Experiments in Automating Hardware Verification using
Inductive Proof Planning

Francisco J. Cantu* Alan Bundy** Alan Smaillf David Basin*

September 23, 1996

Abstract

We present a new approach to automating the verification of hardware designs
based on planning techniques. A database of methods is developed that combines
tactics, which construct proofs, using specifications of their behaviour. Given a
verification problem, a planner uses the method database to build automatically
a specialised tactic to solve the given problem. User interaction is limited to spe-
cifying circuits and their properties and, in some cases, suggesting lemmas. We
have implemented our work in an extension of the Clam proof planning system.
We report on this and its application to verifying a variety of combinational and
synchronous sequential circuits including a parameterised multiplier design and a
simple computer microprocessor.

1 Introduction

Confidence in the correctness of hardware designs may be increased by formal verification
of the designs against specifications of their desired behaviour. Although this is common
knowledge, formal verification is almost completely neglected by industry; what interest
there is centres on ‘push-button’ systems based on model checking, where weak decidable
logics are used for problem specification. But such systems are necessarily limited and
cannot be applied to many important classes of problems. For example, parameterised
designs and their specifications can almost never be expressed. However, systems based
on more expressive logics are often resisted because proof construction is no longer
fully automated and most circuit designers have neither the time, the patience, nor the
expertise for semi-interactive theorem proving.

To increase the acceptance of formal methods in domains with undecidable verifica-
tion problems, we must automate proof construction as much as is practically possible.
The problem to overcome is the large search space for proofs. Even when semi-decision
procedures like resolution are available, completely automated theorem proving is not
viable because such techniques are too general and cannot exploit structure in the prob-
lem domain to restrict search. Heuristics are called for, perhaps augmented with user
interaction to overcome incompleteness. One example of this is the system Ngthm,

*Center for Artificial Intelligence, ITESM, Mexico. Supported by CONACYT grant 500100-5-3533A
"Department of Artificial Intelligence, University of Edinburgh, UK. Supported by EPSRC grant
GR/J/80702

{Max-Planck-Institut fir Informatik, Saarbriicken, Germany



which uses a fixed set of heuristics to automate the construction of proofs by induction.
Proof construction is automated but sometimes the user must interrupt the prover and
suggest lemmas to stop it from exploring an unsuccessful branch. A second example
is embodied by tactic-based proof development systems like HOL, Lambda, PVS, and
Nuprl, where users themselves raise the level of automation by writing tactics (programs
that build proofs using primitive inference rules) for particular problem domains. Here
incompleteness is addressed by interactive proof construction: rather than writing a
‘super-tactic’ which works in all cases, users interactively combine tactics to solve the
problem at hand and directly provide heuristics.

We present a new approach to hardware verification that falls in between the two
approaches above and offers automation comparable to systems like Ngthm but with
increased flexibility since one can write new domain specific proof procedures as in the
tactic approach. We have designed a set of tactics for constructing hardware proofs
by mathematical induction. These tactics include tactics developed previously at Edin-
burgh for automating induction proofs [7] augmented with tactics specifically designed
for hardware verification. Rather than having the user apply these tactics interactively,
we use ideas from planning to automate proof construction. Each tactic is paired with
a method which is a declarative specification of its behaviour. Given a verification prob-
lem, a planner uses the method database to build automatically a specialised tactic to
solve the given problem. User interaction is mainly limited to specifying circuits and
their properties. As in the case of N¢thm, additional lemmas are occasionally needed to
overcome incompleteness, but this is rare; see section 4 for statistics on this and section 5
for a comparison to Ngthm.

We have implemented our approach to planning in an extension of the Clam proof
planning system [8]. We report on this and its application to a variety of combinational
and synchronous sequential circuits including a parameterised multiplier design and
a simple computer microprocessor. Although we haven’t attempted the verification of
commercial hardware systems yet, we provide evidence that this approach is a viable way
of significantly automating hardware verification using tactic-based theorem provers,
that it scales well, and that it compares favourably with both systems based on powerful
sets of hardwired heuristics like Ngthm and tactic-based approaches. We believe that it
offers the best of both worlds: one can write tactics that express strategies for building
proofs for families of hardware designs and the planner integrates them in a general
proof search procedure. This provides an ‘open architecture’ in which one may introduce
heuristics to reduce search in a principled way. This also suggests a possible methodology
for designing provers for verification domains like hardware where experts design domain
specific tactics (and methods) and systems such as ours help less skilled users construct
correctness proofs.

The remainder of this paper is organised as follows. In section 2 we describe proof
planning and extensions required for hardware verification. In section 3 we present
our methodology for hardware verification and illustrate it with two examples: the
verification of a parallel array multiplier and a simple computer design proposed by Mike
Gordon (and hence called the Gordon computer). Results of experiments in applying
proof planning to verify other combinational and synchronous sequential circuits are
reported in section 4. In section 5 we compare some of our results with approaches
used in systems such as Ngthm, PVS and HOL. Finally, in section 6, we summarise
advantages and limitations of our approach and discuss future work.



2 Verification Based on Proof Planning

We begin by reviewing proof planning and methods for induction. These two parts
contain only a summary of material that has been published in detail elsewhere: see
[4, 7] for more on proof planning and [6, 1] for details on rippling. After, we discuss
extensions required to apply Clam to hardware verification.

2.1 Proof Plans

Proof planning is a meta-level reasoning technique for the global control of search in
automatic theorem proving. A proof plan captures the common patterns of reasoning
in a family of similar proofs and is used to guide the search for new proofs in the family.
Proof planning combines two standard approaches to automated reasoning: the use of
tactics and the use of meta-level control. The meta-level control is used to build large
complex tactics from simpler ones and also abstracts the proof, highlighting its structure
and the key steps.

The main component of proof planning is a collection of methods. A method is a
specification of a tactic and consists of an input formula (a sequent), preconditions,
output formulae, postconditions, and a tactic. A method is applicable if the goal to be
proved matches the input formula of the method and the method’s preconditions hold.
The preconditions, formulated in a meta-logic, specify syntactic properties of the input
formula. Using the input formula and preconditions of a method, proof planning can
predict if a particular tactic will be applicable without actually running it. The output
formulae (there may be none) determine the new subgoals generated by the method and
give a schematic description of the formulae resulting from the tactic application. The
postconditions specify further syntactic properties of these formulae. For each method
there is a corresponding general-purpose tactic associated to that method. Methods can
be combined at the meta-level in the same way tactics are combined using tacticals.

The process of reasoning about and combining methods is called proof planning.
When planning is successful it produces a tree of methods, called a proof plan. A proof
plan yields a composite tactic, which is built from the tactics associated with each
method, custom designed to prove the current conjecture. Proof plan construction in-
volves search. However, the planning search space is typically many orders of magnitude
smaller than the object-level search space. One reason is that the heuristics represented
in the preconditions of the methods ensure that backtracking during planning is rare.
Another reason is that the particular methods used have preconditions which strongly
restrict search, though in certain domains they are very successful in constructing proofs.
There is of course a price to pay: the planning system is incomplete. However, this has
not proved a serious limitation of the proof planning approach in general [7] nor in our
work where proof plans were found for all experiments we tried.

The plan formation system upon which our work is built is called Clam. Methods
in Clam specify tactics which build proofs for a theorem proving system called Oyster,
which implements a type theory similar to Nuprl’s.

Methods in Clam are ordered and stored in a database, c.f. figure 1. Fach of the
names in the left-hand side is a method and the indentation of names represents the
nesting of methods (a method can call subroutines called sub-methods, which include
methods themselves), i.e. an inner method is a sub-method of the one immediately



Methods:

1. symbolic_evaluation
a elementary
b. eval_definition
c. reduction
d. term_cancellation
2. induction_strategy
a induction
b. base _case
C. step_case
i. ripple
- wave
ii. fertilise
3. generalise
4. bool_cases
5. difference_match
6. apply_lemma

Simplifies symbolic expression
Tautology checker

Unfold definition

Apply reduction rules
Cancel-out additive termsin equation

Appliesinduction strategy

Selects induction scheme and induction variables
Applies symbolic_evaluation to the base case

Appliesripple and fertilise to the step case
Appliesrippling heuristic
Applies wave-rules

Simplifies induction conclusion with induction hypothesis
Generalises common term in both sides of equation

Does a case split on Boolean variable
Matches and annotates differences on two expressions

Applies existing lemmacto current subgoal

Figure 1: Method Database

outside it. Given a goal, Clam tries the methods in order. If an applicable method is
found then the output yields new subgoals and this process is applied recursively. If
none is applicable, then Clam backtracks to a previous goal or reports failure at the
top level. A number of search strategies exist for forming plans. These include depth-
first, breadth-first, iterative deepening, and best-first search. We have conducted our
experiments in hardware verification using the depth-first planner.

2.2 Induction

A number of methods have been developed in Clam for inductive theorem proving and
we used these extensively to prove theorems about parameterised hardware designs.
Induction is particularly difficult to automate as there are a number of search control
problems including selection of an induction rule, control of simplification, possible
generalisation and lemma speculation, etc. It turns out though that many induction
proofs have a similar shape and a few tactics can collectively prove a large number of
the standard inductive theorems.

The induction strategy is a method for applying induction and handling subsequent
cases. After the application of induction, the proof is split into one or more base and
step cases. The base case method attempts to solve the goal using simplification and
propositional reasoning (with the sub-method symbolic_evaluation). If necessary, an-
other induction may be applied. The step case method consists of two parts: rippling
and fertilisation. The first part is implemented by the rippling method. Rippling is a
kind of annotated rewriting where annotations are used to mark differences between the
induction hypothesis and conclusion. Rippling applies annotated rewrite rules (called
wave-rules which are applied with the wave method) which minimise these differences.
Rippling is goal directed and manipulates just the differences between the induction
conclusion and hypothesis while leaving their common structure preserved; this is in
contrast to rewriting based on normalisation, which is used in other inductive theorem
provers such as Ngthm [3]. Rippling also involves little search, since annotations severely

4



restrict rewriting. The second part of the step case, fertilisation, can apply when rip-
pling has succeeded (e.g. when the annotated differences are removed or moved ‘out
of the way’, for example, to the root of the term). The fertilise method then uses the
induction hypothesis to simplify the conclusion.

2.3 Extensions

The above completes our review of Clam and some of the methods for induction. We
were able to apply Clam to hardware verification with fairly minor modifications and
extensions.

First there were modifications to Clam methods which resulted, in part, from the
fact that the experiments reported here are the largest that have been carried out with
Clam and revealed some inefficiencies which required improvement. For example: the
method symbolic_evaluation was extended with a memorvsation procedure for efficiently
computing recursive functions in verifying the Gordon computer, and with an efficient
representation of the meta-logic predicate exp_at that finds a sub-expression in an ex-
pression; the fertilisation method was extended to deal with a post-rippling situation
that arose in verifying a parameterised version of the n-bit adder and which has ap-
peared in many other combinational circuits; the generalisation method was extended
with type information to generalise over terms of type bool; the equal sub-method was
extended to apply a more general form of rewrite equations in the hypotheses list of
the sequent to simplify the current goal. We also needed to extend Clam’s database of
induction schemas. To do this we formalised in Oyster new data-types appropriate for
hardware such as a data-type of words, which are lists of booleans. Then we derived
new induction schemas based on these which we added to Clam’s collection, for example
induction over the length of words (i.e., a special case of list induction), simultaneous
induction over two words of the same length, and induction on words where step cases
are generated by increment and addition of words, and the like.

Finally, we developed a number of new methods. For example, the method bool_cases
was added to solve goals by exhaustive case-analysis over booleans. This suffices often
to automate base cases of induction proofs about parameterised designs. The method
difference_match was added to reason about sequential circuits modelled as finite-state
machines; Also, the method term_cancellation was added to strengthen arithmetic reas-
oning in Clam.

3 Verification Methodology

We now describe how proof planning can be used for hardware verification and after-
wards provide two examples.

The user begins by giving Clam definitions, in the form of equations, which define
the implementation of the hardware and its behavioural specification. Then, the user
provides Clam with the conjecture to be proven. For combinational hardware this is
typically an equation stating that the specification is equal to an abstract form of the
implementation:

Vai,...,x, spec(zy, ..., x,) = abs(imp(aq, ..., 2,))



For synchronous sequential hardware this is typically an implication stating that if the
specification is equal to an abstract form of the implementation at some time ¢, then
the specification must be equal to an abstract form of the implementation at all time ¢
greater that t. If the specification and the implementation involve different time scales,
then we must provide a mapping f that converts times from one scale to the other:

Vi, i time Yoy, ..., x,

spec(t,q,...,x,) = abs(imp(f(t), @1, ..., x,)) ANt <

—

spec(t' xy, ... x,) = abs(imp(f('), x1,...,2,))

To create a plan, the user instructs Clam to find a proof plan for the conjecture by
selecting one of the built-in planners, e.g., to find a plan using depth-first search. At
this point Clam has been loaded not only with definitions and the conjecture but also
the method database and wave-rules. If Clam finds a plan, the user may execute the
tactic associated with it to construct an actual proof. Otherwise, the user can correct
a bug in the theorem statement or in the definitions or suggest a lemma (which will
provide new wave-rules) and try again. After Clam completes a proof plan, the tactic
produced is executed to build an actual proof. Failure at this stage occurs rarely and
happens only when a method improperly describes a tactic; in such cases, we improve
the method or the tactic and plan again.

Example: A parallel array multiplier

We now describe the verification of an nm-bit parallel array multiplier. The external
behaviour of the multiplier is expressed by the formula:

word2nat(z) x word2nat(y) .

We represent words by lists of bits, and if 2 and y are words of length n and m respect-
ively, then word2nat returns the natural numbers which they represent and the above
specifies their product. Multiplication of binary words can be implemented by a simple
parallel array multiplier using binary additions. Consider, for example, multiplying a
3-bit word by a 2-bit word. This is represented by:

T2 a1 Zo
X Y1 Yo
2% T1Y%o To¥Yo
T2Yy1 1Y ol
Z4 Z3 Z2 zZ1 20

To multiply an n bit word by an m bit word the array multiplier uses n x m AND gates
to compute each of these intermediate terms in parallel, and then, m binary additions
are used to sum together the rows. This requires a total of n X m one-bit adders. The
following equations formalise the above as a recursive description of a (parameterised)
implementation:

zeroes(length(x))

mult(z, nil)

mult(z, h 2 y) cadd(mult_one(z, h) <> zeroes(length(y)), mult(z,y),0)

6



linduction

0 base step
1 2 sym-eva 7 ripple&fertilize
2 3 induction 8 sym-eva
Step

X - 9 term-cancel
3 4 sym-evd 5 ripple& fertilize
2 6 symeval 10 bool-cases

fase true
5 u sym-Eval 19 sym:eval
6 12 induction 20 induléion
base step base step

7 13 sym-eva 18 ripple& fertilize 21 sym-eval 32 ripple&fertilize

8 14 induction 22 induction
bese ﬁ - Np
9 15 syméeval

16 ripple&fertilize 23 sym-eval 24 ripple&fertilize
v

10 17 sym-eva 25 term-cancel
26 bool-

11 y % true

27 ym-eval 28 sym-gval
12
13 29 induction

Vw

14 30 sym-eval 31 ripple&fertilize

Figure 2: Proof plan for verifying an nm-bit multiplier

Here cadd is the definition of an n-bit adder with arguments of the same length, mult_one
multiplies a word times a bit, <> appends two lists (built from nil and ’consed’ together
using ::), zeroes(n) yields n zeroes. To show the equivalence of the specification and
the implementation, we give Clam the conjecture

Va,y : word word2nat(x) X word2nat(y) = word2nat(mult(z,y))

This theorem has been proof planned by Clam using the depth-first planner in about 1
minute. Figure 2 displays the structure of the proof plan. The plan requires 15 levels
of planning (number on the left) and 32 plan steps (numbers on the nodes of the tree).
Each node in the tree indicates the application of a method. In particular, steps 1, 3,
12, 14, 20, 22 and 29 correspond to the application of the induction method. We briefly
explain steps 1, 2 and 7 corresponding to the first induction. In step 1, the induction
method analyses the conjecture and available definitions and uses heuristics (similar to
those used in Ngthm) to suggest an induction on the word y. In step 2, the base case,

word2nat(z) x word2nat(nil) = word2nat(mult(z, nil))

is simplified by symbolic evaluation using the base equation of mult, word2nat, and
multiplication by zero. This yields

0 = word2nat(zeroes(len(z)))

which is solved by another induction, symbolic evaluation, rippling, fertilise and another
application of symbolic evaluation. In step 7, for the step case, the induction conclusion:

word2nat(z) x word2nat(v0 :: vl) = word2nat(mult(z,v0 :: vl))

7



is simplified by rippling with the recursive equations of mult, the wave-rule obtained
from the verification of the n-bit adder, word2nat, distributivity of times over plus, and
fertilisation, to yield:

word2nat(z) x (bitval(v0) x 29Dy L pord2nat(x) x word2nat(vl)

word2nat(mult_one(x,v0) <> zeroes(length(vl)))+
(word2nat(z) X word2nat(vl) + bitval( false))

This equation is solved by the methods indicated in steps 8-32 in figure 2. In order to
generate the proof plan, we provided wave-rules which correspond to the verification
of the n-bit adder, distributivity of times over plus, associativity of times, and a non-
definitional wave-rule of plus on its second argument. These wave-rules come from
lemmas which we previously verified using proof planning. Hence, we use proof planning
to develop, hierarchically, theories about hardware. Finally, we ask Oyster to execute
our proof plan. This consists of executing a tactic for each of the methods indicated
in the proof plan, following the structure displayed in figure 2 in a depth-first manner.
The development of the proof plan took about 40 hours distributed over a two weeks
period. The most time-consuming part was identifying the required lemmas.

