Skip to main content

A parallel preprocessor applied to fluid dynamics problems

  • Posters
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1225))

Included in the following conference series:

  • 100 Accesses

Abstract

As the computing power and memory resources of sequential and parallel computers continuously increase, the typical size of the meshes used for Finite Element methods in numerical analysis grows extremely large. The need for fast, good-quality mesh generators is crucial, since this preprocessing phase tends to become the performance bottleneck of a numerical application.

This paper presents a parallel preprocessor based Upon a partitioning approach for the generation of large-scale 3D unstructured meshes. The prepartitioner [3] takes as an input the physical domain boundary, described by a list of bounding facets Γi (issued by a CAD system for instance), that we will call a skin. It generates a separator of the domain into sub-domains, which is a list of facets that will be noted Γo Hence, each sub-domain is described by a skin included in Γi ∪ Γo. Then, each computational step, including the 3D mesh generation, is performed in parallel on each sub-domain.

Contrary to related work in building such separators, we consider that we have absolutely no knowledge of the inside of a domain, neither CAD information [1, 6] nor any underlying coarse mesh [8]. Only the description of the domain boundary (the skin) is known.

We applied our approach to N3S, the fluid dynamics package developed by EDF and distributed by Simulog [2], which has been parallelized within the Europort-1 consortium HPCN3S [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. G. Butlin and C. Stops. CAD Data Repair. In Proc. of the 5th Int. Meshing Roundtable, pages 7–12, 1996.

    Google Scholar 

  2. J.P. Chabard, B. Métivet, G. Pot, and B. Thomas. An Efficient Finite Element Method for the Computation of 3D Turbulent Incompressible Flows, Finite Element in Fluids, 8:869–895, 1992.

    Google Scholar 

  3. Jérôme Galtier and Paul Louis George. Prepartitioning as a way to mesh subdomains in parallel. In Proceedings of the 5th International Meshing Roundtable, pages 107–121, 1996.

    Google Scholar 

  4. P. L. George, F. Hecht, and E. Saltel. Automatic mesh generator with specified boundary. Computer Methods in Applied Mechanics and Engineering, 92:269–288, 1991.

    Google Scholar 

  5. L. Giraud, N. Maman, P. Menegazzi, A. Micelotta, and B. Thomas. Parallel Industrial Incompressible CFD Calculations with HPCN3S. In Proceedings of the HPCN Conference 1996, pages 122–127. Springer, 1996.

    Google Scholar 

  6. G. Globisch. On an automatically parallel generation technique for tetrahedral meshes. Parallel Computing, 21, 1995.

    Google Scholar 

  7. T. Minyard, Y. Kallinderis, and K. Schulz. Partitioning and Dynamic Load Balancing of Adaptive Hybrid Grids for Large-Scale Turbulent Flow Simulations. In Proc. of the 29th Hawaii Int. Conf. on System Sciences, pages 575–584, 1996.

    Google Scholar 

  8. A. Shostko and R. Löhner. Three-dimensional parallel unstructured grid generation. Int. J. Num. Meth. Eng., 38, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bob Hertzberger Peter Sloot

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galtier, J., Klein, P. (1997). A parallel preprocessor applied to fluid dynamics problems. In: Hertzberger, B., Sloot, P. (eds) High-Performance Computing and Networking. HPCN-Europe 1997. Lecture Notes in Computer Science, vol 1225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031684

Download citation

  • DOI: https://doi.org/10.1007/BFb0031684

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62898-9

  • Online ISBN: 978-3-540-69041-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics