
Experiments in Automating Hardware Veri�cation usingInductive Proof PlanningFrancisco J. Cantu� Alan Bundy?? Alan Smailly David BasinzSeptember 23, 1996AbstractWe present a new approach to automating the veri�cation of hardware designsbased on planning techniques. A database of methods is developed that combinestactics, which construct proofs, using speci�cations of their behaviour. Given averi�cation problem, a planner uses the method database to build automaticallya specialised tactic to solve the given problem. User interaction is limited to spe-cifying circuits and their properties and, in some cases, suggesting lemmas. Wehave implemented our work in an extension of the Clam proof planning system.We report on this and its application to verifying a variety of combinational andsynchronous sequential circuits including a parameterised multiplier design and asimple computer microprocessor.1 IntroductionCon�dence in the correctness of hardware designs may be increased by formal veri�cationof the designs against speci�cations of their desired behaviour. Although this is commonknowledge, formal veri�cation is almost completely neglected by industry; what interestthere is centres on `push-button' systems based on model checking, where weak decidablelogics are used for problem speci�cation. But such systems are necessarily limited andcannot be applied to many important classes of problems. For example, parameteriseddesigns and their speci�cations can almost never be expressed. However, systems basedon more expressive logics are often resisted because proof construction is no longerfully automated and most circuit designers have neither the time, the patience, nor theexpertise for semi-interactive theorem proving.To increase the acceptance of formal methods in domains with undecidable veri�ca-tion problems, we must automate proof construction as much as is practically possible.The problem to overcome is the large search space for proofs. Even when semi-decisionprocedures like resolution are available, completely automated theorem proving is notviable because such techniques are too general and cannot exploit structure in the prob-lem domain to restrict search. Heuristics are called for, perhaps augmented with userinteraction to overcome incompleteness. One example of this is the system Nqthm,�Center for Arti�cial Intelligence, ITESM, Mexico. Supported by CONACYT grant 500100-5-3533AyDepartment of Arti�cial Intelligence, University of Edinburgh, UK. Supported by EPSRC grantGR/J/80702zMax-Planck-Institut f�ur Informatik, Saarbr�ucken, Germany1



which uses a �xed set of heuristics to automate the construction of proofs by induction.Proof construction is automated but sometimes the user must interrupt the prover andsuggest lemmas to stop it from exploring an unsuccessful branch. A second exampleis embodied by tactic-based proof development systems like HOL, Lambda, PVS, andNuprl, where users themselves raise the level of automation by writing tactics (programsthat build proofs using primitive inference rules) for particular problem domains. Hereincompleteness is addressed by interactive proof construction: rather than writing a`super-tactic' which works in all cases, users interactively combine tactics to solve theproblem at hand and directly provide heuristics.We present a new approach to hardware veri�cation that falls in between the twoapproaches above and o�ers automation comparable to systems like Nqthm but withincreased 
exibility since one can write new domain speci�c proof procedures as in thetactic approach. We have designed a set of tactics for constructing hardware proofsby mathematical induction. These tactics include tactics developed previously at Edin-burgh for automating induction proofs [7] augmented with tactics speci�cally designedfor hardware veri�cation. Rather than having the user apply these tactics interactively,we use ideas from planning to automate proof construction. Each tactic is paired witha method which is a declarative speci�cation of its behaviour. Given a veri�cation prob-lem, a planner uses the method database to build automatically a specialised tactic tosolve the given problem. User interaction is mainly limited to specifying circuits andtheir properties. As in the case of Nqthm, additional lemmas are occasionally needed toovercome incompleteness, but this is rare; see section 4 for statistics on this and section 5for a comparison to Nqthm.We have implemented our approach to planning in an extension of the Clam proofplanning system [8]. We report on this and its application to a variety of combinationaland synchronous sequential circuits including a parameterised multiplier design anda simple computer microprocessor. Although we haven't attempted the veri�cation ofcommercial hardware systems yet, we provide evidence that this approach is a viable wayof signi�cantly automating hardware veri�cation using tactic-based theorem provers,that it scales well, and that it compares favourably with both systems based on powerfulsets of hardwired heuristics like Nqthm and tactic-based approaches. We believe that ito�ers the best of both worlds: one can write tactics that express strategies for buildingproofs for families of hardware designs and the planner integrates them in a generalproof search procedure. This provides an `open architecture' in which one may introduceheuristics to reduce search in a principled way. This also suggests a possible methodologyfor designing provers for veri�cation domains like hardware where experts design domainspeci�c tactics (and methods) and systems such as ours help less skilled users constructcorrectness proofs.The remainder of this paper is organised as follows. In section 2 we describe proofplanning and extensions required for hardware veri�cation. In section 3 we presentour methodology for hardware veri�cation and illustrate it with two examples: theveri�cation of a parallel array multiplier and a simple computer design proposed by MikeGordon (and hence called the Gordon computer). Results of experiments in applyingproof planning to verify other combinational and synchronous sequential circuits arereported in section 4. In section 5 we compare some of our results with approachesused in systems such as Nqthm, PVS and HOL. Finally, in section 6, we summariseadvantages and limitations of our approach and discuss future work.2



