals composed of joinability conditions; i.e.

goals will have the same form as conditions for defining rules. The express-
ive power of algebraic constructors in our programs can be used to model ac-
tion and change problems declaratively, avoiding the so-called frame problem [8].
In [8], it has been already shown that planning problems can be modeled by
means of equational logic programs, using a binary (ACI) operation o, to rep-
resent situations as multisets of facts fach o . . . o factn, and a ternary predicate

457

execPlan(initialSit, plan, finalSit) to model the transformation of an initial situation
into a final situation by the execution of a plan. In our framework we can follow
the same idea even more naturally, using multisets of facts to represent situ-
ations, and a non-deterministic function execPlan : (List(Action), Mset(Fact)) --+
MSet(Fact) to represent the effect of plan execution.

Next example, adapted from [8], shows a little program which solves a very
simple planning problem in our setting. More complicated action and change
problems could be treated analogously.

Example 2. A thirsty person named Bert wants to get a lemonade f rom a vending
machine which only accepts quarters. The lemonade costs 75 cents and Bert has a
one-dollar note. There is a cashier which changes a dollar into four quarters. The
possible facts we have are D (a one dollar-note), Q (a quarter) and L (a lemonade).
The available actions are GetChange and Getlemonade whose intended meaning
can be easily deduced f rom function execAction.

The problem of getting the lemonade can be described in our framework by
means of the following program:

d a t a t y p e s Fact, Action, Mset(a), List(a)
cons t ruc to r s

D,Q, n :-+ Fact {'1"9 : (a, Mset(cr)) --+ Mset(a)
GetChange, GetLemonade :--~ Action [] :--+ List(a)
{ 9 :~ Mset(a) ['l'] : (cv, List(a)) ~ List(a)

equat ions {x, Ylxs 9 ~ {y, xlxs 9
func t ions

execPlan : (List(Action), Msct(ract)) --+ MSet(ract)
execPlan([], sit) --+ sit
execPlan([act I restAct], sit) --~ execPlan(restAct, execAction(act, sit))

execAction : (Action, Mset(Fact)) --+ Mset(Fact)
exeeAction(GetOhange, { D IotherFactsg) --+ { Q, Q, Q, QI otherFacts 9
execAction(GetLemonade, { Q, Q, Ol otherFacts 9) -+ { LI otherFacts 9

A possible goal would be execPlan(plan,~[D]})N {I_,Q]}, for which we expect
plan = [GetChange, GetLemonade] as a computed answer z. []

Some of our subsequent results refer to well-typed programs. A strongly reg-
ular program 7 ~ = (S, C, TO) is well-typed iff C is well-typed and every defining
rule f (t l , . . . , t n) --+ r ~ C E Tr is well-typed in the following sense: there is
some environment V such that ti E TermS(V) , 1 < i <_ n, r E Expr~(V)
and for all a N b C C there is some type C such that a,b E Expr~(V) . For
instance, if we extend Example 1 with the new declaration union : (Set(a),
Set(a)) --+ Set(a), the defining rule union({xlxs}, ys) -+ {xlunion(xs ' ys)} is
well-typed, while union({ Zerolxs}, ys) --+ { Zerolunion(xs, ys) } is not, because
the type of {Zerolxs) is too particular.

In the rest of this section we present constructor-based rewriting calculi which
are intended as a proof-theoretical specification of programs ' semantics. As in [7],
our calculi are designed to derive two kinds of statements: reduction statements
e -~ e ~, intended to mean that e can be reduced to C, and joinability statements

3 Computing answers for goals will reqttire a suitable narrowing calculus, whose devel-
opment is left for future work.

458

e N e', intended to mean that e and e' can be reduced to some c o m m o n tota l
da ta te rm. Reduct ion s ta tements of the fo rm e --+ t, where t is a poss ib ly par t ia l
da ta te rm, will be called approximation statements. For a given p r o g r a m 7) =
(Z , C, T~), the basic rewri t ing calculus (BRC) and the goal -or iented rewri t ing
calculus (GORC) are defined as follows:

B a s i c R e w r i t i n g C a l c u l u s B R C
e ! e H e ~ e I , --)-

B o t t o m : - - Ref lex iv i ty : - - T rans i t i v i t y ,,
e - 4 / e - -+e e- -+e

