
Specifying Complex and Structured Systems 
with Evolving Algebras 

Wolfgang May * 

Institut fiir Informatik, Universit~t Freiburg 
Am Flughafen 17, 79110 Freiburg, Germany 

may@informatik.uni-freiburg.de 

A b s t r a c t .  This paper presents an approach for specifying complex, 
structured systems with Evolving Algebras by means of aggregation and 
composition. Evolving algebras provide a formal method for executable 
specifications which has been employed for specifying several algorithms 
and programming languages. With its transition system-like rule-based 
syntax, the concept is as well very intuitive as well-suited for formal 
reasoning and verification. 

Following the need for structuring capabilities in specification frame- 
works, the paper proposes a concept for hierarchically structuring Evolv- 
ing Algebras corresponding to the semantics of the system to be modeled, 
allowing to build up complex systems from simpler ones by several com- 
binators. The concept can be~generalized to arbitrary rule-based state- 
oriented formalisms. 

In such systems, transitions regarded as atomic on the corresponding 
level are allowed to be specified by computations performed by sub- 
Evolving-Algebras instead of single rules. The subsystems provide a nat- 
ural way of encapsulating data and behaviour while a computation is 
running. Communication is done via distinguished locations accessible 
to the participating systems. 

1 Introduct ion 

Formal specification methods gain increasing interest in system design and val- 
idation. Their  application to complex tasks, for instance workflow systems, re- 
quires structuring capabilities of the formal framework. 

Evolving Algebras [Gur91] provide a formal description of operational se- 
mantics for algorithms in an easy-to-understanding way, tailored to the natural  
abstraction level of the algorithm. They have been employed for specifying sev- 
eral algorithms and operational semantics of programming languages. With its 
formal, transition-system like rule-based syntax, the concept is also well-suited 
for formal reasoning and verification. 

Evolving Algebra specifications are directly executable [GH94, BP95] thus, 
because of their clear and intuitive concept they are well-suited for prototyping, 
testing, and simulating systems in the design and development phase. 

* Supported by grant no. GRK 184/1-96 of the Deutsche Forschungsgemeinschaft. 



536 

On the other side, the fiat concept, based on elementary updates, provides 
no means for specifying encapsulation, communication, or any system structure: 
In every state, all rules have equal rights, "seeing" all data and communicating 
implicitly via the whole signature. The "length" of a computation in the sense 
of rule applications introduces an implicit notion of time. Additional rules for 
synchronization have to be applied, which impair the clear and intuitive specifi- 
cation. Thus, semantical, higher-level structuring devices for Evolving Algebras 
seem appropriate for specifying real-world complex systems. 

In this paper, a concept for equipping Evolving Algebras with a modular 
structure allowing to build up complex systems from simpler ones by several 
combinators is worked out: Transitions regarded as atomic on the corresponding 
level are allowed to be carried out by computations of sub-Evolving-Algebras 
running in isolation on an own signature, communicating via distinguished lo- 
cations of the shared part of the signatures. Thus, subsystems provide a natural 
way of encapsulating data and internal behaviour. Their behaviour is aggregated 
to atomic transitions on the upper level. 

The paper is structured as follows: In the next section, the classical concept of 
Evolving Algebras as presented in [Gur94] is reviewed and a motivating example 
is pointed out. Section 3 relates computations of Evolving Algebras to sequences 
of first-order interpretations, setting the base for a logical treatment. In Section 
4, some combinators for structuring systems of Evolving Algebras are presented. 
Section 5 formally defines the notion of systems of Evolving Algebras and gives 
an operational model for structured Evolving Algebras as constructs of simple 
Evolving Algebras. Section 6 completes the work with an overview of related 
work and some concluding remarks. 

2 E v o l v i n g  A l g e b r a s  

Evolving Algebras 2 [Gur88, Gur91, Gur94] are transition systems whose states 
are static algebras, ie first-order interpretations over a functional signature Z. 
The transition relation is specified by rules describing the modifications of the 
interpretation of the function symbols from one state to another. 

For static algebras, the most concepts are taken over from predicate logic: 
the signature ~ of a static algebra is a finite set of function symbols, each with 
a fixed arity. Terms are defined as usual. 

A static algebra ,4 = (A, $) over a signature ~ consists of a non-emtpy 
set S (superuniverse) and an interpretation A of the function symbols, A ( f )  : 
$ord(f) __~ S. As usual, ~4 can be extended straightforwardly to an evaluation of 
terms. For an n-ary function symbol ] E Z and s l , . . . ,  sn E $, ( / ,  s l , . . . ,  s~) is a 
location over ~ and S. In order to handle partial functions, ~3 includes a constant 
undef which is interpreted as the element under E $. Additionally, ~ includes 
the constants true and false, mapped to the universe Bool := {true,]alse} C •. 
The only relation in static algebras is the equality relation. With the universe 
Bool, every relation can be represented by its characteristic function. 

2 since recently aka Gurevich Abstract State Machines 



537 

For a static algebra A = (A, S) and a function symbol, its domain is defined as 

dora(f) :---.~ {(81,..., Sord(f)) E s~ I (A(f))(sl,..., 8ord(]')) ~ under }. 

Furthermore, dora(A) := {(f, s l , . . . ,  sn) { f E ~, si E S} is a subset of the set 
of locations over ~ and S. 

