
A Web-based Animator for Object Specifications
in a Persistent Environment

Mark Richters and Martin Gogolla

Universitgt Bremen
FB 3 Mathematik und Informatik
Arbeitsgruppe Datenbanksysteme

Postfach 330 440
D-28334 Bremen

e-marl: {mrlgogolla} @informatik.uni-bremen.de

Abstract . We present an animation tool for the formal specification lan-
guage TROLL light. The system allows the manipulation and querying of
objects and navigation through object hierarchies. A Web-based user inter-
face simplifies the usage of the system.

1 I n t r o d u c t i o n

Formal approaches are important for the development of correct and reliable software
systems. But, formal methods often are difficult to understand and use for end users.
In the following, we present an animation tool for the object-oriented specification
language TROLL light. The animation system allows the validation of conceptual
models while ease of use is guaranteed by a Web-based user interface.

2 Object Specification with TROLL light

The language TROLL light is employed for describing static and dynamic properties
of objects. We achieve this by offering language features to specify object structure
as well as object behavior [2]. Following the object paradigm has the advantage that
all relevant information concerning one object can be found within one single unit
and is not distributed over a variety of locations. Object descriptions are called
templates in TROLL light and show the following general structure.

TEMPLATE name

DATA TYPES

TEMPLATES

SUBOBJECTS

ATTRIBUTES

EVENTS
CONSTRAINTS

VALUATION

DERIVATION

INTERACTION
BEHAVIOR

END TEMPLATE

of the template
data types used in current template
other templates used in current template
slots for sub-objects
slots for attributes
event generators
restricting conditions on object states
effect of event occurrences on attributes
rules for derived attributes
synchronization of events in different objects
description of object behavior by a CSP-like process

868

Speaking in rough terms, the DATA TYPES and TEMPLATES sections are the inter-
faces to other templates, the SUBOBJECTS, ATTRIBUTES, and EVENTS sections con-
stitute the template signature, and in the remaining sections axioms concerning
static (CONSTRAINTS and DERIVATION) and dynamic (VALUATION, INTERACTION, and
BEHAVIOR) properties are specified. For more details we have to refer to [2]. As an
example, Fig. 1 shows an author template in the left window whereas the right win-
dow displays properties of an author object. Both documents are generated by the
animation tool.

~'~+++ ++++++ ~" %++~'++++':++ ~+'+~ + " + ' + " + ~+U +'+o +:Np+~++ + +~+? + ' :" +'+,~ + + ' + " ++ +

+ + +,+~+ ++,%~ �9 p~+~+ ,++~ ~-+i++ +~>,+ ,+++?~+~ - /++ + : . + + ++ ,.~+: , �9

Template author +++++++ m + ~ ++: '+?~: + + ++ "
. + : + + : . . . : .. +: ATTI%IB~TES

�9 l q a m e : string
,, D a t ~ S f B i r t h : sunn~
�9 Sold:Ikmks : MAP(~'ear ~nt~ Number ~nt)

EVENTS

�9 BIRTH create(Name : strin~ Dat~OfJ~irth : string)
�9 changeName(NewName :string)
�9 s t o r e S o l d] ~ o k s t X ~ e a r : in~ , Number :int)

VALUATION

�9 [creau-~SJ3)]Name = S
�9 [c r e a t e (S ~ D)] I) a t e O t ' B i r t h = D
�9 [create(S J3)] 8ol~ks = ~ 0
�9 [changeNarns(S)] Name = S
�9 [~ r e S o l d B o o k s (Y J ~ l)] ~ l ~ k s = KDD MKP(S~I~

BEHAVIOR

�9 (c r e a t e : 0 -> I)
�9 (stor~Id~o~ks : i -> I)
�9 (vhangeName : i -> 2)
�9 (stereSoldBooks : 2 -> 2)

G o ~ main c a ~ e

Object: author (oid = 6)
~ r t of ~bject~ auth=r
The sul)er cb)ec~ is an ilkstance of ~M.~b~rC o n ~ i n e , s

Attributes

�9 Name : string = "Ghe~i"
�9 DateOfBirth :string = "1949"
�9 SoldBmol~ : l ~ A P (Y e a r i n t Nvrnl~r:int) = lsdAF0

Subobjects

State 1

Events

�9 storeSddB~ksC/ear :int~Nurnber :int)

~ue~y and I nteracUon

eV event in the box above and press the submit bu .t~n. ~or e x a m p l e , a r o m p e query

Fig. 1. A template for author objects and a concrete state of an author object.

3 A n i m a t i o n o f O b j e c t S p e c i f i c a t i o n s

As part of the specification process in the database and information systems fields,
usually a conceptual model is developed. Due to the fact that not all requirements can
be formalized, we also need to validate the model against informal user requirements.

869

This can be achieved by testing the specification in an animation system. In the
following, we describe the general architecture of our animation tool.