I el - -+e~ , . . . , en - -+en
Monotonicity: h (e l , . . . , en) --4 h(e~ , e~)

C
:~-reduction: 1 --+ r if I --+ r r C E [~]..,

C-mutation: ~ if s "-1 t E [C]-1
8 - - ' 4 - - - -

Join: e --+ t,e' --+ t if t E Termz(DVar) is a totaldata term
e N e t

where e, e', e", h (e i , . . . , en), h(e~, . . . , e~) E Expr~x(DVar) , and

[R]_~ = { (l ~ r ~ C)~ I1 -+ r ~ C E 7~,~ E DSub• }

G o a l - O r i e n t e d R e w r i t i n g C a l c u l u s GORC

Bottom: Restricted Reflexivity: - - e--41 x---~x
e l -)" tl~ �9 �9 �9 ~ e n ---4 t n

Decomposition: c (e i , . . . , e,~) --+ c (t l , . . . , tn)

e l "+ ~ l , . . . ~ e n ---} ~nl 8 - 4 ~ if t #.1_, c(t) _~ s E [C]~ Outer C-muta t ion : c(el, . . . ,e,~) --~ t

Ou te r P..-reduction: e l -~ t i , . . . ,en -~ t n , O , r --~ t i f t =~_L, f (i) -+ r ~= C E [~] _ ,
f (e , e .) -* t

Join: e ~ t',e' ~ t' e t~ e' if t' E Terms(DVar) is a total data term

where e , e ' , c (e i , . . . , e , ~) , f (e i , . . . , e ~) E Exprs . (DVar) , t , c (t i , . . . , t~) E
T e r m s . (DVar) and x E DVar.

Note that the construct ion of [Tr does not require ~ to be al lowed for l, in
cont ras t to the construct ion of [C]~ in the inequat ional calculus. Th i s is because
I is known to be linear. Neither of Ehe two calculi specifies rewri t ing in the usual
sense. Rule Bottom shows that e ~ t is intended to mean "t app rox ima te s e",
and the const ruct ion of [7~]_+, [C]3 reflects a "cal l - t ime choice" t r e a t m e n t of
non-de te rmin i sm, as explained in [12]. As the ma in novelty w.r . t . [7], we find
the mutation rules C-mutation (respect. Outer g -m utation) to deal with equat ions
between constructors . We have presented the two calculi because B R C is closer
to the intuit ion, while the goal-oriented fo rmat of the GORC-like calculus in [7]
was found useful as a basis for designing a comple te lazy narrowing calculus. The
next result ensures that both calculi are essentially equivalent . Moreover , they
are compat ib le with the inequational calculus presented in Sect. 3.

459

T h e o r e m 1. (Ca lcu l i e q u i v a l e n c e) Let 7) = (Z, C, Tr be a program.
(aJ For strongly regular C, e,e' E E x p r ~ (DVar) and t E Term~.~(DVar):

e -+ t (respect. e M e') is derivable in GORC iff e -+ t (respect. e M e') is
derivable in BRC;

(b) For any t , t ' e Terms t ~c t' l i f t -+ t' is derivable in BRC.
(c) I f C is regular, then for any s , t E Term2 . (DVar) , s N t is derivable in

B R C iff s ~'c t and s , t E Term~(DVar) . �9

In the rest of the paper, when we write e -+p t (respect. e •p e ~) we mean
that e -+ t (respect. e N e t) is derivable in BRC or GORC. At this point, we can
give an example that j ustifies why we require left-linear defining rules and allowed
data substitutions for the construction of [C]- 7 in the inequational calculus.

Example 3. Let P be the program obtained by extending Example 1 with the
following function type declarations and defining rules:

eq : (a, c~) --+ Bool unit, duo : ,get(~) --~ Bool om :-+ c~
eq(~, x) -~ T rue u n i t ({ x)) -~ T rue o m - ~ om

duo({x,y}) --~ True
Note that the defining rule for eq is not left-linear and thus illegal. If it were
allowed, we would obtain eq(e, e') --+7, True for arbitrary e, e' (by using e -+7,_L,
e I -+7,_1_ and eq(_L, _L) --47, True).