An Evolving Algebra is given by an initial state Z(8)  (which also gives the 
interpretation of state-independent function symbols for all states) and a set 
T~(8) of transition rules describing the change of the interpretation of state- 
dependent function symbols in a Pascal-like syntax. Signature and superuniverse 
are constant over all states, so there is a signature E(E) and a superuniverse 8(8).  

De f in i t i on  1 An elementary update u is an update of the interpretation of a 
function symbol at one location: u : f ( t l , . . . , t n )  := to , where f is an n-ary 
function symbol and ti are terms. 

The set of rules is defined by structural induction as follows: 
�9 I f  u is an elementary update, then u is a rule. 

�9 I f  r l , . . .  ,rn are rules, then r l , . . .  ,rn is a rule ("block"). 

�9 I f g l , . . .  ,gk are boolean terms over ~ ("guards") and r l , . . .  ,rk+l are rules, 
then r = if gl then rl eisif g2 then r2 elsif . . .  elsif gk then rk else rk+ 1 endif 
is a rule. 

A program of an Evolving Algebra is a finite set of rules. 

A rule schema is a rule containing free variables, standing for all its ground 
instances. As in logic programming, a rule schema is safe iff all variables occur- 
ring free on the left side of an updates also occur positively in a corresponding 
guard. Thus, on finite interpretations, execution of safe rule schemas can be done 
by executing finitely many ground instances. 

De f in i t i on  2 An update over a signature ~ and a superuniverse 8 is a pair 
(~, s), where ~ is a location and s E 8 .  

Def in i t i on  3 Let A be a static algebra. 

�9 For r =_ ] ( t l , . . .  , t , ) : =  to, Upd(r,A) := { ( f , A ( t l ) , . . .  , A ( t n ) , A ( to ) ) } .  

�9 For a block r = r l , . . . ,  rn, Upd(r, `4) := Opd(rl, .4) U . . .  U Upd(rn,`4). 

�9 For a rule r -- if gl then rl elsif g2 then r2 . .. elsif gk then rk else rk+ 1 endif 
and .4 ~ g~ and .4 ~ gj for all j < i, Upd(r, A) := Upd(r~, .4). 
I f  .4 ~ gj for all j ,  then Opal(r,.4) := Upd(rk+l, `4). 

�9 For a program P = { r l , . . . ,  rn}, Opd(P, .4) := Upd(rl, .4) U . . .  LJ Opd(rn, .4). 
�9 A set U of updates is consistent i f  for every location g, {{s { (g, s) e U}{ < 1. 

De f in i t i on  4 Let U be a consistent set of updates and .4 a static algebra. Then 
the state B = (B,S) obtained by executing U is given as 

(B( f ) ) ( s l , . . .  s , ) )  = { s ff (f, s l , . . . ,  s , ,  s) e u ,  
' ( A ( f ) ) ( s l , . . . , S n )  otherwise.  

I f  in some state the calculated update set is inconsistent, the system stops. 



538 

D e f i n i t i o n  5 The static:algebra which is obtained by applying a ground rule 
r e grd(7~(E)) in a statical~ebra~A (ie executing Upd(r)) is denoted by r(A). For 
a set T4 of rules, T~(.A) denotes the static algebra which is obtained by executing 
Opd(Tr in A. T4* (.4):denotes the static algebra obtained by running the Evolving 
Algebra (~4, Tr until it r~ch'es a fixpoint. 

E x a m p l e  1 Imagine a drink, service: there are two "producers",  C produces a 
glass of champagne,  O produces an orange juice. Also there are three "processing 
units": CS takes a glass of champagne and sells it, OS takes an orange juice 
and sells it, CO takes a glass of champagne and an orange juice and produces 
two mixed drinks. The components can only communicate  via two locations c 
and o, each of them offering place for exactly one glass. C and O see only the 
location which they output  to, CS, OS, and CO see both  locations. Their  visible 
behaviour can be specified as follows: 

C: if c -= empty and orderc then c := glass 
O: if o = empty and ordero then o := glass 
C: if c = empty and orderc then c := glass 
O: if o = empty and ordero then o := glass 
CS: if c = glass and o = empty then c :-- empty 
OS: if c = empty and o = glass then o := empty 
CO: if c = glass and o = glass then c := empty, o := empty 

where orders and ordero are set by some more rules. On some abstract ion level, 
the internal computat ions of C and O are irrelevant, and the above rules work 
weft: I f  one orders champagne and orange, a mix is produced. Now, imagine 
tha t  C and O stand for more complex processes - the output  is a function 
computed from the input, and should also be specified by rules. Since all rules 
are united in one set, there is no encapsulation or synchronization. In contrary, 
the "length" of a computat ion in the sense of rule applications introduces an 
implicit, formulation-dependent notion of time. I t  is very unlikely tha t  c = glass 
and o = glass at  some point of tha t  implicit time. Thus nobody will get a mixed 

drink, even if he orders both  components.  

Thus, semantical, formulation-independent higher-level structuring devices for 
Evolving Algebras seem appropriate  for specifying real-world complex systems. 

