-/WOOON(O e

Efficient Parallel Algorithms
for Some Tree Layout Problems

J. Diaz A. Gibbons
G. Pantziou M.J. Serna
P. Spirakis J. Toran

Report LSI-92-33-R

Faculiat

f 2 MARG 1993

(cpie &
i

Efficient Parallel Algorithms for some Tree Layout
Problems *

J.Diaz! A. Gibbons* G. Pantziou! M. Sernal P.Spirak.is§
J.Toran!

Abstract

The minimum cut and minimum sum linear arrangement problems usually occur in
solving wiring problems and have a lot in common with job sequencing questions. Both
problems are NP-complete for general graphs and P for trees. We show in this paper that
both problems are NC for trees.

1 Introduction

Given a graph G = (V, E) with |V| = n, a layout of G is a one-to-one mapping ¢ from V to
the first n integers {1,2,---,n}. The term layout is also known as linear arrangement [Yan83],
[Shi79]. Notice that a layout ¢ on V determines a linear ordering of the vertices. Given a
natural 7, the cut of the layout at 7 is the number of edges that cross over i; i.e. the number of
edges {u,v} € E with p(u) < i < p(v). The cutwith of ¢, denoted ¥(y), is the maximum cut
of ¢ over all integes from 1 to n.

Graph layout problems are motivated as simplified mathematical models of VLSI layout.
Given a set of modules, the VLSI layout problem consists in placing the modules on a board
in a non-overlaping manner, and then wiring together the terminals on the differents modules
according to a given wiring specification and in such a way that the wires do not interfere
among them.

We can model a VLSI circuit by means of a graph, where the edges of the graph represent
the wires, and the nodes represent the modules. Of course, this graph is an over-simplified
model of the circuit, but understanding and solving problems in this simple model can help
us to obtain better solutions for the real-world model. Deterministic exact algorithms are not
known for placement and routing problems in the real world, and the techniques used are based
on a more or less efficient heuristic algorithms (see the survey by Shing and Hu [Shi79]).

In this paper we shall consider two layout problems. The first problem is called the minimum
sum linear arrangement, MINLA. Given a graph G = (V, E), find the layout ¢ which minimizes

*This research was supported by the ESPRIT BRA Program of the EC under contract no. 3075,project
ALCOM.

tDepartament de Llenguatges i Sistemes, Universitat Politécnica Catalunya, Pau Gargallo 5, 08028-Barcelona

!Department of computer Science, University of Warwick

iComputer Technology institute, University of Patras

Y (uwtek l9(u) — o(v)|. The MINLA is a simplified version of the problem of how to place n
modules in such a way to minimize the total length of the wire interconnecting them.

The MINLA problem is NP-complete for general graphs [GJ76]. Moreover, due to the im-
portance of the problem, there has been some work trying to obtain polynomial time algorithms
for particular types of graphs. For instance, Harper solved it for the case where the graph is a
de Brujin graph of order four [Har70]. Adolph and Hu gave a O(nlogn) algorithm for the case
the graph is a rooted tree [AH73]. Even and Shiloach proved the problem was also NP-complete
for bipartite graphs [ES78]. Finally, Shiloach proved that the MINLA can be solved for the
case of an unrooted tree with n nodes by a deterministic algorithm running in time O(n??2)

[Shi79].

The second problem that we shall consider is the minimum cut problem, MINCUT. Given
a graph G = (V, E), find the layout ¢ that minimizes the cutwith y(p). A particular and
important case of this problem is the graph bisection problem; find the partition of 2n vertices
into two subsets of size n is such a way that it minimizes the cut between subsets. Assuming
that a board has a number of vertical and horizontal tracks for wiring the modules, the general
MINCUT gives us the minimal number of tracks necessary to connect the modules.

The MINCUT problem is NP-complete for general graphs [Gav77]. As in the case on the
MINLA, the MINCUT has a history of results for particular types of graphs. Harper gave a
polynomial time algorithm for the n-dimensional hypercube [Har66]. Chung, Makedon, Sud-
borough and Turner presented a O(n(log n)?-2) time algorithm to solve the MINCUT problem
on trees, where d is the maximum degree of any node in the tree [CMST82]. The MINCUT
can be solved for the case of an unrooted tree with n nodes in time O(nlogn) [Yan83]. The
particular case of the graph bisection problem is also NP-complete [GJ79] .