On the other hand, if we would define ~c in such a way that {_L, 1} ___c (_l_}
could be derived as some instance of (x, xizs} ~ {xlzs}, we could use True -+v•
False --+7>1 and un i t ({ • --+7, True for obtaining unit({ True, False}) -+7,
True, which is not expected as a reasonable consequence from unit's defining
rule.

Finally, note that the inequational calculus permits {_L} _~c {_1_, J_). We can
combine this with om -+9• and duo({_l_, _1_}) -+7, True to obtain duo({om}) -+7,
True which does not contradict our intuitive understanding of the program. []

To conclude this Section, we give a type preservation result.

T h e o r e m 2. (T y p e p r e s e r v a t i o n) Let ~P = (Z , C, Tl) be a well-typed strongly
regular program. Let V be an environment. I f e -+-p e I and e E Exprr~ (V) then

T e I E Expr~• (V). �9

The last Theorem fails in general if non-regular equations or collapsing regular
equations are allowed in C:

Example 4. Let us consider the signature ~ from Example 1 and the empty en-
vironment Y. Assuming the non-regular axiom Sue(x) ~ Sue(y), we obtain
Sue(Zero) -07, Sue(True), where Sue(Zero) ~ Termg~t(V) but Sue(True) r
TermY~t(V). Taking the collapsing regular axiom x ~ Sue(x), we get True -+7,

Bool Suc(True) where True E Term~ (Y) but Suc(True) ~ Boot ' Term z (V). []

5 M o d e l - t h e o r e t i c S e m a n t i c s

In this section we will present a model-theoretic semantics, showing also its re-
lation t~o the rewriting calculi from Section 4. First, we recall some basic notions
from domain theory [20].

A poset with bottom .1_ is any set S partially ordered by E, with least element
3_. Def(S) denotes the set of all maximal elements u E S, also called totally

460

defined. Assume X C_ S. X is a directed set ifffor all u, v E X there exists w E X
s.t. u, v ___ w. X is a cone iff .I_E X and X is downwards closed w.r.t. E_. X is an
ideal iff X is a directed cone. We write C(S) and Z(S) for the sets of cones and
ideals of S, respectively. Z(S) ordered by set inclusion C is a poset with bot tom
{_L}, called the ideal completion of S. Mapping each u E S into the principal
ideal (u) = {v E SIv u_ u} gives an order preserving embedding. It is known (see
e.g. [16]) that Z(S) is the least cpo D s.t. S can be embedded into D. Due to
these results, our semantic constructions below could be reformulated in terms of
Scott domains [20]. In particular, totally defined elements u E Def(S) correspond
to finite and maximal elements (u) in the ideal completion.

As in [7], to represent non-deterministic lazy functions we use models with
posets as carriers, interpreting function symbols as monotonic mappings from
elements to cones. The elements of the poset are viewed as finite approximations
of possibly infinite values. For given posets D and E, we define the set of all
non-deterministic functions from D to E as

[D -+rid E] = { f : D --+ C(E) I Vu, u' E D: (u E D U t ==~ f (u) C f (u ')) }

and the set of all deterministic functions from D to E as

[D--+d E] = { f E [D--%d E]I Vu E D: f (u) E Z(E)}

Note that, a deterministic function f computes a directed set of partial values;
hence, after performing an ideal completion, such functions become continuous
mappings between algebraic cpos. Notice also, that a non-deterministic function
f can be extended to a monotonic mapping f* : C(D) -4 C(E) defined as f* (C) =
Uoec f(c). Abusing of notation, we will identify f with its extension f*.

We are now prepared to introduce our algebras, combining ideas from [7, 18].