An animation system allows instantiation and manipulation of objects in a user
controlled session. Though animation does not ensure the correctness of a speci-
fication, it provides a way t o g e t a first impression of the designed model, and to
eliminate obvious errors or design flaws. The main tasks of our animation system are:
(1) the exploration of actual states of objects, (2) the specification of event occur-
rences for initiating state transitions, and (3) the visualization of state changes [3]. In
contrast to the system proposed in [3], our animation tool is completely designed for
and implemented in the persistent environment Tycoon. We also decided to switch
to a Web-based user interface.

The animation system itself consists of the following components:

- persistent representations of object specifications, object states and complex
values,

- evaluation of expressions as part of a calculus of complex values,
- execution of state transitions (object creation, change of object attributes and

behavior states, object destruction), and
- a user interface for visualization of object states and accepting user requests for

events and ad-hoc-queries.

Specifications and object states need to be available in several successive ses-
sions. Therefore, we need persistent representations without restrictions regarding
their lifetime. Also, the complex nature of abstract syntax representations requires
a powerful means for data modeling. As shown in the next section, the persistent
programming environment Tycoon provides an appropriate basis for these tasks.

4 T h e P e r s i s t e n t P r o g r a m m i n g E n v i r o n m e n t T y c o o n

Tycoon is a persistent programming environment that improves the construction,
maintenance and operation of persistent application systems (PAS) [4]. A PAS is a
software system that gives its users a flexible, problem oriented and safe access to
large sets of long-lived objects of application-specific types [1]. This characterization
perfectly fits to our application domain, where object specifications and instances
have to be considered "long-lived objects".

The scalable Tycoon architecture integrates persistent data, programs and
threads. It strictly separates tasks of storage, manipulation, modeling and repre-
sentation into well-defined system layers [5]. The underlying programming language
TL has a rich type system and allows for generic programming and external com-
munication. It provides orthogonal persistence, type completeness, and higher order
functions. The language TL is strictly typed and is neutral with respect to the data
model.

Our animation system is completely written in TL. The implementation effort
was significantly reduced by applying Tycoon's advanced concepts of expressive or-
thogonal language constructs and persistence.

870

5 T h e Web User Interface

In this section, we concentrate on the user interface of the animation system. The
primary purpose of the user interface is to visualize the description and current state
of objects. As another important aspect it provides a uniform way for the user to
trigger events and to specify queries for further exploration.

A Web browser is employed for realizing the client part of the system. The
visualization of information about objects can easily be managed by generating
HTML-documents. Because the content of documents depends on the current state
of objects, documents are always generated dynamically on request. A request may
result from the selection of a hypertext link in a document, for example, to explore
a different object that is referenced by an attribute in the currently selected object.
By employing a hypertext system we can model relationships among objects in a
natural way by providing hypertext links. Thus, the user can explore the object
hierarchy by simply following the corresponding hypertext links.

The request mechanism for the dynamic generation of documents is realized by
using the Common Gateway Interface (CGI) on the Web server side. Requests are
embedded in an HTML-anchor by augmenting the URL with necessary information,
i.e. the kind of request and any arguments like oid's of related objects or names of
specifications. To provide an entry point to an animation session, it is sufficient to
keep a single static document (a file) with two links, the first one pointing to the set
of available specifications, the second one leading to the root object of a hierarchy

of instances.
A user can manipulate objects by initiating one or more, possibly parameterized,

events. Furthermore, the TROLL light-language allows for SQL-like queries that are
~vmu~:e, ~ context the currently selected object. Both, queries and event de-
scriptions, are specified in a form field (see Fig. 1). After submitting a request, the
evaluation takes place and the results are shown in a new document.

References

1. M.P. Atkinson and R. Morrison. Orthogonally persistent object systems. VLDB Jour-

nal, 4(3):319-401, 1995.
2. M. Gogolla, S. Conrad, G. Denker, R. Herzig, N. Vlachantonis, and H.-D. Ehrich.

TROLL light - The Language and Its Development Environment. In M. Broy and
S. Js editors, K0t~SO - Methods, Languages, and Tools for the Construction
of Correct Software (KORSO'95), volume 1009 of Lecture Notes in Computer Science,
pages 204-220. Springer, Berlin, 1995.

3. R. Herzig and M. Gogolla. An Animator for the Object Specification Language TROLL
light. In Vangalur S. Alagar and Rokia Missaoui, editors, Object-Oriented Technol-
ogy for Database and Software Systems, Proc. Colloquium on Object Orientation in
Databases and Software Engineering (COODBSE'9~), pages 156-170. World Scientific,

River Edge (NJ), 1995.
4. F. Matthes. Persistente Objektsysteme: Integrierte Datenbankentwicklung und Program-

mersteUung. Springer-Verlag, 1993.
5. F. Matthes, G. SchrSder, and J.W. Schmidt. Tycoon: A scalable and interoperable

persistent system environment. In M.P. Atkinson, editor, Fully Integrated Data Envi-

ronments. Springer-Verlag (to appear), 1995.