We present here two algorithms in NC. The first one solves the MINLA for unrooted trees
in O(log?n) time and O(n?3'°¢") processors on a CREW PRAM. The second algorithm solves
the MINCUT for trees of unrooted trees in time O(log®n) and O(n?) processors in the CREW
PAM model.

2 A parallel algorithm for the MINLA problem on trees

2.1 Basic definitions and theorems

Let ¢ be a layout of a tree T. The cost of ¢ is defined by Clp, T] = ¥y, v;3er | ©(v:) — 0(v;) |.
¢ is a minimum sum layout of T if there is no other arrangemenet with smaller cost. Let &
denote the layout obtained by reversing the order of the vertices. Note that C[p,T] = C[g, T).
In general, C[T] will denote the mimimum cost of a layout for T'.

Definition 1 Let v be a vertez of T. Deleting v and its incident edges from T, yields several
subtrees of T. Each of them is called a subtree of T mod v. For each edge (v',v) there is a
unique subtree of T mod v, say T such that v' € T'. The vertez v' is the root of T' mod v.

Given v € V, let Ti,...,T; be subtrees of T mod v, T — (T},...,T:) denotes the tree
obtained by removing the vertices of T},..., T and their incident edges. When T, T4,..., Tk

are all the subtrees of T mod v we will assume that they are numbered in such a way that
ng > My > ... > ng where n; denotes the size of T}, 1 = 0,1,...,k.

A central vertez is a vertex v, such that if T, T,..., T are all the subtrees of T mod v.
then n; < |n/2] fori=0,1,...,k. A way to compute such a vertex is given in [Shi79].

Definition 2 Let T be an n-vertez tree, let v € T, and let ¢ be a layout of T. T is called a
right anchored tree at v and denoted by ?(v) when its cost is defined by

—)
Cle, T (v)] = Cle, T]+n — Cp(‘U)
It is called a left anchored tree at v and denoted by ‘T(‘u) when its cost is defined by

Cle, T (v)] = Clo, T] + ¢(v) — 1

Remark. Finding a minimum sum layout for right and left anchored trees is equivalent, since
by reversing the order of the vertices a right anchored tree becomes a left anchored tree, while
the cost is unchanged.

In the following we will use T'(a) to denote a tree, whith a = 0 for free trees and a = 1
for anchored trees. When we refeer to the root of a tree this root will be either the vertex at
which the anchor is connected or the central vertex for free trees.

Let first give two technical lemmas related to sizes of subtrees.

Lemma 1 Let T(a) be a tree. Let p, be the value of the greatest integer p, satisfying

n0+2J+|.n,.+2

5 5 Jfori=1,2,...,2pa—a

n; > l
where n, = n — Y25 %n; and T, = T(a) — (T4, ... yTapa—a), then | T, |< n/2, where n is the
size of T(c).

Lemma 2 LetT be a free tree with central vertez v,, and let Ty, Ty be the two heaviest subtrees
mod v,. If | T — (To, T1) |> n/2 then v, is a central vertez of T — (To,T}).

In order to compute the minimum sum layout we consider some special layouts. We will
say that a tree T'(a) has an layout of type

(Tu(cr), - .., Te(ak), - . ., To(ar))

when the layout is computed from the corresponding subtree layouts adding the number of
nodes of the subtrees on the left, and the union of all the subtrees is T(a).

Let T be a free tree, and v, be a central vertex of T. Let Ty,...,T; be all the subtrees
of T mod v.. Let B be the first index for which | T — (Ty,...,Ts) |< n/2 and let p,, be the
value obtained applying lemma 1 to T — (Ty,...,T;) (anchored at v, if i is even) and let T? be
T —(Toy---,Tiy. .. Top,.—a;), for each i = 1,...,8. We consider the following layout

—

A = (T i1(ip1)s -, T, Tiva(vizs))

Lemma 3 A minimum sum layout for a free tree T can be computed as the minimum of the
following layouts:

A= (?o(vo), ?3(1)3)1 ?4(‘”4)’ ey A:n ey ?6(1’6)7 ?5('”5), 7."2(”2)7 7"’1('01))
fori=0,...,8, and

Apr1 = (T o(v0), T 3(vs)s Ta(va)s- s T — (Toy. ., Ts), .., T o(vs), T 5(vs), T 2(va), T 1(v1))

if B is even or

Fa
b

Apir = (T o(vo), T a(vs), Ta(va)y--sT = (Toye -1 Tp)y - - > T 6(v6), T 5(vs), T 2(va), Ta(v1))
if B is odd.