3 Model-Theoretic Characterization 

An Evolving Algebra C with a program ~ defines a linear state space, covering 
the classical notion of (deterministic) algorithms. In the following, let ~R denote 
the temporal  successor relation in this s tate space: 9~(A, B) ~ B -- Tr Let 

~t* denote the transitive closure of ~ .  

A set of updates  can also be seen as a partial  static algebra over E. Then, 
parallel execution of sets of updates  corresponds to taking the union of partial  
algebras, and application of a set of updates  corresponds to overwriting a static 

algebra with a partial  static algebra. 



539 

D e f i n i t i o n  6 Let `A be a static algebra and r a ground rule. Then the partial 
interpretation r p~rt (A) is defined as 

s i f  (f,  s l , . . . ,Sn ,8)  e Upd(r,A), 
( ( rP~r t (A) ) ( f ) ) ( s , , . . . , sn )  := under other'wise. 

D e f i n i t i o n  7 Let A be a static algebra. For a set T~ of:rules, write(T~, A) denotes 
the set of locations which are updated: 
* I f r  -- f ( t l , . . .  ,tn) := to, then write(r,A) := { ( f , A ( t l ) , . . .  ,A(tn))}.  
�9 I f r  -- r l , . . . ,  rn is a block, then write(r, A) := write(ri, A) U . . .  U write(m,,4).  

�9 I f  r - if gl then rl elsif g2 then r2 . . .  elsif gk then- rk else rk+l endif 
A ~ gi and A V = gj for all j < i, then write(r, A)-:= write(r/, A). If  A ~ gj 
for all j ,  then write(r, A) := write(rk+a,,4). 

D e f i n i t i o n  8 Every superuniverse S can be seen as the flat lattice constructed 
from S by adding an element T,  and the definitions~undef < s < T for all 
undef ~ s E S.  The operator U denotes the least upper,::bound of two elements of 
this lattice, ie U(sl,s2) = T r (sl ,s2 ~ under A sl ~ 2 ) .  

For two (partial} static algebras A = (A, S) and A~41=.-(A', S ')  over signatures 
resp. ~' ,  their union B = ( B , S  U S')  := .4 U A' olrer E U ~' is defined as 

(B(y))(sl, . . . ,  So,d(S)) := U((A(y))(sl,..., so,d(1)), (A'(f))(s~,..., So,d(S))) �9 
For a static algebra A = (A, S)  over Z and a set L of locations over ~ and S,  
the restriction of .4 to L, .ALL= (AlL,S), is defined as 

{ (A(f))(sl , . . . ,s , )  if ( / ;s l , . . . , sn)  e L ,  
(AlL ( f ))(s l , . . . , s , )  := unde] otherwise. 

For two static algebras A = (A, S) and .4' = (A', S') over signatures E resp. E' 
and a set L of locations over E' and S',  the superposition B = (B, S U S')  = 
.A ~L ,A t of ,A with ,A' on L is defined as 

{ ( A ' ( y ) ) ( s l , . . . ,  sn) if (f ;  8 1 , . . .  , 8n) ~ L ,  
(B(f))(s~,. . . ,s ,)  := (A(y ) ) ( s~ , . . . , Sn )  otherwise. 

As a shorthand, ,4 ~ `A~ stands for `A ~dom(A,) A'. 

The difference diffs(`A, `A') between two static algebras is a set of locations: 

diffs(`A, `A') :_- 

{(f; s~ , . . . ,  So,d(,,)) I (A(y))(s~,..., Sord(S)) ~ (A'(y))(sl,..., So,d(S))} 

L e m m a  1 For a static algebra .4 and a ground rule r, 

rPart ("4) = (r(`A)lwrite(r,A)) 

T h e o r e m  1 Let `A a static algebra, and 7~ a set of rules. Then 

a) T~ is consistently applicable in `A iff 

,A' := U = U 
rET~ rET"~ 

is consistent (ie no locations are evaluated to T) .  



540 

b) I f  7~ is consistently applicable in .4, then 

rET~ 

U rPar'(.4) " 
rET~ 

3.1 In tegra t ion  of  Par t ia l  I n t e rp re t a t i ons  into the  S ta te  Space 

The partial static algebras obtained by application of a single ground rule to a 
static algebra are integrated as auxiliary nodes into the state space as shown in 
Figure 1. 

i j 

J 

6 

where *- represents the computation of the union and superposing it to the 
previous static algebra: the intermediate partial algebras are joined, and 
the gaps are filled with the values of the (total) algebra representing the 
previous state. 

Fig. 1. Structure with Auxiliary Partial Interpretations 

The additional accessibility relations in the augmented structure have the fol- 
lowing semantics: 

_~.~ : Labeled elementary transition relation to the partial algebras which are 
obtained by execution of a single rule: ~:(A, r, B) iff B = rpart(A). 

: Evaluation of partial static algebras: ~(g,  B) if B reads the partial 
algebra g as a result of the application of some rule (then, C C B). 

Defini t ion 9 The accessibility relations of an augmented structure are consis- 
tent i~for every B,C, ~(C,B) ~:~ 3A : (~(A,B) A 3r : ~(A,r ,g)) ,  ie exactly 
those static algebras which are computed by an application of some rule are ac- 
cepted as a result. 