2 Veri�cation Based on Proof PlanningWe begin by reviewing proof planning and methods for induction. These two partscontain only a summary of material that has been published in detail elsewhere: see[4, 7] for more on proof planning and [6, 1] for details on rippling. After, we discussextensions required to apply Clam to hardware veri�cation.2.1 Proof PlansProof planning is a meta-level reasoning technique for the global control of search inautomatic theorem proving. A proof plan captures the common patterns of reasoningin a family of similar proofs and is used to guide the search for new proofs in the family.Proof planning combines two standard approaches to automated reasoning: the use oftactics and the use of meta-level control. The meta-level control is used to build largecomplex tactics from simpler ones and also abstracts the proof, highlighting its structureand the key steps.The main component of proof planning is a collection of methods. A method is aspeci�cation of a tactic and consists of an input formula (a sequent), preconditions,output formulae, postconditions, and a tactic. A method is applicable if the goal to beproved matches the input formula of the method and the method's preconditions hold.The preconditions, formulated in a meta-logic, specify syntactic properties of the inputformula. Using the input formula and preconditions of a method, proof planning canpredict if a particular tactic will be applicable without actually running it. The outputformulae (there may be none) determine the new subgoals generated by the method andgive a schematic description of the formulae resulting from the tactic application. Thepostconditions specify further syntactic properties of these formulae. For each methodthere is a corresponding general-purpose tactic associated to that method. Methods canbe combined at the meta-level in the same way tactics are combined using tacticals.The process of reasoning about and combining methods is called proof planning.When planning is successful it produces a tree of methods, called a proof plan. A proofplan yields a composite tactic, which is built from the tactics associated with eachmethod, custom designed to prove the current conjecture. Proof plan construction in-volves search. However, the planning search space is typically many orders of magnitudesmaller than the object-level search space. One reason is that the heuristics representedin the preconditions of the methods ensure that backtracking during planning is rare.Another reason is that the particular methods used have preconditions which stronglyrestrict search, though in certain domains they are very successful in constructing proofs.There is of course a price to pay: the planning system is incomplete. However, this hasnot proved a serious limitation of the proof planning approach in general [7] nor in ourwork where proof plans were found for all experiments we tried.The plan formation system upon which our work is built is called Clam. Methodsin Clam specify tactics which build proofs for a theorem proving system called Oyster,which implements a type theory similar to Nuprl's.Methods in Clam are ordered and stored in a database, c.f. �gure 1. Each of thenames in the left-hand side is a method and the indentation of names represents thenesting of methods (a method can call subroutines called sub-methods, which includemethods themselves), i.e. an inner method is a sub-method of the one immediately3



Methods:

1.  symbolic_evaluation  

3. generalise

4. bool_cases 

5. difference_match 

6. apply_lemma 

      a. elementary 

      b. eval_definition  

      a. induction  

      b. base_case  

      c. step_case 

           i. ripple 

           ii. fertilise 

                 - wave 

      c. reduction 

      d. term_cancellation 

Simplifies symbolic expression

Matches and annotates differences on two expressions 

Applies existing lemma to current subgoal

Tautology checker

Unfold definition

Cancel-out additive terms in equation

Applies induction strategy  2. induction_strategy

Applies symbolic_evaluation to the base case

Applies ripple and fertilise to the step case

Applies wave-rules

Generalises common term in both sides of equation

Does a case split on Boolean variable

Applies rippling heuristic

Selects induction scheme and induction variables

Apply reduction rules

Simplifies induction conclusion with induction hypothesisFigure 1: Method Databaseoutside it. Given a goal, Clam tries the methods in order. If an applicable method isfound then the output yields new subgoals and this process is applied recursively. Ifnone is applicable, then Clam backtracks to a previous goal or reports failure at thetop level. A number of search strategies exist for forming plans. These include depth-�rst, breadth-�rst, iterative deepening, and best-�rst search. We have conducted ourexperiments in hardware veri�cation using the depth-�rst planner.2.2 InductionA number of methods have been developed in Clam for inductive theorem proving andwe used these extensively to prove theorems about parameterised hardware designs.Induction is particularly di�cult to automate as there are a number of search controlproblems including selection of an induction rule, control of simpli�cation, possiblegeneralisation and lemma speculation, etc. It turns out though that many inductionproofs have a similar shape and a few tactics can collectively prove a large number ofthe standard inductive theorems.The induction strategy is a method for applying induction and handling subsequentcases. After the application of induction, the proof is split into one or more base andstep cases. The base case method attempts to solve the goal using simpli�cation andpropositional reasoning (with the sub-method symbolic evaluation). If necessary, an-other induction may be applied. The step case method consists of two parts: ripplingand fertilisation. The �rst part is implemented by the rippling method. Rippling is akind of annotated rewriting where annotations are used to mark di�erences between theinduction hypothesis and conclusion. Rippling applies annotated rewrite rules (calledwave-rules which are applied with the wave method) which minimise these di�erences.Rippling is goal directed and manipulates just the di�erences between the inductionconclusion and hypothesis while leaving their common structure preserved; this is incontrast to rewriting based on normalisation, which is used in other inductive theoremprovers such as Nqthm [3]. Rippling also involves little search, since annotations severely4



restrict rewriting. The second part of the step case, fertilisation, can apply when rip-pling has succeeded (e.g. when the annotated di�erences are removed or moved `outof the way', for example, to the root of the term). The fertilise method then uses theinduction hypothesis to simplify the conclusion.2.3 ExtensionsThe above completes our review of Clam and some of the methods for induction. Wewere able to apply Clam to hardware veri�cation with fairly minor modi�cations andextensions.First there were modi�cations to Clam methods which resulted, in part, from thefact that the experiments reported here are the largest that have been carried out withClam and revealed some ine�ciencies which required improvement. For example: themethod symbolic evaluation was extended with a memoisation procedure for e�cientlycomputing recursive functions in verifying the Gordon computer, and with an e�cientrepresentation of the meta-logic predicate exp at that �nds a sub-expression in an ex-pression; the fertilisation method was extended to deal with a post-rippling situationthat arose in verifying a parameterised version of the n-bit adder and which has ap-peared in many other combinational circuits; the generalisation method was extendedwith type information to generalise over terms of type bool; the equal sub-method wasextended to apply a more general form of rewrite equations in the hypotheses list ofthe sequent to simplify the current goal. We also needed to extend Clam's database ofinduction schemas. To do this we formalised in Oyster new data-types appropriate forhardware such as a data-type of words, which are lists of booleans. Then we derivednew induction schemas based on these which we added to Clam's collection, for exampleinduction over the length of words (i.e., a special case of list induction), simultaneousinduction over two words of the same length, and induction on words where step casesare generated by increment and addition of words, and the like.Finally, we developed a number of new methods. For example, the method bool caseswas added to solve goals by exhaustive case-analysis over booleans. This su�ces oftento automate base cases of induction proofs about parameterised designs. The methoddi�erence match was added to reason about sequential circuits modelled as �nite-statemachines; Also, the method term cancellation was added to strengthen arithmetic reas-oning in Clam.3 Veri�cation MethodologyWe now describe how proof planning can be used for hardware veri�cation and after-wards provide two examples.The user begins by giving Clam de�nitions, in the form of equations, which de�nethe implementation of the hardware and its behavioural speci�cation. Then, the userprovides Clam with the conjecture to be proven. For combinational hardware this istypically an equation stating that the speci�cation is equal to an abstract form of theimplementation: 8x1; : : : ; xn spec(x1; : : : ; xn) = abs(imp(x1; : : : ; xn))5