D e f i n i t i o n 3 . (P o l y m o r p h i c a l l y T y p e d a lgeb ra s) Let Z be a polymorphic
signature. A Polymorphically Typed algebra (PT-algebra) .4 has the following

structure:
A = (DA,TA, :A ,{c A [C E TC},{c A I c :Tr--~ r E DC-L},{f A [f :~"'~ r. E FS})

where:
(1) D "a (data universe) is a poset with partial order ~.a and bot tom element

.l_-a and T A (type universe) is a set;
(2) :'aC D A * T A is a binary relation such that for all ~ E T-a, the extension of

in-.A, defined as: s = {u E D "a I u :'~ ~} is a cone in D'a;
(3) For each C E TC n, C A : (T-a) ~ -~ T-a (simply C A E T "a if n = 0);
(4) for all c: (q , . . . , r~) ~ ~" E DC• c "a E[(D 'a) n -'+d D "a] satisfies: For a!l

ui E D-a, there exists v E D A such that c 'a (u l , . . . , u~) = (v). Moreover, tf

ui E Def(D-a) then v E Def(D-a);
(5) for all f : (r l , . . . , r~) ~ 7-' E FS, f-a E [(D-a) m -+,~d D'a] �9 []

Note that as in [18], :-a relates the elements of D-a (carrier for data) to the
elements of T ~a (carrier for types). Note also that the preservation of finite and
maximal elements in the ideal completion of D A is ensured in item (4).

In order to interpret expressions in an algebra .4 we use valuations ~ --- (It, rl),
where p : TVar --+ T A is a type valuation and r/: DVar -+ D "a is a data valuation.

is called totally defined iff r/(x) E Def(D-a), for all x E DVar; and ~ is called
allowed for a given t E Term~_(DVar) iff ~7(x) E Def(DA), for all x E dvar(t)

461

s.t. x has more than one occurrence in t. Val(A) denotes the set of all valuat ions
over .A.

For a given ~ = (#, 0) E Val(A), type denotations [7-~'a~ = [v~'4# E T ~t and
expression denotations [e]~t~ = [e]~tT/E C(D "4) are defined recursively:

[~ F . = . (~) ;
[IV(r, , r ,)]-ap = C-a([r,]-ap , [r,~]-ap), C E TC", r, E Expr~•

- I[--L]~'ar/= { l "a} and [x]-aTI = <r/(x)), for all x E DVar;
[h(~, , ~)] % = h ~ ([c ,] % [c 4 %) , for ~U h : (r , , . . . , rn) ~ ~ E DCUFS,
el E Exprs• (DVar).

As in [7], it is easy to prove that H ' a q is a principal ideal (u) for each t e rm
t E Terms_~(DVar). Moreover, u E Def(D ~t) if 7/is total ly defined.

We are par t icular ly interested in those PT-a lgebras that are well-behaved
w.r.t , types. We say that algebra A is well-typed iff for all h : (v l , . . . , v,~) --+ r0 E
DC• W FS we have hA(g'a([q]'ap),...,SA([7"I~Ap)) C ~A(~7"0~A~t) for every
type valuat ion ~. Also, for given ~ ~.4(p, 7/) E Val(.A), we say that ~ is well-typed
w.r. t an environment V iff r/(x) E g ([7"]~t#) for every x : r E V. Reasoning by
s t ructural induction, we can prove that expression denotat ions behave as expected
w.r.t , well- typed algebras and valuations:

T h e o r e m 4 . Let V be an environment. Let A be a well-typed PT-algebra and
= (p,y) E Val(A) well-typed w.r . t .V . For all e E Exprrs.(V), [e]'4q C

s ~ ([~ P ,) . �9

Next, we define the notion of model. Note that reduc t ion /approx imat ion is
in terpreted as inclusion, while joinabil i ty is interpreted as existence of a c o m m o n
maximal approximat ion.

D e f i n i t i o n S . (M o d e l s o f a p r o g r a m) Let .A be a PT-a lgebra .

(i) Let ~ = (#, 77) be a valuation over ,4. (M, t/) ~ e N e' iff lie]an gl [[e'~ar/M
Def(D "4) # O. And (,4, rl) ~ e --+ e' iff [[e']]~tr/C_C_ [[e]]~t~/.

(ii) .A satisfies a defining rule l -+ r ~ C iff every ~ = (p, r/) E Val(A) such that
(A, ~) ~ C verifies that (A, ~/) ~ l -+ r.

(iii) .4 satisfies an equation s ~ t i fffor every ~ = (/1, r/) E Val(A): [s]'4~ D_ [t]~]
if ~ is allowed for s and [t~ t~ _D ls]]'~rl if ~ is allowed for t.