Example: the Gordon computer

This is a 16-bit microprocessor, with 8 programming instructions, no interrupts, and a
synchronous communication interface with memory, designed by Mike Gordon and his
group at Cambridge University and verified interactively using the HOL system [12].
The specification is given in terms of the semantics of the 8 programming instructions.
Each instruction consists of the set of operations that determines a new computer state,
where a state is determined by the contents of the memory, the program counter, the
accumulator and the idle/running status of the computer. The execution of an instruc-
tion defines a transition from a state into a new state and this transition determines the
time-unit of an instruction-level time-scale. Thus, for each instruction we must specify
the way in which each of the four components of a computer state are calculated. The
implementation is at the register-transfer level. It consists of a data-path and a micro-
programmed control unit. A computer state at the register-transfer level is determined
by the contents of 11 components: the memory, the program counter, the accumulator,
the idle/running flag, the memory address register, the instruction register, the argu-
ment register, the buffer register, the bus, the microcode program counter and the ready
flag. The control unit generates the necessary control flags to update the computer re-
gisters. Communication between the bus and the registers is regulated by a set of gates.
The implementation uses a microinstruction time-scale. The number of microinstruc-
tions required to compute a given instruction is calculated automatically by using the
ready flag in the microcode, and the associated time at the microinstruction-level time-
scale mapped onto the respective time at the instruction-level time-scale. A translation
from the relational description used by Gordon into a functional description required
by Clam was done by hand. This translation can be automated. For instance, PVS
provides assistance in producing the functional representation from the relational one



[15]. The correctness theorem asserts that the state of the computer at the specification
level is equal to an abstract state of the implementation level each time an instruction
is executed. After doing the extensions explained in the next section, the verification
proceeded without user intervention. See [9] for more details.

4 Experiments

We have applied the methodology just described to a variety of combinational and
sequential circuits: some circuits are from the IFIP W(G10.2 Hardware Verification
Benchmark Circuit Set (n-bit adder, parallel multiplier, Gordon computer) and from
other sources [14]. Table 1 displays some statistics. A detailed analysis of these proofs
can be found in [9].

We shall explain here what these numbers measure. The first column lists the cir-
cuits. A parameterised representation means that there is an explicit parameter n
corresponding to the length of a word. Big-endian means that the most significant bit
is at the end of the list; little-endian means that the least significant bit is at the end of
the list. Reasoning about big-endian representations when using lists to represent words
is easier than the little-endian counterparts because in the big-endian case there is no
need to traverse the list to access the least significant bits. In a word interpretation, the
specification has type word, as the implementation does, so that the verification theorem
establishes the equality of the specification and the implementation on the type word.
The word arithmetic operations establish a relationship between the set of words and
the set of the natural numbers.

The next column lists timings, broken down three ways: first, planning time, is
the time Clam took to generate a plan '. The time to execute the proof plan is not
included here. This time is in general much higher, mainly because Oyster the object-
level theorem prover uses a complex type theory formalism with type checking proof
obligations which are time consuming. For instance, generating the proof plan for the
incrementer takes just 6 seconds, but its execution in Oyster took 5:40 minutes. Second,
plan-development time, which is the time spent developing the proof plan, from un-
derstanding the problem, finding the right representation for the specification and the
implementation, debugging them, and finding and justifying missing lemmas, until a
proof plan was obtained. This time doesn’t include the time spent extending, tun-
ing, and debugging Clam, which is the Clam-development time displayed in the third
column. Some of these times may appear excessive, but, to give an accurate picture, we
are accounting for everything, including many one-time costs.