In order to get an expression to compute de cost of the previous layoutes we consider the
following. Let @; be

(Pigs + niga) + 2(nigs + ive) + + -+ + (55 — 1)('"-2,,5_1 + ‘ng,,(-')) + phni
when ¢ is even and
(nit2 + ira) + 2(niva + migs) + + - + (P} — 1)(ngpi 2 + napi 1) + pi(nl + 1)

when 1 is odd.

Let R; be %n - %(no +ny)— (% —1)(n; + n3) — -+ — (nj—2 + n;_,) when ¢ is even and R,_,
when 1 is odd.

Then the cost of these layouts can be computed as

i-1 2p} —2a

C(A4) =Y C[T ;)| + ¥ C[T;(vi)] +CIT + Q; + R

3=0 j=i+1

B, :
C(Ap41) = E C[T j(vj)] + C[T — (To,...,Ts)(v.)) + Rg + 1 if i is even

J=0
B
C(Ag.H) = 2 C[?J(’UJ)] + C[T - (Tg, ceey Tg)(‘v*)] + Rﬂ +n—ng—---—mng if 1 1s odd
Jj=0

For an anchored tree we get the following decomposition

Lemma 4 Let ?(v.) be an anchored tree and let 4 be the first indez for which
T~ (T8,...,T3) |< n/2
a minimum layout for T can be computed as the minimum of the following layouts:

B; = (T o(vo),..., Ty (vg), T — (Ty,...,T3)) fori=0,...,79

4

The cost of layout B; can be computed as:

O(B:) = Y. CIT(od)] + O[T = (T2, Ti)] +n—nfyy for i=0,...,7

=0

Note that from lemmas 1 and 2 all the trees for which we have to compute an layout in the
decomposition given for free or anchored trees have size less than | T | /2. Also in both cases
we obtain less than 2n trees of size less than n/2, furthermore the sum of the tree sizes is at
most 3n.

2.2 The parallel algorithm

Our algorithm will be divided into two stages. In the first one we decompose the tree according
to lemmas 3 and 4 until all the trees have size 1. At the same time we record the expressions that
will allow us to compute the layout from the smallest trees. In the second stage we reconstruct
the layout, until we get a minimum layout for the whole tree. The complexity bounds for the
algorithm are the following

Theorem 1 There is an NC algorithm to compute a minimum sum layout for an undirected
tree. The algorithm uses O(n3%) processors and O(log?n) time, where n is the number of
vertices in the tree.

We comment the main points on the paralle] algorithm to compute the cost of a minimum
sum layout for an undirected tree, it is easy to add the modifications to get also the layout.
Tree representation
We represent each tree using a mask where the nodes that form part of the corresponding tree
are recorded. Every time that we obtain a new tree we add a new node to the original graph,
connected only to the corresponding nodes, the mask will be the same putting 1 in the position
corresponding to the new node and 0 in the position corresponding to the old one. To compute
the corresponding tree we run a connected components algorithm, those nodes that are in the
connected component of the added node will be the ones that will remain in the mask.

To distinguish between free and anchored trees we keep the parameter a and the corre-
sponding root. This root will be either the vertex at which the anchor is connected or the
central vertex.

Free tree decomposition

In order to compute a central vertex we compute for each edge in the tree the sizes of the
two corresponding subtrees. Then we compute the minimum of the difference of sizes over all
edges. We take as central vertex the root of the heaviest subtree corresponding to an edge of
minimum difference.

Once we have the central vertex, we have to compute subtree sizes (now the tree is rooted),
and order subtrees by size. From the tree sizes using suffix sums we compute 3,p3,p!,... ,p%
Consider the decomposition given in lemma 3 the cost of each layout can be computed as the
sum of the costs of the corresponding subtrees, adding an expression that depends only on the
sizes. The last amount can be computed now and recorded in a matrix together with pointers
to the corresponding subtree masks.