T h e o r e m  2 Thus, if the accessibility relations are consistent, for all .4, B, 

~(A,B)  r B = A ~ J U { c } f ~ ( A , r , C ) }  and ~(A,B)  ~ B = 7 ~ ( A ) .  



541 

This semantics can be axiomatized by a non-monotonic consequence relation 
as follows: ~ is used as an auxiliary relation which represents inheritable infor- 
mation, whereas ~- represents the non-monotonic consequence relation. In the 
following, let f be an n-ary function symbol and s, s l , . . . ,  sn elements of the 
superuniverse. 

~(A,r,C) , r applied to ,4 modifies (f, s l , . . . , s n )  to s 
C ~- f ( s l , . . . ,  sn) = s 

, . 4  = s 

~(C,  I3) , C t- ] ( s ~ , . . .  
B s : i  --'o ") = s 

A b ' f ( s l , . . . , s n )  = s ,  not ,4 F- f ( s l , . . . , s , ~ )  = v # s 
,4 ~- f ( s l , . . . ,  s , )  = s 

For subsequent steps, where a hierarchically structured state space is introduced, 
it is preferable to work with static algebras with two qualities of truth instead 
of partial algebras. In the auxiliary states, is has to be distinguished between 
"safe" knowledge derived by the updates and frame knowledge taken over from 
the state where the rule is applied. The relation f-, defined by the above inference 
system describes the "safe" knowledge of the states. A second truth relation, 

~ f-, then gives the state "as is", including frame knowledge: In the auxiliary 
states, - in Fig. 1 those C such that there exists an ,4 such that T(A, _, C) - 
~c:=~ .4  ~ F-c. In the main states, ~ - ~-. For initial states, F-z:= ~ o m ( z ) .  
With these definitions, there is a homogenous state space where ~ is total in 
every state and f- is partial; ~ corresponds to the notion of "model" whereas f- 
corresponds to derivability wrt. the current subsystem. 

4 Structured Evolving Algebras: Complex Computations 
Instead of E l e m e n t a r y  R u l e s  

Instead of computing the auxiliary states by applying a single rule in a state, 
they can be computed by a complex computation, ie by running an Evolving 
Algebra on this state: If C is an Evolving Algebra, then 

if g then call ~c 

is a rule. Rules like this are applied by initializing C and running 7~(s until 
a fixpoint is reached. The accumulated net-updates of these subcomputations 
are given back as one aggregated update as shown in Figure 2. Communica- 
tion in both directions is done via locations. Logically, a hierarchical structure 
as shown in Figure 3 is obtained. There is an additional accessibility relation 

representing the call of another Evolving Algebra. The substructures (repre- 
sented by shaded boxes) are not necessarily isolated but can have several states 
in common. Thus the whole structure can also be seen as a homogenous state 
space with several accessibility relations s | ~, ~R1, ~R2,..., where each of the 
accessibility relations is deterministic (but, in general there are fit1 (.A, B) and 
9~2(.A,C) with B # C). 



542 

Ei = (Zi,OZi); Ui -- set of net updates which are executed by running 3i on A. 

Fig. 2. Operational Concept of Hierarchical Evolving Algebras 

~-'~call 's , t  
s '  

. : : -  
"L~+., - "  ~ 

7"n %' .~. %, 

m~ 

ff~" \ 8  

mt  

6 

Fig. 3. Hierarchically Structured State Space 

Defini t ion 10 Analogous to Def. 9, there is the following requirement: The ac- 
cessibility relations of a hierarchical structure are consistent if for every 13, T), 

~ ( z ) , B )  ~ ,  3 A :  ( m ( A , U )  A 3r  : (~(A,r,~)) V 
3S~,C : (O(A,  cail &,C)  A m ; ( ~ ) , c )  A ~ 3 x :  m, (c , x ) ) ) ) .  

The axiomatization is also done extending the ideas of Section 3.1. Apart from 
the two truth relations ~- and ~ ,  two auxiliary relations N and ~ for inheriting 
~-- resp. ~-information are used: 

~-= Nt~Updates , ~ =  ~ N ~ U p d a t e s  

~ ( A , B )  , A ~  f ( s l , . . . , s ~ ) = s  ~ i ( A , g )  , A ~  f ( s l , . . . , s ~ ) = s  
g ~ f ( s l , . . . ,  s,~) = s " - ' t~ ~ f ( s l , . . . ,  s,~) = s 

~(g ,r ,C)  , A ~ f ( s~ , . . . ,  s , )  = s 
C ~ f ( s l , . . . , s n )  = s 

~ ( A ,  catt S , C )  , z ( S )  ~ f ( s ~ ,  . .  , s ~ )  = ~ r ~ , n d 4  

C ~- f ( s l , . . . , s , )  = s 

~(A,r,C) , A ~  f ( s ~ , . . . , ~ ) = s  
C ~ f ( s l , . . . ,  s,~) = s 



543 

T(A,r,C) , r applied to A Updates (f, s l , . . . , s n )  to s 
C F f ( s l , . . . ,  = s 

~ ( ~ , ~ ) ,  ~)~- f ( S l , . . . , S n )  : 8 ~ -  f ( 8 1 , . . . , S n )  : 8 

F f ( S x , . . . , S n )  = S ' B ~ f ( S l , . . . , S n )  = S 

,4 P f ( s l , . . . , s n )  = s ,  not A F f ( s l , . . . , s n )  ---- t r s 
A F f ( s l , . . . , s n )  = s  

, 4 ~  f ( s l , . . . , s n )  = s ,  not A F f ( s l , . . . , s n )  = t ~t s 
A # f ( s 1 , . . . , S n )  : 8 

Based on this concept, arbitrary possibilities for structuring programs and com- 
putations can be provided: A static algebra can be handed over at certain situ- 
ations to another set of rules. 