The Clam-development time column includes time spent writing new methods, ex-
tending existing methods, experimenting with method orderings, writing new predicates
and modifying existing ones for the meta-language, finding new induction schemes, and
debugging Clam itself. The time to obtain a proof tended to be high for the first
circuit of a certain kind, but dramatically decreased for subsequent circuits. For in-
stance, the n-bit adder was the first circuit we verified and took about 116 man-hours,
of which approximately 100 are of work extending previous methods such as fertilise
and generalise, writing new methods such as bool_cases and term_cancellation, experi-

!Experiments were done in a Solbourne 6/702 dual processor with 128Mb of memory, which is
equivalent to a two-processor SparcStation 20



time

Circuit planning  plan-development Clam-development lemmas
(min:sec) (hours) (hours)
COMBINATIONAL
n-bit adder
parameterised 4:50 16 100 0
word interpretation 15:50 8 16 0
little endian 5:30 8 16 2
big endian 0:57 4 0 1
look-ahead carry 2:40 8 0 1
n-bit alu
parameterised 4:40 56 0 0
little endian 8:30 16 0 1
big endian 5:35 8 0 0
nat. number interpretation 4:50 8 0 0
n-bit shifter
parameterised 4:30 32 30 0
big endian 3:20 16 0 0
n-bit processor unit
big endian 5:00 8 2 0
parallel array
nm-bit multiplier 1:03 40 0 6
n-bit incrementer
little endian 0:58 4 0 1
big endian 0:06 2 0 1
word arithmetic
addition 0:08 4 8 1
subtraction 0:10 4 0 2
multiplication 0:15 4 0 2
quotient 0:35 8 4 3
remainder 0:30 8 0 5
exponentiation 0:26 4 0 2
factorial 0:40 8 0 3
SEQUENTIAL
n-bit counter 2:04 20 0 1
Gordon computer 45:00 200 360 0

Table 1: Some Circuits Verified using Proof Planning

10



menting with method ordering, and writing new predicates such as find_type to provide
the proof planner with boolean type information. The rest of the circuits in the table
utilised these extensions and their proofs were obtained in shorter times because these
extensions were already there. The word-interpretation version, which took 16 hours,
required 16 hours of extensions to the methods generalise and normalise. The little-
endian version, required 16 hours to derive in Oyster a new induction scheme (double
induction on two words of the same length) and this is used in many of the other veri-
fication proofs. The big-endian representation, which took just 4 hours, used all the
previous extensions. When we tried the parameterised version of the n-bit alu, it turned
out that all the extensions required were already done for the parameterised version of
the n-bit adder including method ordering; the 56 hours reported were mainly spent
debugging the specification. Thus, the time for the little-endian and big-endian versions
became shorter (16 and 8 hours, respectively). For the word arithmetic the extensions
required included deriving new induction schemes such as induction with increment of a
word and addition of two words, which made the proofs very easy to find. The multiplier
didn’t require any extensions; most of the time was spent in finding the lemmas required
by the proof.

The Gordon computer required a huge effort to scale-up Clam capabilities. The very
scale of the specification required that we make a number of extensions to Clam, such
as memoisation, so that the system would more gracefully handle large terms. Also
significant is that the theorem involves two different time-scales with automatic calcu-
lation of the number of cycles for each instruction; methods like difference_match were
designed to handle this and to automate time abstraction. Again, all these extensions
are required for the verification of similar circuits, so the 360 hours of development
time (9 man-weeks) is a one-time effort and the verification effort should significantly
decrease for new circuits of the same kind. The 200 hours of plan-development time (5
man-weeks) include learning about microprocessor architecture, translating the original
relational specification of the computer into a functional one, finding appropriate ab-
straction mechanisms, formalising recursive definitions for the implementation devices
(memory, program counter, accumulator, microcode program counter, etc), and debug-
ging the specification and the implementation.

The final column in our table indicates the number of lemmas used in the proof
planning. The Gordon computer didn’t require any lemmas, the multiplier requires
lemmas about the n-bit adder, distributivity of + over X, and associativity of times. In
general, proof planning utilises very few lemmas compared with most other systems.

5 Comparisons

We compare Clam/QOyster with Ngthm, PVS and HOL. Clam/ Oysteris a fully-expansive
system, so it provides the user with the security characteristic of these systems, as
opposed to systems like Ngthm and PV.S which don’t necessarily incorporate this feature
[2]. In a tactic-based fully expansive system, the execution of a tactic results in the
execution of the inference rules that support that tactic. Theorem provers like HOL and
Nuprl are also fully-expansive systems.