Anchored tree decomposition

Now we have a rooted tree, we first compute subtree sizes using the standard Euler’s Tour
technique [KR90] and then again with the same technique, we find a path of roots of trees
of maximum cardinality. Finally, using suffix sums we compute the index 4. Consider the
decomposition given in lemma 4. The cost of each layout can be computed the sum of the costs
of the corresponding subtrees, adding an expression that depends only on the sizes.
Complexity

Note that the number of decomposition phases in the first stage is O(log n). Thus the maximum
number of trees in a decomposition phase is O(3/°"n) = O(n?%) taking into account that the
sum of the sizes of the trees obtained in the decomposition of a tree T is at mos 3 | T |.
Furthermore the time used in each phase in the first and second stage is O(logn). Thus the
total requirements of the algorithm are O(n®%) processors and O(log®n) time.

3 A parallel algorithm for the MINCUT problem on
trees

3.1 Preliminaries

Let T, be a tree which we convert into a binary one T'. Let v be a vertex of T, with degree d and
let wy, ..., wq be the children of v in T,. Then, the vertex set of T includes vertices v!,..., v3t1,
For 1 < i < d, v**! is the right child of v* in T (see figure 1). We will say that the vertices
v',1 < i < d, are of the same label since they are coming from the same vertex of 7T, (e.g., in
figure 1 vertices v% and v¥*! are of the same label while w} and v? are not).

With each node u € T, we associate two pieces of information: i) a layout-sequence, c(u),
realizing the layout of the subtree rooted at v and u’s position in this layout and ii) a cost-
sequence, cost(u), of the layout ¢(u) defined as follows: cost(u) = (leftcost(u), *,rightcost(u)).
(The “+” denotes the position of u.)

(leftcost(u)) is a sequence (7y,, 71,7z, 7z, -..) Where v, is the largest cut (in ¢(u)) occuring on
the left side of u. Let w; be the point where the cut of 4; occurs. If w; is immediately to the
left of u then (leftcost(u)) = (y1). Otherwise, let 7, be the smallest cut between w;, and u and
let w, be the point closest to u where 7; occurs. Suppose that v, is the maximum cut between
wz and u and w; is the point closest to u where 4, occurs. If v, = 7; or w3 is immediately
to the left of u then (leftcost(u)) = (y1,m1,72). Otherwise, we continue similarly by taking
the smallest cut between w; and u. (rightcost(u)) is a sequence (v,,7,7,...) where v/ is the
largest cut in c(u) occuring on the right side of u. The rest of the sequence is defined in a way
similar to that of (leftcost(u)) but we now work on the right side of u. Clearly, 7; > v, > ...,
MM S ey N 2732 M S <ol Also, 11 2 71, 12 2 12, ete., and 4] 2 97, 713 > 5,
etc. (Our cost-sequences definitions are motivated by the fundamental work of Yannakakis in
[Yan83].)

If 41 = 7] then we say that the layout is balanced; otherwise, it is undalanced. We define
the cost of the layout-sequence c(u) as the quantity v, = maz{m,7|}

Let a = (a1,a2,..) and b = (b,b,,...) be two sequences. If a # b, then a > b iff
a is lexicographically larger than b. If 4, > 4} and leftcost(u) > rightcost(u) then we
call the left side of c(u) (with respect to the position of u) heavy side and the right one
light. Let cost, = (heavyside,,*,lightside,), cost, = (heavyside,, ,lightside;) be two cost-

sequences corresponding to two layout-sequences. cost; = cost; ifl heavyside; = heavyside,
and lightside; = lightside;. cost, > costy iff (heavyside, > heavyside;) or (heavyside, =
heavyside; and lightside, > lightside,).

Let T, be a tree rooted at a node u and c(u) a layout-sequence realizing a layout ¢ of T,. Let
cost(u) be the cost-sequence of c(u). We say that c(u) is optimaliff there is no other layout ¢’ of
T, with layout and cost-sequence ¢’(u) and cost’(u) respectively, such that cost'(u) < cost(u).