(iv) Let P = (~ , C, T~) be a p rog ram. .4 is a model of P (A ~ P) iff .A satisfies
every defining rule in T~ and every equation in C. D

The rest of the section is devoted to the construction of free te rm models,
which allow to prove soundness and completeness of the rewriting calculi f rom
Sect. 4.

D e f i n i t i o n 6 . (F r e e t e r m m o d e l s) Given a p rogram 7) = (~ ,C,7~) and an
envi ronment V, we build the term model A4p(V) as follows:

�9 Data universe: Let X = {x C DVar I x occurs in V}. Then the data uni-
verse of M ~ . (v) is Term~(X)/.~. For a n t C Term~(X), [t] denotes the
equivalence class {t' E Terms . (X) It "~c t '};

�9 Type universe: Let A = {~r E TVar I(~ occurs in V} and TTc(A) = {r E
TTc(TVar) l tvar(r) C_ A}. Then the type universe of.A4~,(V) is TTc(A);

�9 For all [t] E Termx~_(X)/~c , r E Tz, c(A), we define [t] :a4~,(v) r i f f t E
Termed(V).

462

�9 For all C E TC ~ and r~,... ,r,~ E TTc(A): C~7'(v)(rt ,r,~) = C(r~, . . . , r,~);
�9 For all c : (~ , . . . , ~) -~ ~ e DC, [t4 e Terms~(X)/,~:

c ~ ' (v) ([q] , . . . , Eta]) = ([e(q, . . . , t ,)])

�9 For all f : (q , . . . , r ~) --+ "c E FS, [ti] E T e r m s •

f ~ ' (v) ([t ~] , . . . , [tn])= {[t] E Term2~.(X)/~c I f (t ~ , . . . , t ~) --+7, t)

�9 -k .~ , (v)= [-k] is the bottom element, whereas the partial order is defined as
follows: for all [s], [t] E T e r m s . (X) / ~ c , [s] ___~,(v) [t] iff s ~c t. []

It can be proved that for any program 7) = (S, g, Tr s.t. g is strongly regular
and well-typed, AdT,(V) is a PT-algebra. Moreover, if all rules in Tr are regular
and well-typed then .AAT,(V) is a well-typed PT-algebra.

All valuations over the term algebra AA~,(V) can be represented by means
of substitutions. Any substitution p = (0,5) s.t. 5 : DVar --+ T e r m ~ • and
0 : TVar --+ TTc (A) , represents the valuation [p] = (0, [5]), where [5](x) =
[5(x)]. It is easy to check that [r] ~ (v) 0 = 7-0 for all 7" E T T c (T V a r) , and
[[t]]~(v)[5] = (ITS]) for all t E Term~x(DVar) . Moreover, the relationship
between semantic validity in Jtdp(V) and GORC-derivability (which allows to
prove the adequateness theorem below) can be characterized as follows:

L e m m a 7. (C h a r a c t e r i z a t i o n l e m m a) Let 7 9 = (S , C, Tr be a program where
C is strongly regular and well-typed. Consider [p] = (0, [5]) E VaI(AAT~(V)),
represented by a substitution p = (0,5). Then for all e, a, b E Exprs •
t E Term~•

[t] E [e ~ (v) [5] iff e5 -+~ t and (A4~(V) , [5]) ~ a t~ b iff a5 N~ b& �9

T h e o r e m 8. (A d e q u a t e n e s s o f A4p(V)) Let 79 --- (Z , C, Tr) be a program such
that C is strongly regular and well-typed. Then:

(i) M ~ (V) # 7).
(2) For any ~ = e -+ t or ~ = e N e', where e,e ~ E E x p r ~ • and t E

Terms• (X) , the following statements are equivalent:
(2.1) ~ is derivable in GORC (or equivalently, in BRC) ;
(2.2) (A, U) # ~, for all PT-algebra `4 such that .4 ~ 79 and for all totally

defined ~ = (#, ~l) E VaI(A);
(2.3) (AAT,(V), [id]) ~ ~, where id is the identity partial data substitution

defined as id(x) = [x], for all x E X . "

To conclude, we show that ,~47,(V) admits a categorical characterization as
a free object. To this end, suitable morphisms are needed.