For synchronous sequential hardware this is typically an implication stating that if thespeci�cation is equal to an abstract form of the implementation at some time t, thenthe speci�cation must be equal to an abstract form of the implementation at all time t0greater that t. If the speci�cation and the implementation involve di�erent time scales,then we must provide a mapping f that converts times from one scale to the other:8t; t0 : time 8x1; : : : ; xnspec(t; x1; : : : ; xn) = abs(imp(f(t); x1; : : : ; xn))^ t � t0!spec(t0; x1; : : : ; xn) = abs(imp(f(t0); x1; : : : ; xn))To create a plan, the user instructs Clam to �nd a proof plan for the conjecture byselecting one of the built-in planners, e.g., to �nd a plan using depth-�rst search. Atthis point Clam has been loaded not only with de�nitions and the conjecture but alsothe method database and wave-rules. If Clam �nds a plan, the user may execute thetactic associated with it to construct an actual proof. Otherwise, the user can correcta bug in the theorem statement or in the de�nitions or suggest a lemma (which willprovide new wave-rules) and try again. After Clam completes a proof plan, the tacticproduced is executed to build an actual proof. Failure at this stage occurs rarely andhappens only when a method improperly describes a tactic; in such cases, we improvethe method or the tactic and plan again.Example: A parallel array multiplierWe now describe the veri�cation of an nm-bit parallel array multiplier. The externalbehaviour of the multiplier is expressed by the formula:word2nat(x)� word2nat(y) :We represent words by lists of bits, and if x and y are words of length n and m respect-ively, then word2nat returns the natural numbers which they represent and the abovespeci�es their product. Multiplication of binary words can be implemented by a simpleparallel array multiplier using binary additions. Consider, for example, multiplying a3-bit word by a 2-bit word. This is represented by:x2 x1 x0� y1 y0x2y0 x1y0 x0y0x2y1 x1y1 x0y1z4 z3 z2 z1 z0To multiply an n bit word by an m bit word the array multiplier uses n�m AND gatesto compute each of these intermediate terms in parallel, and then, m binary additionsare used to sum together the rows. This requires a total of n �m one-bit adders. Thefollowing equations formalise the above as a recursive description of a (parameterised)implementation:mult(x; nil) = zeroes(length(x))mult(x; h :: y) = cadd(mult one(x; h) <> zeroes(length(y)); mult(x; y); 0)6
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Figure 2: Proof plan for verifying an nm-bit multiplierHere cadd is the de�nition of an n-bit adder with arguments of the same length,mult onemultiplies a word times a bit, <> appends two lists (built from nil and 'consed' togetherusing ::), zeroes(n) yields n zeroes. To show the equivalence of the speci�cation andthe implementation, we give Clam the conjecture8x; y : word word2nat(x)� word2nat(y) = word2nat(mult(x; y))This theorem has been proof planned by Clam using the depth-�rst planner in about 1minute. Figure 2 displays the structure of the proof plan. The plan requires 15 levelsof planning (number on the left) and 32 plan steps (numbers on the nodes of the tree).Each node in the tree indicates the application of a method. In particular, steps 1, 3,12, 14, 20, 22 and 29 correspond to the application of the induction method. We brie
yexplain steps 1, 2 and 7 corresponding to the �rst induction. In step 1, the inductionmethod analyses the conjecture and available de�nitions and uses heuristics (similar tothose used in Nqthm) to suggest an induction on the word y. In step 2, the base case,word2nat(x)� word2nat(nil) = word2nat(mult(x; nil))is simpli�ed by symbolic evaluation using the base equation of mult, word2nat, andmultiplication by zero. This yields0 = word2nat(zeroes(len(x)))which is solved by another induction, symbolic evaluation, rippling, fertilise and anotherapplication of symbolic evaluation. In step 7, for the step case, the induction conclusion:word2nat(x)� word2nat(v0 :: v1) = word2nat(mult(x; v0 :: v1))7