3.2 The Algorithm

We give an O(n?)-processor, O(log” n)-time parallel algorithm which finds a minimum cutwidth
linear arrangement of a tree T,. The algorithm is based on the use of the parallel tree contraction
technique. The shunt operation uses two merge-operations on the layout sequences:
Merge-operation A: Let T,, be a tree rooted at a node u. T,, consists of two trees T,, T,
(rooted at u, v respectively) and the edge {u,v}. Suppose that c(u), ¢(v) are optimal layout
sequences of Ty, T,, respectively. The merge-operation A computes an optimal layout sequence
c(uv) realizing the layout of T,, and the cost sequence of c(uv).

Merge-operation B: Let T, be a tree rooted at u with children u, ..., uq4 and T, a tree rooted at
v with children v,...,v9. Suppose that we are given the optimal layout and cost-sequences of
T4y Ty. The merge-operation B computes an optimal layout-sequence c(uv) realizing a layout
of the tree T,, which is rooted at u and has as children the children of both T, and T,.

We define now the shunt operation of the tree contraction technique:

Suppose that ; is the leaf which is ready to perform the shunt operation and that f; is the
father of l;, p(f;) is the father of f; and f; is the other child of f;. Suppose also that we are given
the layout-sequences c(l;), c(f;), ¢(f;), c(p(fi)) and the cost-sequences cost(l;), cost(fi),cost(f;),
cost(p(f:)) of L;, fi, fi, p(f;) respectively. Initially, all the sequences are equal to (0,*,0). In the
sequel, f;; will be the node which is the result of the shunt operation. We distinguish among
two cases:

Case 1. [; is the left leaf of f;.
Fact 1. The nodes l;, f; are not of the same label

We distinguish the following subcases:

Case 1.a. f;, f; are of the same label In this case, first we merge the sequences ¢(l;) and ¢(f;)
using the merge-operation A into the sequence ¢(f;l;). Afterwards, we join the sequence ¢(f;l;)
and c(f;) into the sequence ¢(f;;) using the merge-operation B. Note that the new vertex f;;
is supposed to be of the same label with vertices f;, f;.

Case 1.b. f;, f; are not of the same label We apply the merge-operation A first to merge ¢(l;)
and c(f;) and then to merge ¢(f;l;) and ¢(f;). (Notice that f;; and f; are of the same label).
Case 2. [; is the right leaf of f;. (From fact 1, f;, f; cannot be of the same label)

Case 2.a. [;, f; are of the same label

Subcase 2.a.a. f;, p(f;) are also of the same label We apply the merge-operation B to merge
c(l;) and ¢(f;) and after that to merge ¢(f;l;) and c(p(f:)). The resulting sequence constitutes
the new sequence of p(f;) while ¢(f;;) = ¢(f;) (fij coincides with f;).

Subcase 2.a.b. f;, p(f;) are not of the same label We use the merge-operation B to merge ¢(l;)
and ¢(f;), and the merge operation A to merge c(fil;) and c(f;). Suppose that the resulting—
sequence c(f;;) is as in the figure 2, i.e., ¢(fi;) = (4, *, B). From ¢(f;;) we easily take the layout
sequence c'(fi;) = (C,*, D), where the “x” denotes the position of f; (see figure 2). Let T};; be

the subtree - of the current T\ - rooted at f;;. In the sequel, every merge operation of f;; with
a vertex w of Ty;; is done using the layout-sequence ¢/(f;;) while every merge operation of f;;
with a vertex of Tyo — TYi; is done using the layout-sequence c(f;;).

Case 2.b. l;, f; are not of the same label. This case is similar to the above ones.

The efficient parallel implementation of the merge-operations A and B is a nontrivial task
and is done by distinguishing a number of cases. Suppose that:
c(u) = (31’ T2y .00 Tiy ¥, 3211 ety zlz) :1:'1), C(’U) = (y11y2’ oy ¥js *ay_’jla ooy yé) yi)
cost(u) = (Y1u Mus -+s Vous *s Tius +++s M Viu)s €O8E(V) = (Y103 M1us -y Ymus *s Yoo ++s Mo T1u)

and 7, = ma’“’{‘)’lu,'ﬁu}’ Yo = maz{Y10, My}
Merge-operation A:

Case 1: v, = v, and c¢(u), ¢(v) balanced. In this case it is clear that the cost of an optimal
layout-sequence ¢(uv) cannot be less than v, + 1.