The encapsulated parallel composition has already been introduced in Figure 2: 
Every visible atomic transition is a complete execution of an Evolving Algebra. 

Also, a joined parallel composition of Evolving Algebras can be defined. The 
initialization of a joined parallel system is done when starting the system by 
joining the initializations of all subsystems. The visible atomic transitions of a 
joined parallel system are TQ U 7~2 U .. .  U 7~n, the whole system behaves like 
( Z l  U . . .  U Zn,~'2~ 1 U : . .  U "R.n). 

Also, Evolving Algebras can be executed sequentially: 

if g then call name1 ; call name2 ; . . .  ; call namen 

Since every Evolving Algebra is initialized and executed until it reaches a fix- 
point and then the resulting state is given to the next Evolving Algebra, this is 
an encapsulated sequential composition (see Figure 4). 

= 

Fig. 4. Operational Concept of Sequential Composition 

5 Systems of Evolving Algebras 

Motivated by the above-mentioned possibilities for composing Evolving Alge- 
bras, a formal theory of complex systems of Evolving Algebras is developed. 
Regarding Evolving Algebras as atomic units, systems of Evolving Algebras are 
constructed by several operators. A system is given by a description of its initial 
state and the set of its visible transitions. For composing Evolving Algebras, also 
their initializations have to be considered: 



544 

Def in i t i on  11 For a static algebra ,4 = (A,S),  ink(A) is the rule 

i n k ( A ) : = i f t r u e  then u l , . . . , u ,~  , where 
{UI,...,Un} = {f(Sl,.-.,Sord(f)):=.A(f(Sl,...,8ord(f))) : 

f 6 ~,  S l , . . - ,  8ord(f) 6 S,  .A(f (s l ,  �9 �9 �9 8ord(f))) • under} 

is the set of updates which have to be executed to get .4 from the empty static 
algebra (2. 

C o r o l l a r y  1 For two static algebras .4 and .4', .4~.4 '  = (init(.4'))(.4) and .4 = 
(init(.4))(O). 

Proof and explanation: With the notation introduced, (init(.4'))(.4) is the state 
obtained by applying init(.4') in .4. 

Def in i t i on  12 In the first step, the set l~ of transition expressions, based on 
single rules, is defined: 
�9 I f  r is a rule, then {r} 6 g{. 
�9 I f  .4 is a static algebra, then {.4} 6 IlL 
�9 I f g  is a boolean term and J~ 6 ~, then {if g then ~} 6 ~. 
�9 I f  Q, 9~ 6 R, then (Q U ~),  (Q o J~) and (J~*) are also elements of I~. 

In particular, the classical rule sets 7~ are elements of li~. 

Def in i t i on  13 The semantics is given by the transitions induced by applying the 
elements of l~ to a static algebra: the elements of l~ define operators on static 
algebras which can be regarded as complex transitions. 

{r}(.4) := r(.4) , {.4'}(.4) := .4Wdom~, -4' 
{~(.4) if.4 # g 

{if g then ~}(A) := "4 otherwise. 

(Q U J~)("4) := .4 ~ (Q(.4) Idi~s(4,O(4))U 9~(.4) Idi~s(4,~(A))) 

(Q o := 
C2-)(.4) := (J~o j~,-1)(.4) , (9~*)(.4) := l im, - ,~(~n) ( .4 )  

The definition of (Q U J~)(.4) contains the notion of consistency of rule appli- 
cation: two transitions can be executed in parallel only if their updates are not 

conflicting. 
Def in i t i on  14 The set E of systems of Evolving Algebras is defined as follows: 
�9 I f  .4 is a static algebra, then .4 is an expression in E. 
�9 I f  r is an Evolving Algebra rule, then {r} is an expression in E. 
�9 I f  g is a boolean term and E 6 E, then {if g then E} is an expression in E. 
�9 I rE  and 9: are expressions i n E ,  then (s U 9"), (9-oE), (9" �9163 (9"-< E), 

(9" -4< E), (E+), and (s are expressions in E. 

The underlying ideas are as follows: 

.4, 7~: Base cases. 
{if g then E}: if the guard g is satisfied in the current state, the execution of E 

is a visible action. 
g U 9": (union): The initialization results from the initializations of both subsys- 

tems. The system uses the rules from both systems. 



545 

9"o E: (sequencing I): There is no initialization. Each visible action consists of 
initializing and executing s followed by initialization and executing 9". 

9". s (prefixing 9" with E): The second argument is completely added to the 
initialization. The initialization consists of executing E and initializing 9-: 9- �9 

= 9" �9 s The visible actions are the actions of 9". 
! The construction 0 �9 E can be used to hide all activities of E and make only its 

final state ~ visible. It is often used when joining initializations of subsystems. 
9" -< E: (alternation): The initialization consists of initializing both subsystems. 