is simpli�ed by rippling with the recursive equations of mult, the wave-rule obtainedfrom the veri�cation of the n-bit adder, word2nat, distributivity of times over plus, andfertilisation, to yield:word2nat(x)� (bitval(v0)� 2length(v1)) + word2nat(x)� word2nat(v1)=word2nat(mult one(x; v0) <> zeroes(length(v1)))+(word2nat(x)� word2nat(v1) + bitval(false))This equation is solved by the methods indicated in steps 8-32 in �gure 2. In order togenerate the proof plan, we provided wave-rules which correspond to the veri�cationof the n-bit adder, distributivity of times over plus, associativity of times, and a non-de�nitional wave-rule of plus on its second argument. These wave-rules come fromlemmas which we previously veri�ed using proof planning. Hence, we use proof planningto develop, hierarchically, theories about hardware. Finally, we ask Oyster to executeour proof plan. This consists of executing a tactic for each of the methods indicatedin the proof plan, following the structure displayed in �gure 2 in a depth-�rst manner.The development of the proof plan took about 40 hours distributed over a two weeksperiod. The most time-consuming part was identifying the required lemmas.Example: the Gordon computerThis is a 16-bit microprocessor, with 8 programming instructions, no interrupts, and asynchronous communication interface with memory, designed by Mike Gordon and hisgroup at Cambridge University and veri�ed interactively using the HOL system [12].The speci�cation is given in terms of the semantics of the 8 programming instructions.Each instruction consists of the set of operations that determines a new computer state,where a state is determined by the contents of the memory, the program counter, theaccumulator and the idle/running status of the computer. The execution of an instruc-tion de�nes a transition from a state into a new state and this transition determines thetime-unit of an instruction-level time-scale. Thus, for each instruction we must specifythe way in which each of the four components of a computer state are calculated. Theimplementation is at the register-transfer level. It consists of a data-path and a micro-programmed control unit. A computer state at the register-transfer level is determinedby the contents of 11 components: the memory, the program counter, the accumulator,the idle/running 
ag, the memory address register, the instruction register, the argu-ment register, the bu�er register, the bus, the microcode program counter and the ready
ag. The control unit generates the necessary control 
ags to update the computer re-gisters. Communication between the bus and the registers is regulated by a set of gates.The implementation uses a microinstruction time-scale. The number of microinstruc-tions required to compute a given instruction is calculated automatically by using theready 
ag in the microcode, and the associated time at the microinstruction-level time-scale mapped onto the respective time at the instruction-level time-scale. A translationfrom the relational description used by Gordon into a functional description requiredby Clam was done by hand. This translation can be automated. For instance, PVSprovides assistance in producing the functional representation from the relational one8