D e f i n i t i o n 9 . (H o m o m o r p h i s m) Let `4 and/3 be two PT-algebras. A homo-
morphism h : .4 -+ I3 is any pair of mappings (ho, hi), where h0 : T ~t --+ T s and
h i e [/)at "-+d D s] which satisfies the following conditions:

�9 For all C E TC" , el,...gn ~ T'4, h0(C 'A(e l , - " . en)) ~-- C S (h 0 (e l) , . . . , h0(er~));
| For all u E D "a, there is v E D s such that ht(u) = (v);
�9 hi is strict, i.e. hl(-k A) = (-ks);
�9 For all e :e -~ ~ e D C , u~ ~ D ~ : h~ (e ~ (~ , . . . , u ,)) = e s (h ~ (~ l) , . . . , h~(~,o));
�9 F o r a l l f : ' ~ - - + r e F S , u~ED~:h~(f '~ (u~ , , u , ~)) C _ f S (h l (U l) , ' " , h l (u n)) "

463

Morover, h is called a well-typed homomorphism iff hl(g~(e)) c_ gB(ho(e))
for all ~ �9 T ~ . []

PT-algebras of signature L' are the objects of a category PTAlg~ whose ar-
rows are the homomorphisms from Definition 9. The models of any given program
79 = (Z, C, 7"r determine a full subcategory ModT, of PTAlg Z. We can prove:

T h e o r e m l 0 . (AdT,(V) is free) Let 7 9 = (Z,C,Tr be a program s.t. C is
strongly regular and well-typed. AA~,(V) is freely generated by V in Mode,, that
is, given any A ~ ? 9 and any totally defined ~ = (#, y) �9 Val(.A), there ex-
ists a unique homomorphism h : Mp(V) --+ A extending ~, i.e. such that
ho(a) = It(a), for all ~ �9 d and hi(Ix]) = (r](x)), for all x �9 X . Moreover,
i f .A and ~ are well-typed then h is a well-typed homomorphism. �9

6 C o n c l u s i o n s and Future W o r k

We have presented a semantic framework for functional logic programming with
algebraic polymorphic datatypes, whose data constructors can be governed by
a specified set of equational axioms. Since equational logic does not reflect the
expected behaviour of lazy functions, we have given rewriting calculi and models
which provide an adequate declarative semantics for our programs. This is shown
by the existence of free models for programs (Theorem 10), the adequateness of
the rewriting calculi w.r.t, models (Theorem 8), and type preservation results
(Theorems 2, 4 and 10).

Related works dealing with non-free data constructors in declarative pro-
gramming languages include [13, 4, 8, 15]. The main novelty here has been to
include polymorphic data types and lazy (possibly non-deterministic) defined
functions. The combination of algebraic constructors and lazy defined functions
precludes a direct use of equational reasoning to deal with the equational theor-
ies for constructors. This problem has been discussed and solved in sections 3
and 4. Related work includes also some approaches to functional logic program-
ming with polymorphic types such as [9, 1], using free constructors and more
complicated algebras with one carrier for each type and multiple interpretations
for polymorphic function symbols. The language in [1] is more expressive in an
orthogonal direction, since it supports inclusion polymorphism.

The development of a constructor-based lazy narrowing calculus for goal solv-
ing has been left outside the scope of this paper. It is an important problem for
future research, whose solution will presumably combine known techniques for
E-unification [14, 2] with known lazy narrowing calculi for functional logic pro-
gramming [7]. Another open problem is to obtain more general type preservation
results, so that collapsing regular axioms for constructors and extra variables in
the right-hand sides of defining rules can be allowed in programs. Last but not
least, we are interested in enriching our framework with constraints, coming from
a constraint system given as a suitable extension of the equational axioms C for
constructors. For instance, if C specifies constructors for sets or multisets, the
constraint system shcrtdd provide constraints for disequality, membership, etc~
In fact, set constraints are already in use,with various semantics, in different
approaches to programming and program analysis [4, 5, 11].

A c k n o w l e d g m e n t s : We are indebted to Ana Gil-Luezas for her wise advices
and comments to the development of this work.

464

References
1. Almendros-Jim~nez J.M., Gavilanes-Franco A., Gil-Luezas A.: Algebraic Semantics

for Functional Logic Programming with Polymorphic Order-Sorted Types. In Proc.
ALP'96. Springer LNCS 1139, pp. 299-313, 1996.