Each visible action consists of one step of E followed by one step of 9". 
9" -~ E: (sequencing II): The initialization consists of initializing both subsys- 

tems. Each visible action consists of first applying the rules of E until a fixpoint 
is reached, and then applying the rules of 9" until a fixpoint is reached. 

~+: (external fixpoint): There is no initialization. Each visible action consists of 
initializing E and applying the rules of E until a fixpoint is reached. 

E*: (internal fixpoint): The initialization consists of the initialization of E. Each 
visible action consists of applying the rules of ~ until a fixpoint is reached. 

D e f i n i t i o n  15 The formal semantics of expressions is defined in terms of op- 
erators 7 : E --+ E, T : E -+ ~ and Q : E --+ ]~ - corresponding to an initialization 
and two expressions in ]~ describing the behavior in parallel resp. sequential con- 
texts. The definition is given in Figure 5. Two systems ~ and 9" are equivalent, 
E =_ ~, iff those three operators return the same results on them. 

8 
A 

{r} 
{if g then s 

s 

~'o~ 

~'.<s 

~+ 
&- 

~(s) ~(s)  Q(s) 
CO ink(A) init(A) 
o {~} {~}. 
0 (if g then Q(&)} {if g then Q(C)}* 

(o �9 ~(~)) u ~(~) u ~ (s )  (~(&) u ~(s) )"  o (QO(~)) u QO(S)))  
(o �9 ~(~)) 

o (~(s))"  o QO(S))o (~(s) ) *  o ~O(s ) )  o (~(a) ) -  o QO(~)) 
(~(~))" o Q0(&)) = Q(s) o Q(~) 

~(~) o ~ ~(~)  ,, 
(v �9 ~(e)) u ~ (s )  o ~(e) (~(s)  o ~(e))" o (o0 (~ ) )  u QO(s)) )  

(o  �9 ~(~)) 
(v �9 J(~)) u (~(~))-  o (~(~))- (~(~) ) .  o (~(~)) .  o (~0 (~ ) )  u ~ 0 ( ~ ) ) )  

(o �9 ~(~)) 
o (~(~))" o ~0(~)) (~(~+))" 

~(~) (~(~))" (~(~))" o ~ 0 ( ~ ) )  

Fig. 5. Semantics of System Expressions 

D e f i n i t i o n  16 For a system ~, the final state is given by the static Algebra 
~ := (Q(~))(O). I f  in case of the iteration operator, there is no fixpoint, the 
system defines an infinite computation (cf. server processes). 

The mappings 1, T, and Q provide all information needed for composing expres- 
sions in a useful way: 

~: Reaching the initial configuration: (2(~))~ is the initial state of E. 



546 

[P: Description of actions (elementary rules or complex transitions; represented 
by an expression in 1~) which can be executed atomically in this system. 

Q: The effect of running the system g in isolation on a given state: starting s 
in a state .4, it stops in (O(~))(.4) or defines an infinite process. 

C o r o l l a r y  2 An Evolving Algebra g = (Z,7%) is equivalent to the system T i e Z  : 

(Z, n )  = (O, ZZ) �9 (Z, 0) = (O, Ze) �9 (O, init(Z)). 

Proof. 9(R * Z)  = 3(Tr o Z = O o Z = Z ,  T ( R  . Z )  = T (R)  = Ti, Q(R . Z )  = 
Q(1Z)oQ(Z) = TO* oinit(Z), and (Tr ~176 = ( Q ( R * Z ) ) ( O )  = (lZ*oinit(Z))(O) = 
7Z* 0 . i t (Z)(O))  = n* (Z) .  

C o r o l l a r y  3 The operators possess the following algebraic properties: 

Commutativity:  The operation _ U _ is commutative. 

Idempotency: The operations $ O _, 0o_, _o0, Oo_, _oO, and _* are idempotent. 

Implicite Closures: 9- o ~ = 9"* o s , 9: -~ g -= 9"* -g ~* , 9- �9 ~ = 3" �9 s . 

Associativity: The binary operators U, o, �9 -% and -~ are associative. 

Special properties of O �9 _ : 0 (0  �9 $) - $ ,  T(O �9 $) - r  Q(O �9 $) -- Q($) �9 

Proof. The only interesting proof is that  of the associativity of U wrt. 0, which 

also sheds light on the use of �9 
0(~ U (9- U g)) = 0-0(~) U (0.0(9- O g)) : O.~(e) U (0.(0.~(9-) U 0.0(9))) �9 

Due to the special properties of O �9 _, 
J(O �9 (0 �9 ~(9-) U 0 �9 J(9))) = 0 �9 0(9-) O 0 �9 0(s and 
~ ( o .  0(9-) u 0 . 0 ( 9 ) )  = o .  0(o.0(9-)) u o . 0 ( o . o ( s  = o.~(9-)  o o . 0 ( s  
0~(o �9 ( o  �9 o(9-) u o �9 0(S)))  = ~ = 0 , (o  �9 0(9-) w o �9 0 ( S ) )  
Q(o �9 (o  �9 0(9-) u o �9 0(S))) = Q(o �9 ~(~) u o �9 ~(S)) 
thus 0 �9 (0 �9 0(9-) U (9 �9 O(S)) -- (0 �9 0(9-)) U ((9 �9 0(9)), and [I(~: U (9- U 9)) 

(o �9 u (o �9 0(9-)) u (o �9 0(9)) - u 9-) u 9). 