[15]. The correctness theorem asserts that the state of the computer at the speci�cationlevel is equal to an abstract state of the implementation level each time an instructionis executed. After doing the extensions explained in the next section, the veri�cationproceeded without user intervention. See [9] for more details.4 ExperimentsWe have applied the methodology just described to a variety of combinational andsequential circuits: some circuits are from the IFIP WG10.2 Hardware Veri�cationBenchmark Circuit Set (n-bit adder, parallel multiplier, Gordon computer) and fromother sources [14]. Table 1 displays some statistics. A detailed analysis of these proofscan be found in [9].We shall explain here what these numbers measure. The �rst column lists the cir-cuits. A parameterised representation means that there is an explicit parameter ncorresponding to the length of a word. Big-endian means that the most signi�cant bitis at the end of the list; little-endian means that the least signi�cant bit is at the end ofthe list. Reasoning about big-endian representations when using lists to represent wordsis easier than the little-endian counterparts because in the big-endian case there is noneed to traverse the list to access the least signi�cant bits. In a word interpretation, thespeci�cation has type word, as the implementation does, so that the veri�cation theoremestablishes the equality of the speci�cation and the implementation on the type word.The word arithmetic operations establish a relationship between the set of words andthe set of the natural numbers.The next column lists timings, broken down three ways: �rst, planning time, isthe time Clam took to generate a plan 1. The time to execute the proof plan is notincluded here. This time is in general much higher, mainly because Oyster the object-level theorem prover uses a complex type theory formalism with type checking proofobligations which are time consuming. For instance, generating the proof plan for theincrementer takes just 6 seconds, but its execution in Oyster took 5:40 minutes. Second,plan-development time, which is the time spent developing the proof plan, from un-derstanding the problem, �nding the right representation for the speci�cation and theimplementation, debugging them, and �nding and justifying missing lemmas, until aproof plan was obtained. This time doesn't include the time spent extending, tun-ing, and debugging Clam, which is the Clam-development time displayed in the thirdcolumn. Some of these times may appear excessive, but, to give an accurate picture, weare accounting for everything, including many one-time costs.The Clam-development time column includes time spent writing new methods, ex-tending existing methods, experimenting with method orderings, writing new predicatesand modifying existing ones for the meta-language, �nding new induction schemes, anddebugging Clam itself. The time to obtain a proof tended to be high for the �rstcircuit of a certain kind, but dramatically decreased for subsequent circuits. For in-stance, the n-bit adder was the �rst circuit we veri�ed and took about 116 man-hours,of which approximately 100 are of work extending previous methods such as fertiliseand generalise, writing new methods such as bool cases and term cancellation, experi-1Experiments were done in a Solbourne 6/702 dual processor with 128Mb of memory, which isequivalent to a two-processor SparcStation 20 9



timeCircuit planning plan-development Clam-development lemmas(min:sec) (hours) (hours)COMBINATIONALn-bit adderparameterised 4:50 16 100 0word interpretation 15:50 8 16 0little endian 5:30 8 16 2big endian 0:57 4 0 1look-ahead carry 2:40 8 0 1n-bit aluparameterised 4:40 56 0 0little endian 8:30 16 0 1big endian 5:35 8 0 0nat. number interpretation 4:50 8 0 0n-bit shifterparameterised 4:30 32 30 0big endian 3:20 16 0 0n-bit processor unitbig endian 5:00 8 2 0parallel arraynm-bit multiplier 1:03 40 0 6n-bit incrementerlittle endian 0:58 4 0 1big endian 0:06 2 0 1word arithmeticaddition 0:08 4 8 1subtraction 0:10 4 0 2multiplication 0:15 4 0 2quotient 0:35 8 4 3remainder 0:30 8 0 5exponentiation 0:26 4 0 2factorial 0:40 8 0 3SEQUENTIALn-bit counter 2:04 20 0 1Gordon computer 45:00 200 360 0Table 1: Some Circuits Veri�ed using Proof Planning10