2. Arenas-Ss P., Dovier A.: Minimal Set Unification. In Proc. PLILP'95.
Springer LNCS 982, pp. 397-414, 1995.

3. Derschowitz N., Jouannaud J.P.: Rewrite Systems. In J. van Leeuwen (Ed.), Hand-
book o] Theoretical Computer Science, Vol. B, Chapter 6. Elsevier North-Holland,
1990.

4. Dovier A., Rossi G.: Embedding Extensional Finite Sets in CLP. In Proc. ILPS'93,
the MIT Press, pp. 540-556, 1993.

5. Gervet C.: Conjunto: Constraint Logic Programming with Finite Set Domains. In
Proc. ILPS'94, the MIT Press, pp. 339-358, 1994.

6. Giovannetti G., Levi G., Moiso C.,Palamidessi C.: Kernel K-LEAF: A Logic plus
Functional Language. JCSS 42 (2), pp. 139-185, 1991.

7. Gonzzilez-Moreno J.C., Hortals163 T., Ldpez-Fraguas F.J, Rodriguez-
Artalejo M.: A Rewriting Logic]or Declarative Programming. In Proc. ESOP'96,
Springer LNCS 1058, pp. 156-172, 1996. Full version available as TR DIA95/10,
http://mozart.mat.ucm.es/papers/1996/full-esop96.ps.gz

8. Groge G., H611dobler J., Schneeberger J., Sigmund U., Thielscher M.: Equational
Logic Programming, Actions, and Change. In Proc. ICLP'92, the MIT Press, pp.
177-191, 1992.

9. Hanus M.: A Functional and Logic Language with Polymorphic Types (Extended
Abstract). In Proc. Int. Symposium on Design and Implementation of Symbolic
Computation Systems, Springer LNCS 429, pp.215-224, 1990.

10. Hanus M.: The Integration of Functions into Logic Programming. A Survey. JLP
(19:20). Special issue Ten Years o] Logic Programming, pp. 583-628, 1994.

11. Heintze N., Jaffar J.: Set Constraints and Set-Based Analysis. In Proc. PPCP'94,
Springer LNCS 874, pp. 281-298, 1994.

12. Hussmarm H.: Non-determinism Algebraic Specifications and Nonconfluent Term
Rewriting.]LP 12, pp. 237-255, 1992.

13. Jayaraman B., Plaisted D.A.: Programming with Equations, Subsets, and Relations.
In Proc. ICLP'89, Vol. 2, the MIT Press, pp. 1051-1068, 1989.

14. Jouarmaud J.P., Kirchner C.: Solving Equations in Abstract Algebras: A Rule-Based
Survey of Unification. Computational Logic: Essays in Honor of Alan Robinson.
J.L. Lassez and G. Plotkin (Eds.). The MIT Press, pp. 257-321, 1991.

15. Mesegner J.: A Logical Theory of Concurrent Objects and Its Realization in the
Maude Language. In Agha A., Wegner P. and Yonezawa A. (Eds), Research Dir-
ections in Concurrent Object-Oriented Programming, the MIT Press, 1993.

16. MSller B.: On theAlgebraic Specification o[Infinite Objects - Ordered and Continu-
ous Models of Algebraic Types. Acta Informatica 22, pp. 537-578, 1985.

17. Moreno-Navarro J.J., Rodrlguez-Artalejo M.: Logic Programming with Functions
and Predicates: The Language BABEL. JLP 12, pp. 191-223, 1992.

18. Smolka G.: Logic Programming over PolymorphicaUy Order-Sorted Types. PhD
Thesis, Fachbereich Informatik, Universit~it Kaiserslautern, 1989.

19. Reddy U.: Narrowing as the Operational Semantics of Functional Languages. In
Proc. IEE Symposium on Logic Programming, pp. 138-151, 1985.

20. Scott D.S.: Domains]or Denotational Semantics. In Proc. ICALP'82. SpringerL-
NCS 140, pp. 567-613, 1982.

21. Peterson J., Hammond K. (eds.): Report on the Programming Language Haskell.
A Non-strict, Purely Functional Language. Version 1.3., May 1, 1996.