Case 1.1. Suppose that leftcost(u) < rightcost(u) and rightcost(v) < leftcost(v) and
n1s # 1, n}, # 1. Then we construct c(uv) from c(u), ¢(v) as follows (see figure 3):

c(wv) = (Y15 ¥ ¥n + Loy + L1,z + 1,02 4+ 1, %, 20, .00, 27)

and the cost-sequence of c(uv) is: cost(wv) = (Y1u + 1,M1u + 1y ceoy Tiu + 1y %, Vs ooos Mas V1u)-
The other subcases are similar.
Case 2: v, > 7, and ¢(u), c(v) balanced.

Case 2.1. Suppose that 4, + 414 = 74 and 7}, = 714. If we insert T, between the vertices
where the cut 7,4, (or 7y,) is realized then the cost of ¢(uv) cannot be less than v, + 1. For
this reason, we try to spead the vertices of T, between the vertices of T, in such a way that
Yuw = Yu- To see this, suppose that y24 + 71y < vy and 43, + 7}, < Yu. Also suppose that
min{ysy + N2ws V2o + N2u} < Yu — 1 and maz{Y2o + M2u) Yoy T N2} < Yu. Let c(v‘vl) (c(v"/'l))
be the part of the left (resp., right) sequence of ¢(v) - with respect to the position of v - from
the beginning until the point realizing the cut 7, (resp., 7!,). We insert ¢(v,1) (¢(v41)) in the
position of c(u) realizing the cut of 7, (resp., 7,) and the rest of ¢(v) in the position of c(u)
realizing the cut of 75, (see figure 4). (Notice that the resulting layout is of cost 4, but it is
not necessarily optimal.)

A parallel procedure implementing the merge-operation A in this case follows.

Let k be the largest index such that: (i) vk, = v}, and (ii) Vi < k, v, = 7/, (notice that we can
find this index easily in parallel in O(log k) time using m processors, where m is the length of
the cost-sequence cost(u)).

For each «;,, 1 <1 < k, we examine if the following holds:

Yoo+ Miw SVu=1 oF Y+ <u—1 (4)
For each «;,, 1 <i <k, that does not satisfy condition (A) we examine if:
Yiv + Miu =Y ond o =75, and maz{Yr1)e + By Virnu T Mot < T (B)
Also, for Y(k41)y We examine if:

min{"/(k+1)u+n(k+1)u,7fk+1).,+17(k+1)u} <9Yu—1 and maw{7(k+1)u+7l(k+1)m‘7fk+1)u+fl(k+1)u} < Yu

or

MAR{Y (k1) 0 kg 1)ur V4 1)o TN kr1)ut < Yu—1 and Maz{Yks1)oH ks 1)us V410 TN ks 1)6) < Yo

We call the above condition (C).

In the sequel, for each «;,, 1 <1 < k, we create a node with label 1 if +;, satisfies condition
(A), label 0 if v,, does not satisfy (A) but satisfies (B) and null nor (B). Also, we create a
node for v(k4+1), With label 1 if it satisfies (C) and label 0 if it does not. ;From each «;, with
label 0 or 1 we draw an arc to y(i41)v if Y(i+1)» has label 0 or 1. In this way, we create one or
more lists. Using the pointer doubling technique we find in the list with head 4, the first «;,
with label 1. If such a «;, does not exist, there is no optimal layout-sequence of T, with cost
vu- Otherwise, there is one (or more) layout-sequence of T, with cost v,. In order to find an
optimal one do the following: find the largest 7y, j > 1 satisfying

min{Yiv + Nju, Vip + Min} <Y — 1 and maz{Viv + Nju, Yy + Mju} < Tu

and the largest 7},, 7 > 1 satisfying

min{7iv + n;ua‘Y:v + n;u} < Tu — 1 and ma‘z{‘riv + 77_;':1’7:0 + ’7;..} S Yu

Let ¢;(uv) (c2(uv)) be the layout-sequence which we take if we insert the part of ¢(v) realizing
the cut 4k, into 7y, the cut 4, into n;,, 1 < k < (2 — 1), and the rest of ¢(v) into 7;, (resp.,
7},)- Then, c(uv) is this one from ¢;(uv), c;(uv), with the smallest cost-sequence.