menting with method ordering, and writing new predicates such as �nd type to providethe proof planner with boolean type information. The rest of the circuits in the tableutilised these extensions and their proofs were obtained in shorter times because theseextensions were already there. The word-interpretation version, which took 16 hours,required 16 hours of extensions to the methods generalise and normalise. The little-endian version, required 16 hours to derive in Oyster a new induction scheme (doubleinduction on two words of the same length) and this is used in many of the other veri-�cation proofs. The big-endian representation, which took just 4 hours, used all theprevious extensions. When we tried the parameterised version of the n-bit alu, it turnedout that all the extensions required were already done for the parameterised version ofthe n-bit adder including method ordering; the 56 hours reported were mainly spentdebugging the speci�cation. Thus, the time for the little-endian and big-endian versionsbecame shorter (16 and 8 hours, respectively). For the word arithmetic the extensionsrequired included deriving new induction schemes such as induction with increment of aword and addition of two words, which made the proofs very easy to �nd. The multiplierdidn't require any extensions; most of the time was spent in �nding the lemmas requiredby the proof.The Gordon computer required a huge e�ort to scale-up Clam capabilities. The veryscale of the speci�cation required that we make a number of extensions to Clam, suchas memoisation, so that the system would more gracefully handle large terms. Alsosigni�cant is that the theorem involves two di�erent time-scales with automatic calcu-lation of the number of cycles for each instruction; methods like di�erence match weredesigned to handle this and to automate time abstraction. Again, all these extensionsare required for the veri�cation of similar circuits, so the 360 hours of developmenttime (9 man-weeks) is a one-time e�ort and the veri�cation e�ort should signi�cantlydecrease for new circuits of the same kind. The 200 hours of plan-development time (5man-weeks) include learning about microprocessor architecture, translating the originalrelational speci�cation of the computer into a functional one, �nding appropriate ab-straction mechanisms, formalising recursive de�nitions for the implementation devices(memory, program counter, accumulator, microcode program counter, etc), and debug-ging the speci�cation and the implementation.The �nal column in our table indicates the number of lemmas used in the proofplanning. The Gordon computer didn't require any lemmas, the multiplier requireslemmas about the n-bit adder, distributivity of + over �, and associativity of times. Ingeneral, proof planning utilises very few lemmas compared with most other systems.5 ComparisonsWe compare Clam/Oyster with Nqthm, PVS and HOL. Clam/Oyster is a fully-expansivesystem, so it provides the user with the security characteristic of these systems, asopposed to systems like Nqthm and PVS which don't necessarily incorporate this feature[2]. In a tactic-based fully expansive system, the execution of a tactic results in theexecution of the inference rules that support that tactic. Theorem provers like HOL andNuprl are also fully-expansive systems. 11