11



5.1 Nqthm

Most of the circuits in the table have been verified elsewhere using Ngthm. For instance,
the n-bit adder was verified (big-endian) in half a man-day, where the discovery of the
required lemmas was the most difficult part[17]. A combinational processing unit (alu
and shifter) was verified by Warren Hunt as part of the verification of the FM8501
microprocessor. This processing unit is verified in 3 theorems corresponding to the
word, natural number, and two’s complement interpretations. It took about 2 months
effort, Tuns in a few seconds?, and used about 53 lemmas [11]. Although the processor
unit reported here is less complicated than FM8501’s because we don’t include the two’s
complement interpretation, we use just 2 lemmas in its proof planning.

As an experiment, some of these circuits were re-implemented in Ngthm by a new-
comer to formal verification [16]. The following table summarises the results:

time
Circuit run proof-development lemmas
(min:sec) (hours)

COMBINATIONAL

n-bit adder (big endian) 3:40 32 6
n-bit adder look-ahead carry 3:20 12 6
n-bit alu (big endian) 13:30 40 11
n-bit shifter (big endian) 2:30 24 2
n-bit processor unit (big endian) 0:37 6 13
n-bit incrementer (big endian) 0:35 20 3

Most of the proof-development time was spent determining the lemmas required by the
proof. For instance the proof of the n-bit adder uses the following lemmas: commut-
ativity of plus, commutativity of times, and addition, and multiplication by recursion
on the second argument. Of these, Clam requires only the lemma addition by recursion
on the second argument. In general, Clam required fewer lemmas than Ngthm to verify
these circuits. On the other hand, Ngthm provides a very stable implementation, and
was much easier to use. There is of course a danger in such quantitative comparisons
as metrics can oversimplify and even mislead. For example, the development times of
novice users can be orders of magnitude higher than experts and moreover experts have
better insights on how to structure problems to avoid lemmas. Still, we have tried to
compare like with like: both the Clam and Ngthm proofs were carried out by relative
beginners to both automated theorem proving and formal reasoning about hardware.

5.2 PVS

The n-bit adder, the n-bit alu, and the Tamarack microprocessor ® have been implemen-
ted in PVS[10, 15]. The run time for verifying each of these circuits was 2:07, 1:27 and
9:05 minutes respectively in a Sun SparcStation 10. These low run-times are explained
by the built-in decision procedures available to PVS. In these verifications the user must
provide the induction parameters and use a predefined proof strategy. There are two

?Personal communication

®A refined implementation of the Gordon computer. Its verification in HOL and PVS is also more
abstract, as tri-state values and gates to access the bus, and the input of manual information through the
switches and the knob, are not considered. However, Tamarack-3 includes an option for asynchronous
communication with memory.

12



ways in which Clam could enhance PVS automation facilities: (1) The decisions for
selecting an induction scheme and induction variables are done by the user. These de-
cisions could be automated by interfacing Clam and PVS. (2) There are proof strategies
packaged as sets of PV.S commands for a certain kind of circuits. The adder and the alu
use the same proof strategy, the Tamarack and the pipelined Saxe microprocessor share
another proof strategy. Our set of methods and the planning mechanism comprise these
proof strategies, and can in principle create new ones by customising a composite tactic
for a new conjecture using the same methods.

5.3 HOL

The Gordon computer was originally designed and verified using HOL by Mike Gordon
and his group [12] and later implemented and verified as the Tamarack microprocessor
by Jeffrey Joyce [13]. The verification took about 5 weeks of proof-development effort
and required the derivation of at least 200 lemmas including general lemmas for arith-
metic reasoning and temporal logic operators which are now built into HOL. It didn’t
require to tune HOL and runs in about 30 minutes in a modern machine*. Although the
architecture of the Gordon computer verified here is less complicated than the architec-
ture of Tamarack-3 verified by Joyce because we assume a synchronous communication
with memory, we don’t use lemmas in its proof planning. There are also two ways
in which Clam could enhance HOL automation facilities: (1) the selection of induction
parameters (scheme and variables), and (2) the generation of proof strategies for families
of circuits. A project to interface Clam and HOL is about to start [5].

6 Conclusions

We have described how a hardware verification methodology based on proof planning
can be applied to guide automatically a tactic-based theorem prover in verifying hard-
ware designs. We have applied this technique to verify a variety of combinational and
synchronous sequential circuits. Our experience shows that the Clam system and the
proof planning idea carry over well to this new domain, although a number of extensions
in the details (as opposed to the spirit) of Clam and the development of domain specific
tactics and methods were required.