Once we have the layout-sequence c(uv) we can construct its cost-sequence. The construc-
tion will not be described here.

The other subcases of case 2 as well as the remaining cases are similar to the above ones
and will not be considered in this extended abstract.

Lemma 5 Let T,, be a tree rooted at a node u that consists of the trees T, T, rooted at u, v
respectively, and the edge {u,v}. Let also c(u), c(v) be optimal layout-sequences of T, and T,
respectively. Then, the merge-operation A correctly computes an optimal layout-sequence c(uv)
of Ty in O(log n) time using O(n) CREW PRAM processors (n is the mazimum of the lengths

of c(u), ¢(v)).

Merge-operation B:
The parallel implementation of merge-operation B is done in a way similar to that of case 2.1
of the merge-operation A, and will not be described here.

Lemma 6 Let T, be a tree rooted at u with children u,,...,uq and T, a tree rooted at v with
children vy, ...,vq. Let also c(u), c(v) be optimal layout-sequences of Ty, T, respectively. Then,
the merge-operation B correctly computes an optimal layout-sequence c(uv) realizing a layout of
the tree T, which is rooted at v and has as children the children of both T,, and T, in O(logn)
time using O(n) CREW PRAM processors (n is the mazimum of the lengths of c(u), ¢(v)).

We give now the parallel algorithm for the mincut linear arrangement problem on trees.

ALGORITHM MINCUT(T)

for all v € T pardo
Convert the tree rooted at v into a binary one T
Apply the parallel tree contraction technique to Ty to compute an
optimal layout-sequence c¢(v) of T, and its cost-sequence cost(v).

odpﬁr

cost(T) = min{cost(v) |v € T}
MINCUT(T) = ¢(T) {* ¢(T) is a layout-sequence with cost-sequence cost(T') *}

Theorem 2 Given a tree T with n vertices, the algorithm MINCUT constructs an optimal
layout of T in time O(log®n) using O(n?) CREW PRAM processors.

References

[AHT3]

[CMST82]

[EST8]

[GavT7]

[GI76)

[GI79]

[Har66]

(Har70]

[KR90]

[Shi79]

[Yan83]

D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM J. on Applied Mathe-
matics, 25(3):403-423, Nov 1973.

M. Chung, F. Makedon, L.H. Sudborough, and J. Turner. Polynomial time algo-
rithms for the min cut problem on degree restricted trees. In FOCS, volume 23,
pages 262-271, Chicago, Nov 1982.

S. Even and Y. Shiloach. NP-completeness of several arrangements problems. Tech-
nical report, TR-43 The Technion, Haifa, 1978.

F. Gavril. Some NP-complete problems on graphs. In Proc. 11th. Conf. on Infor-
mation Sciences and Systems, pages 91-95, John Hopkins Univ., Baltimore, 1977.

M.R. Garey and D.S. Johnson. Some simplified NP-complete graph problems. The-
oretical Computer Science, 1:237-267, 1976.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, 1979.

L.H. Harper. Optimal numberings and isoperimetric problems on graphs. Journal
of Combinatorial Theory, 1(3):385-393, 1966.

L.H. Harper. Chassis layout and isoperimetric problems. Technical Report SPS
37-66, vol II, Jet Propulsion Laboratory, Sept. 1970.

R. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In
Jan van Leewen, editor, Handbook of Theoretical Computer Science, Vol. A, pages
869-942. Elsevier Science Publishers, 1990.

Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees.
SIAM J. on Computing, 8(1):15-31, February 1979.

Mihalis Yannakakis. A polynomial algorithm for the min cut linear arrangement
of trees. In IEEE Symp. on Found. of Comp. Sci., volume 24, pages 274-281,
Providence RI, Nov. 1983.

10

\'2
2
o
1
w
1 2 d !
) v
1/\\rd+1
w
d
F\'%U\re 1
f.=f.
f] 1} 1
1 | L
A B
L ¢ ! D
Fiure 2
— ¥ %
N
- 1
L L 1(w) :
Fi gure 3

<:(V)-c(vY1)c(v vl)

Fiaure Yy