For an Evolving Algebra E, 0(E*) = ~(E), but  ~(g*) = ((P(E))* # ~(g).  This 
difference is of importance when joining systems: in a join with E, the rules of 
s are visible whereas in a join with E* only the whole effect is visible. 

Apart  from the above-mentioned kind of union, where the rules of both systems 
can be applied, an encapsulated union can be defined as s ~9- := ~* U 9" �9 

E x a m p l e  2 With this, the starting example can easily be reformulated as C* U 
O* U CS* u OS* U CO*. The initialization consists of initializing all subsys- 
tems, the behaviour on a given state of each subsystem is aggregated to an atomic 

transition from the point of view of the main system. 

5.1 O p e r a t i o n a l  M o d e l  

The operations of E are implemented by constructions of Evolving Algebras. 
Systems are different from a classic Evolving Algebra only in the point that  
their rules are not completely given explicitly in Pascal-style notation but can 
also be given implicitly by the behavior of other systems. As mentioned, an 
Evolving Algebra itself is a system which is completely described "by itself". 



547 

In the following, it is shown how every system S can be described operationally 
by a system of Evohdng Algebras mirroring the above ideas: 

Rules: 
Class ica l  Evo lv ing  A l g e b r a  ru les  "if g then u":  If g is satisfied in the cur- 

rent state, then execute the updates u. 
Complex rules "if g then g ' .  Operations in a given state -4: if g is satisfied 

in A, then copy A and execute ~ until it stops and obtain a new state A t. Let M 
be the set of locations which are updated. Then the rule if g then init(-4' IM) 
is a rule. 

Systems: 
For a state sequence ~ starting in a state .4 and ending in a state -4~, let R(~)  
be the set of locations which are read before they are updated the first time, 
and M ( P )  be the set of locations which are updated. Also, when standing as 
a guard, let a static algebra .4 denote the first-order formula 

A f ( s l , . . . ,  Sn) = t: f ( S l , . . . ,  S,) E dora(A) and A ( f ( s l , . . . ,  sn)) = t ~ under. 
$ := g = (Z, 7~): Initialization: init(Z). Rules: ~ .  
8 := ~ U 3-: Initialization: perform the initializations of both subsystems and 

join the resulting states. 
Rules: rules of both subsystems. 

S :-- 9"o E: According to the given semantics, S = 9-* o E* holds. 
Initialization: empty. 
For a state -4, let P be the state sequence starting with -4, performing the 
initialization for E, applying the rules of ~ until a fixpoint is reached, then 
performing the initialization for 9" and applying the rules of 9- until a fixpoint 
A' is reached. Then if AIR(p ) then init(-4' IM(P)) is a rule of S. 

S := 9" �9 E: Initialization: compute 7(9") o ~ by a subsystem. Rules: rules of 9". 
S := 9" -g s Initialization: compute J(E) and ~(9-) by subsystems and join the 

resulting static algebras. 

For a state -4, let P be the state sequence starting with ,4, doing one step with 
the rules of E and then doing one step with the rules of 9", reaching a state -4~. 
Then if AIR(p) then init(A' ]M(P)) is a rule of 8. 

8 := 9- -~ g: Initialization: compute ~(~) and J(9") by subsystems and join the 
resulting static algebras. 

For a state -4, let P be the state sequence starting with -4, applying the rules 
of E until a fixpoint is reached, then applying the rules of 3" until a fixpoint 
A' is reached. Then if -4]R(p) then init(-4' [M(P)) is a rule of 8. 

8 := g+: Initialization: empty. 

For a state -4, let P be the state sequence starting with -4, performing the 
initialization for g and applying the rules of g until a fixpoint -4~ is reached. 
Then if -4tR(p) then }nit(A' tM('p)) is a rule of g. 
:= s Initialization: initialize g. 
For a state -4, let P be the state sequence starting with -4 and applying the 
rules of E until a fixpoint -4~ is reached. Then if -4]R(~) then init(-4 ~ [M(P)) is 
a rule of g. 



548 

Thus, complex operations correspond to execution of subsystems starting with 
the current state (possibly performing their own initializations) and evolving by 
their own rules until a fixpoint is reached. Then the performed updates (or a 
part of this state) are returned as results. 

6 R e l a t e d  W o r k  a n d  C o n c l u s i o n  

Fundamentally, in all specification methods there is a need for structuring. Es- 
pecially methods with an operational flavor, such as Petri Nets, Rewriting Logic 
[Mes92] or in general rule-based systems take great advantage from features for 
encapsulating internal data structures and behaviour. In process algebraic frame- 
works, some structuring capabilities are provided by the term structure. Action 
refinement for the Pi-calculus [Mil91] is presented in [AH93]. General aspects 
of process refinement are dealt with in [DG91, DG95]. In [BK94], a concept for 
defining transactions as sequences of elementary actions in a logic-programming 
style is defined, parallelism is modeled by interleaving. In [AH96], an abstract 
framework for reactive modules is presented which permits parallel composition 
and abstraction from the internal behaviour of modules. There, the focus is on 
the observable behaviour of communication variables, the transitions performed 
by composed modules are given in a declarative style, similar to the transition 
oracle Of [BK94]. 