Overall, our experience was quite positive. We investigated several kinds of para-
meterised circuits and were able to develop methods which captured heuristics suitable
for reasoning about families of such designs. We reported on our development time for
both proving particular theorems and doing extensions to Clam. Although the times
are sometimes high for initially verifying new kinds of circuits, subsequent development
times were respectable and the majority of time was spent on simply entering and de-
bugging the specification. This provides some support to our belief that a system like
Clam might be usable by hardware engineers, provided that there is a ‘proof engineer’
in the background who has worked on the design of a set of methods appropriate for
the domain.

There are several directions for further work. As noted, much of our time was spent
entering and debugging specifications. Part of this is due to our use of a somewhat

4 . .
Personal communication

13



complicated type-theory as a specification language. However, our planning approach
should work with any tactic based theorem prover; one need only port the tactics as-
sociated with the current methods from one system to another so that they produce
the same effects. Interfacing Clam with a prover like HOL could significantly reduce
specification and tuning times. It would also provide us immediate access to the large
collection of tactics and theorems already available for this system. An interface to a
standard hardware description language would also ease specification and make it pos-
sible to integrate better proof planning into the hardware design cycle. Another area
for further work concerns improving the power or efficiency of some of our methods.
For example, reasoning about boolean circuits by case evaluation, could be replaced
by a more efficient routine based on BDDs. We also will investigate the development
of a temporal reasoning methods for reasoning about circuits with asynchronous inter-
faces. Finally, we plan to apply our approach to the verification of commercial circuits
including microprocessors systems.

References

[1] David Basin and Toby Walsh. A calculus for and termination of rippling. Tech-
nical report, MPI, 1994. To appear in special issue of the Journal of Automated
Reasoning.

[2] Richard J. Boulton. Efficiency in a fully-expansive theorem prover. Technical
Report 337, University of Cambridge Computer Laboratory, 1994.

[3] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACM
monograph series.

[4] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and
R. Overbeek, editors, 9th Conference on Automated Deduction, pages 111-120.
Springer-Verlag, 1988. Longer version available from Edinburgh as DAI Research
Paper No. 349.

[5] A. Bundy and M. Gordon. Automatic guidance of mechanically generated proofs.
Research proposal, Edinburgh-Cambridge, 1995.

[6] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185-253,1993. Also
available from Edinburgh as DAI Research Paper No. 567.

. Bundy, F. van Harmelen, J. Hesketh, an . omaill. Experiments with proo

7] A. Bundy, F H len, J. Hesketh, and A. Smaill. E i ith f
plans for induction. Journal of Automated Reasoning, 7:303-324, 1991. Earlier
version available from Edinburgh as DAI Research Paper No 413.

[8] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In
M.E. Stickel, editor, 10th International Conference on Automated Deduction, pages
647-648. Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449.
Also available from Edinburgh as DAI Research Paper 507.

[9] Francisco J. Cantu. Inductive Proof Planning for Automating Hardware Verifica-
tion. PhD thesis, University of Edinburgh, 1996. Forthcoming.

14



[10] D. Cyrluk, N. Rajan, N. Shankar, and M.K. Srivas. Effective theorem proving for
hardware verification. In 2nd Conference on Theorem Provers in Clircuit Design.
Springer-Verlag, 1994.

[11] Warren Hunt. Fm8501: A verified microprocessor. TechReport 47, Institute for
Computing Science, University of Texas at Austin, 1986.

[12] Jeff Joyce, G. Graham Birtwistle, and M. Gordon. Proving a computer correct
in higher order logic. Technical Report 100, University of Cambridge Computer
Laboratory, 1986.

[13] Jeffrey J. Joyce. Multi-level verification of microprocessor-based systems. Technical
Report 195, University of Cambridge Computer Laboratory, 1990.

[14] M. Morris Mano. Digital Logic and Computer Design. Prentice Hall, Inc, 1979.

[15] S. Owre, J.M. Rushby, N. Shankar, and M.K. Srivas. A tutorial on using pvs for
hardware verification. In 2nd Conference on Theorem Provers in Clircuit Design.
Springer-Verlag, 1994.

16] Victor Rangel. Metodos formales para verificacion de hardware: Un estudio com-
g
parativo. Master’s thesis, Instituto Tecnologico de Monterrey, Mexico, 1996.

[17] V. Stavridou, H. Barringer, and D.A. Edwards. Formal specification and verification
of hardware: A comparative case study. In Proceedings of the 25th ACM/IEEFE
Design Automation Conference, pages 89-96. IEEE, 1988.

15