5.1 NqthmMost of the circuits in the table have been veri�ed elsewhere using Nqthm. For instance,the n-bit adder was veri�ed (big-endian) in half a man-day, where the discovery of therequired lemmas was the most di�cult part[17]. A combinational processing unit (aluand shifter) was veri�ed by Warren Hunt as part of the veri�cation of the FM8501microprocessor. This processing unit is veri�ed in 3 theorems corresponding to theword, natural number, and two's complement interpretations. It took about 2 monthse�ort, runs in a few seconds2, and used about 53 lemmas [11]. Although the processorunit reported here is less complicated than FM8501's because we don't include the two'scomplement interpretation, we use just 2 lemmas in its proof planning.As an experiment, some of these circuits were re-implemented in Nqthm by a new-comer to formal veri�cation [16]. The following table summarises the results:timeCircuit run proof-development lemmas(min:sec) (hours)COMBINATIONALn-bit adder (big endian) 3:40 32 6n-bit adder look-ahead carry 3:20 12 6n-bit alu (big endian) 13:30 40 11n-bit shifter (big endian) 2:30 24 2n-bit processor unit (big endian) 0:37 6 13n-bit incrementer (big endian) 0:35 20 3Most of the proof-development time was spent determining the lemmas required by theproof. For instance the proof of the n-bit adder uses the following lemmas: commut-ativity of plus, commutativity of times, and addition, and multiplication by recursionon the second argument. Of these, Clam requires only the lemma addition by recursionon the second argument. In general, Clam required fewer lemmas than Nqthm to verifythese circuits. On the other hand, Nqthm provides a very stable implementation, andwas much easier to use. There is of course a danger in such quantitative comparisonsas metrics can oversimplify and even mislead. For example, the development times ofnovice users can be orders of magnitude higher than experts and moreover experts havebetter insights on how to structure problems to avoid lemmas. Still, we have tried tocompare like with like: both the Clam and Nqthm proofs were carried out by relativebeginners to both automated theorem proving and formal reasoning about hardware.5.2 PVSThe n-bit adder, the n-bit alu, and the Tamarack microprocessor 3 have been implemen-ted in PVS [10, 15]. The run time for verifying each of these circuits was 2:07, 1:27 and9:05 minutes respectively in a Sun SparcStation 10. These low run-times are explainedby the built-in decision procedures available to PVS. In these veri�cations the user mustprovide the induction parameters and use a prede�ned proof strategy. There are two2Personal communication3A re�ned implementation of the Gordon computer. Its veri�cation in HOL and PVS is also moreabstract, as tri-state values and gates to access the bus, and the input of manual information through theswitches and the knob, are not considered. However, Tamarack-3 includes an option for asynchronouscommunication with memory. 12



ways in which Clam could enhance PVS automation facilities: (1) The decisions forselecting an induction scheme and induction variables are done by the user. These de-cisions could be automated by interfacing Clam and PVS. (2) There are proof strategiespackaged as sets of PVS commands for a certain kind of circuits. The adder and the aluuse the same proof strategy, the Tamarack and the pipelined Saxe microprocessor shareanother proof strategy. Our set of methods and the planning mechanism comprise theseproof strategies, and can in principle create new ones by customising a composite tacticfor a new conjecture using the same methods.5.3 HOLThe Gordon computer was originally designed and veri�ed using HOL by Mike Gordonand his group [12] and later implemented and veri�ed as the Tamarack microprocessorby Je�rey Joyce [13]. The veri�cation took about 5 weeks of proof-development e�ortand required the derivation of at least 200 lemmas including general lemmas for arith-metic reasoning and temporal logic operators which are now built into HOL. It didn'trequire to tune HOL and runs in about 30 minutes in a modern machine4. Although thearchitecture of the Gordon computer veri�ed here is less complicated than the architec-ture of Tamarack-3 veri�ed by Joyce because we assume a synchronous communicationwith memory, we don't use lemmas in its proof planning. There are also two waysin which Clam could enhance HOL automation facilities: (1) the selection of inductionparameters (scheme and variables), and (2) the generation of proof strategies for familiesof circuits. A project to interface Clam and HOL is about to start [5].6 ConclusionsWe have described how a hardware veri�cation methodology based on proof planningcan be applied to guide automatically a tactic-based theorem prover in verifying hard-ware designs. We have applied this technique to verify a variety of combinational andsynchronous sequential circuits. Our experience shows that the Clam system and theproof planning idea carry over well to this new domain, although a number of extensionsin the details (as opposed to the spirit) of Clam and the development of domain speci�ctactics and methods were required.Overall, our experience was quite positive. We investigated several kinds of para-meterised circuits and were able to develop methods which captured heuristics suitablefor reasoning about families of such designs. We reported on our development time forboth proving particular theorems and doing extensions to Clam. Although the timesare sometimes high for initially verifying new kinds of circuits, subsequent developmenttimes were respectable and the majority of time was spent on simply entering and de-bugging the speci�cation. This provides some support to our belief that a system likeClam might be usable by hardware engineers, provided that there is a `proof engineer'in the background who has worked on the design of a set of methods appropriate forthe domain.There are several directions for further work. As noted, much of our time was spententering and debugging speci�cations. Part of this is due to our use of a somewhat4Personal communication 13
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