In this paper, the focus is on dynamic, operational aspects providing as well 
a formal specification as an operational model. Although it is primarily formu- 
lated in Evolving Algebra terms, the ideas of this work can be transferred to 
other formal specification methods with an underlying state-oriented concept. 
A similar approach for the state-oriented deductive database language Statelog 
which also can be used for specification has been presented in [LML96]. 

From the software engineering point of view, the concept can further be 
extended with the usual modularization concepts of import, export, visible sig- 
nature, renaming, and hiding (cf. [BHK90]). 

The presented approach complements the method of refining Evolving Alge- 
bras by different abstraction levels [BR94]. There, the behaviour of rules per- 
forming complex changes on data structures in abstract terms is specified on 
a lower level in less abstract rules, and the finer specification is proven to be 
equivalent. For execution, the coarser rule system is replaced by the finer one. In 
contrast, in the hierarchical concept presented here, rules specifying a behaviour 
on a lower abstraction level are encapsulated as a system which is then called 
by the rules on the above level. 

Another approach for composing Evolving Algebras for modeling concurrent 
computation has been presented in [GR93]. There, the focus is on joining Evolv- 
ing Algebras with a shared signature to provide a communication mechanism. 
[BDR94] proposes another model for Occam, based on [GR93], also using shared 

variables for communication. 
Also, in [GdL95], parallel execution of rules is formally examined, based on 

partial interpretations, using restriction, and overwriting. 



549 

Both approaches are concerned only with flat rule sets, thus no sequential 
composition, iteration, or hierarchical structuring is considered. 

The paper adapts the Evolving Algebra concept for specifying complex sys- 
tems in a modular style, also providing an abstract executable operational se- 
mantics for structured systems in general. The model-the0retic characterization 
also permits formal reasoning about such systems. 

A c k n o w l e d g e m e n t s .  
The author thanks GEORG LAUSEN and BERTRAM LUD~.SCHER for many fruitful 
discussions and their help with improving the presentation of this paper. 

References  
[AH93] L. Aceto and M. Hennessy. Towards Action-Refinement in Process Algebras. 

Information and Computation, 103, 1993. 
[AH96] R. Alur and T.A. Henzinger. Reactive Modules. Proc. 11th Syrup. on Logic 

in Computer Science (LICS), 1996 
[BDR94] E. BSrger, I. Durdanovic, and D. Rosenzweig. Occam: Specification and 

Compiler Correctness, Part I: The Primary Model, 1994. 
[BHKg0] J. Bergstra, J. Heering, and P. Klint. Module Algebra. Journal of the ACId, 

37(2):335-372, 1990. 
[BK94] A.J.  Bonner and M. Kifer. An overview of transaction logic. Theoretical 

Computer Science, 133(2):205-265, 1994. 
[BP95] B. Beckert and J. Posegga. leanEA: A Poor Man's Evolving Algebra Com- 

piler. Technical Report 25, Universit/it Karlsruhe, Fak. f. Informatik, 1995. 
[BR94] E. BSrger and D. Rosenzweig. The WAM - Definition and Compiler Correct- 

ness. In Logic Programming: Formal Methods and Practical Applications, Ch. 
1. North Holland, 1994. 

[DG91] P. Degano and R. Gorrieri. Atomic refinement in Process Description lan- 
guages. In 16th Syrup. on Mathematical Foundations of Computer Science, 
Springer LNCS 520, pp. 121-130, 1991. 
P. Degano and R. Gorrieri. A Causal Operational Semantics of Action Re- 
finement. Information and Computation, 122(1):97-119, 1995. 
R. Groenboom and G. R. de Lavalette. A Formalisation of Evolving Alge- 
bras. In Proc. Accolade95, pages 17-28, 1995. 
Y. Gurevich and J. Huggins. An Evolving Algebra Interpreter. WWW, 1994. 
P. Glavan and D. Rosenzweig. Communicating evolving algebras. Springer 
LNCS 702, pp. 182-215. Springer, 1993. 
Y. Gurevich. Logics and the challenge of Computer science, pp. 1-57. In: 
Current Trends in Theoretical Computer Science, Comp. Sc. Press, 1988. 
Y. Gurevich. An attempt to discover semantics (A Tutorial Introduction). 
Bulletin of the EATCS, 43:264-284, 1991. 
Y. Gurevich. Lipari Guide. Oxford University Press, 1994. 
B. Lud/ischer, W. May, and G. Lausen. Nested Transactions in a Logical 

Language for Active Rules. In Proc. Intl. Workshop on Logic in Databases 
(LID}, San Miniato, Italy, Springer LNCS 1154, pp. 197-222, 1996. 
J. Meseguer. Conditional rewriting logic as a unified model of concurrency. 
Theoretical Computer Science, 96:73-155, 1992. 
R. Milner. The Polyadic r-calculus: A Tutorial. Technical Report 180, Com- 
puter Science Department, University of Edinburgh, 1991. 

[DG95] 

[GdL95] 

[GH94] 
[~R93] 

[GurS8] 

{Gur91] 

[Gur94] 
[LML96] 

[Mes92] 

[Mil91] 


